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Abstract: Optical receivers with potentially high opera-
tion bandwidth and low cost have received considerable
interest due to rapidly growing data traffic and potential
Tb/s optical interconnect requirements. Experimental
realization of 65 GHz optical signal detection and 262
GHz intrinsic operation speed reveals the significance
role of graphene photodetectors (PDs) in optical inter-
connect domains. In this work, a novel complementary
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metal oxide semiconductor post-backend process has
been developed for integrating graphene PDs onto silicon
integrated circuit chips. A prototype monolithic optoelec-
tronic integrated optical receiver has been successfully
demonstrated for the first time. Moreover, this is a firstly
reported broadband optical receiver benefiting from nat-
ural broadband light absorption features of graphene
material. This work is a perfect exhibition of the concept
of monolithic optoelectronic integration and will pave
way to monolithically integrated graphene optoelectronic
devices with silicon ICs for three-dimensional optoelec-
tronic integrated circuit chips.

Keywords: graphene photodetectors (GPDs); optoelec-
tronic integration; optical receiver.

1 Introduction

In this information age, superiority of optical communi-
cations becomes obviously evident due to its large band-
width, low attenuation, high electromagnetic interference
immunity, and high reliability. As critical components of
optical interconnect systems, optical receivers consisted
of photodetectors (PDs) and photocurrent signal ampli-
fier circuits have attracted intensive attention due to huge
demand in the market. PD, a device converting transmis-
sion optical signals into electrical signals for the following
processing, is a core part of an optical receiver. Normally,
photocurrent produced by PD is very small due to relatively
weak optical signals. Hence, a photocurrent signal ampli-
fier circuit is required in the optical receiver to amplify
detected signals. Recently, development of optical receivers
with low cost and high performance is a research hotspot
[1, 2]. Fortunately, amplifier circuits can be achieved via
integrated circuits (ICs) with the complementary metal
oxide semiconductor (CMOS) technology and cost will
be significantly reduced with the mature microelectronic
technology. Therefore, the realization of a costless PD and
a cost-effective fabrication process to integrate PDs with IC
chips is the urgent problem that remains.
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Nowadays, extensive attention have been given to the
integration of CMOS compatible PDs and amplifier circuits
on a single chip (monolithic optoelectronic integrated
circuits, OEICs) for affordable high-performance optical
receivers [3-5]. Silicon PD-based optical receivers can be
obtained easily with a CMOS compatible technology and
are widely used in short-distance optical communica-
tions with 850 nm wavelength [6]. However, due to the
relatively large bandgap of silicon material, this kind of
optical receiver could not detect valuable optical carriers
with wavelengths of 1310 and 1550 nm, which are widely
used in modern optical communication systems. Never-
theless, germanium (Ge) material with a narrow band gap
can detect these light waves [7, 8]. In the front-end of line
Si CMOS process design, electronic transistors, and pho-
tonic devices are achieved simultaneously [9]. However, to
achieve a high-performance Ge PD is very difficult due to
allowable limited layer thickness of the Ge material in the
standard CMOS process. Moreover, much bigger footprints
of PDs occupy valuable transistor real estate leading to
higher product cost. Meanwhile, researchers attempted
to integrate the Ge crystals on the surface of amorphous
silicon with the back-end of line process [10], which can
achieve 3D dense integration of photonics and electron-
ics [11, 12]. However, a 3D monolithic optoelectronic
integrated optical receiver with Ge PDs has not yet been
demonstrated based on this approach. Therefore, a mate-
rial with potentially high carrier mobility and wide-band
photoresponse features is aspired for a monolithic opto-
electronic integrated optical receiver. It could be utilized
to serve for both short wavelength and long wavelength
optical communication systems with a high operation
speed. However, this broadband optical receiver has not
been reported, to the best of our knowledge.

Graphene, a single sheet of carbon atoms in a hex-
agonal lattice, is the first two-dimensional (2D) atomic
crystal available in the world [13]. Its linear dispersion
relation between energy and crystal momentum results in
remarkable material parameters and makes it a star con-
tender for lots of applications, especially for electronic
[14-17], photonic [18, 19], and optoelectronic applica-
tions [20-24]. With zero bandgap, graphene can absorb
electromagnetic radiation ranging from far-infrared to
UV light [25]. Graphene can fast respond to incident illu-
mination [26-28] due to the ultrahigh carrier mobility
(about 200,000 cm?V-'s™ in experiment [29]). Therefore,
graphene has been considered as an outstanding material
for PDs. Although the firstly demonstrated graphene pho-
todetector (GPD) achieves a bandwidth of about 40 GHz
[21], the ultrahigh intrinsic operation speeds could be well
over 500 GHz [21], surpassing the state-of-the-art PDs [30].
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As GPDs can respond to optical signals with a wavelength
covering all optical communication bands, the GPD-based
optical receivers have a chance to serve both short wave-
length and long wavelength optical communications [31].
Meanwhile, graphene material with high quality and large
area can be obtained with the low-cost chemical vapor
deposition (CVD) technology [32]. Therefore, GPD is the
most potential candidate for the realization of a broad-
band, high speed and cost-effective optical receiver.

Goossens [33] firstly presented a high-resolution
image sensor by integrating graphene phototransistors
with CMOS ICs. However, a CMOS-compatible GPD-based
monolithic optoelectronic broadband optical receiver with
high reliability, small size, and low cost is not currently
available. In order to fill this gap, we develop a kind of
CMOS post-backend process to realize GPDs on the surface
of the IC chips and ultimately achieve a monolithic opto-
electronic integrated broadband optical receiver. Silicon is
perfect to fabricate IC chips for signal amplification and
processing benefit from the mature CMOS technology and
the graphene material is obviously suitable for optical
detection due to its high operation bandwidth and broad-
band photoresponse. Hence, GPD-based optical receiv-
ers take advantage of both silicon material and graphene
material simultaneously. Therefore, this scheme shows
great potential to realize an optical receiver with low cost
and high performance in the near future. Here, proto-
type of GPD-based broadband optical receiver has been
experimentally demonstrated for the first time. GPDs were
fabricated on the surface of the silicon nitride passiva-
tion layer of the commercial 0.35 um feature size silicon
ICs with a low-temperature CMOS compatible process.
Detection sensitivity of GPD on silicon ICs was signifi-
cantly improved by integrating GPD with the photocurrent
amplifier on the silicon chip, which is meaningful when
considering limited intrinsic photoresponsivity of GPD
due to weak optical absorption of graphene. In consid-
eration of the easily available materials and the excellent
combination, this broadband optical receiver of low cost
and high performance might find its extensive application
in optical communications in the near future. This work
not only indicates the realization of a successful broad-
band optical receiver but also provides a feasible process
for monolithic integration of graphene optoelectronic
devices and silicon ICs.

2 Device design and fabrication

As massless Dirac fermion, carriers in graphene can move
with a speed up to 1/300 light velocity [34], which results
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in the ultrahigh room-temperature carrier mobility and
the achievement of high-speed GPDs. With zero bandgap,
graphene can respond to light wave with wavelength cov-
ering all optical communication bands (such as 850, 1310,
and 1550 nm), which explains GPD’s natural broadband
character [25]. However, the uniform 2.3% optical absorp-
tion of graphene limits GPD’s photoresponsivity [35]. To
solve this problem, graphene has been integrated with
microcavities [36], plasmon resonators [37, 38] and silicon
waveguide [23, 24, 39-41], but these methods weaken
the broadband character. Another method carried out by
integrating graphene layer with semiconductor quantum
dots can greatly improve photoresponsivity without wave-
length dependence [42], but the photoresponse speed is
relatively low.

The aforementioned approaches are all focused on the
enhancement of the intrinsic photoresponsivity of GPDs.
However, we can amplify weak photocurrent signals from
GPD with a simple metal-graphene-metal structure by
utilizing an additional current amplifier circuit and this
module can be defined as a prototype optical receiver.
This optical receiver may exhibit high operation speed,
broad spectral bandwidth, and low detection limit simul-
taneously. Transimpedance amplifiers (TIAs) transform-
ing weak photocurrent into large output voltage are often
used in the optical receivers. Here, the innovation is that
we integrated GPDs on the surface of the TIA chips for
optical receivers of low cost. As a single atom layer mate-
rial, graphene is fond of a smooth substrate. A rough
surface would result in sidesteps in the graphene layer,
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which would cause serious degradation of the perfor-
mance of grapheme-based devices. Hence a commercial
0.35 um feature size silicon CMOS technology is adopted
to achieve TIAs as the surface of the chip away from the
pads is smooth.

Figure 1A shows three-dimensional (3D) schematic
of GPD-based broadband prototype optical receivers.
The GPD with a simple metal-graphene-metal structure
is fabricated on the smooth surface of the silicon-based
IC chips. An inductance L and a capacitance C from a
high-performance bias-tee are utilized to apply DC bias
for GPD and extract output photocurrent for TIA input
(TIA,), respectively. Figure 1B shows the corresponding
circuit implementation of the prototype optical receivers.
Output photocurrents from GPDs are injected into TIAs
and amplified voltage signals can be obtained at the TIA
output (TIA_ ).

We began with the design of schematic of TIA ICs
and the drawing of the layout, and then the layout data
were sent to a CMOS manufacturing foundry line. The
2.5x2.5 mm? IC chips were obtained by wafer dicing.
In the following fabrication process, the biggest chal-
lenge was to fabricate GPDs on the surface of the silicon
nitride passivation layer of the small-sized IC chips. The
main fabrication processes of GPDs on the surface of
the IC chips are schematically shown in Figure 2. Firstly,
the CVD grown graphene film was transferred onto the
surface of the 2.5x2.5 mm? IC chip after the copper foil
was etched away (Figure 2A). Secondly, the photolithog-
raphy and O, plasma etching were successively used

VDD
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Figure 1: Three-dimensional schematic of GPD-based broadband prototype optical receivers (A) and schematic illustration of the corre-

sponding circuit implementation (B) are shown.
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Figure 2: Schematic of main fabrication steps of the optical receiver.
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(A) CVD graphene is transferred on the surface of the IC chips. (B) A patterned graphene channel is obtained. (C) Metal contacts of graphene

are completed. (D) A wire bonding process is completed for test.

to obtain the patterned graphene channel (Figure 2B).
Thirdly, the Ti (10 nm)/Au (150 nm) films working as
metal contacts were finished by lift-off in acetone after
the photolithography and thermal evaporated processes
(Figure 2C). Finally, pads of GPDs and silicon IC chips
were wire-bonded to a universal printed circuit board
(PCB) (Figure 2D). Here we should give the details about
the photolithography process as the size of the IC chip
is too small with the normal methods. At first, a silicon
chip with size of 15x15 mm? was chosen as the support
substrate of the IC chip. Then a thick adhere layer with
flat surface was achieved on the surface of the silicon
chip via spin coating process with a speed of 1000 rpm
for 60 s and the IC chip was placed on the surface of
the adhere layer at one of the corners. Then heating for
10 min under 80°C on the planet was carried out to fix
the IC chip on the silicon chip firmly for the following
regular photolithography process. As the temperatures
of all the fabrication processes are lower than 200°C, the
performance of the CMOS IC chips would not degenerate.
Hence, a feasible CMOS post-backend process has been
developed for the realization of monolithic integration of
graphene optoelectronic devices and silicon ICs in this
work.

3 Results and discussion

3.1 Device characterization

Figure 3 shows optical micrograph of the fabricated
GPD-based broadband optical receivers. Five GPDs were
achieved on the surface of the IC chip, which means a GPD
array can be obtained easily. The thickness of the metal
electrodes is only 160 nm (Ti/Au 10 nm/150 nm) in this
work, which is a little thin for the wire-bonding process.
However, four GPDs were wire-bonded to a universal PCB
successfully, which means the Ti adhesion layer could
work well on the surface of the silicon nitride layer. A better
result might be obtained with thicker metal contact. Here,
wire-bonding scheme is carried out for the purpose of the
realization of the independent tests of the discrete GPDs
and the integrated optical receiver. As performances of
GPDs can vary with bias, we should apply different biases
to GPDs for the best operation point. These bonding wires
can be replaced easily by the metal interconnects with the
mature CMOS process. The white dotted frame displays
location of TIA IC and the inset at the right top shows GPD
with more details. The scale bar is 50 um. The graphene is
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Fgure 3: Optical micrograph of the fabricated GPD-based monolithic optoelectronic integrated broadband optical receivers.
The inset shows the GPD with more details and the scale bar is 50 pm. The white dotted frame shows the location of the TIAIC.

invisible on the surface of the silicon nitride layer due to
low reflection contrast.

Raman spectra measurements were performed to
characterize density of defects of the transferred CVD
graphene on the surface of the silicon ICs with silicon
nitride passivation layer. At the same time, we transferred
the CVD graphene onto the surface of the silicon wafers
with 300 nm thermal oxide layer for a comparison. The
Raman spectra were obtained with a 532 nm excited laser
with an incident power of 5 mW and laser spot diameter
of 20 um. As shown in Figure 4A,B, almost no obvious
defects were observed in the graphene on the surface of
the silica (rea line) and silicon nitride (black line), which
means the high quality of the transferred graphene and
the smooth silicon nitride layer has no damage to gra-
phene [43]. It should be noted that Raman spectrum of
the graphene on the surface of the IC chips was obtained
by subtracting the substrate signal from the total signal.
Figure 4C,D show the scanning electron microscopy (SEM)
image and the atomic force microscopy (AFM) images of
the GPD, respectively. The boundary of the graphene layer
can be discovered easily in the SEM image because of the
high electrical conductivity of graphene. The AFM image
shows roughness of 1.6 nm on graphene and 1.8 nm on
silicon nitride, which indicates excellent mechanical fea-
tures of graphene material. Smooth surface is necessary
for the achievement of high performance GPDs. As thick-
ness of the single layer graphene is only about 0.4 nm, an

inconspicuous color change can be found at the boundary
of graphene.

3.2 Static photoresponse measurement

Before being connected to Si CMOS ICs, the static photo-
electric characteristics of GPDs fabricated on the surface
of the IC chip were investigated. Figure 5A shows the sche-
matic measurement circuitry. Currents in the circuit under
different illumination conditions were measured using a
Keithley 2612B semiconductor analyzer. In GPD, a shorter
channel length means a higher operation bandwidth. In
our fabricated GPD, the channel length is about 3 pum.
However, a single mode fiber was utilized to guide optical
power to the surface of GPDs and the light spot diameter
is normally bigger than 11 um for 1550 nm wavelength.
Therefore, less than 25% of the total incident optical
power can interact with graphene in GPD channel. A
lensed fiber with small spot-size can be utilized to reduce
the loss of incoming light in the future. The photocurrents
of the GPD versus bias voltages for different effective input
optical powers (5, 10, 20 mW) at 1550 nm were shown in
Figure 5B. An approximately linear relationship between
photocurrents and sweeping bias voltages (from -1 V to
1V) can be described for fixed input optical power. Same
polarity of photocurrent and bias voltage indicates that
photovoltaic effect makes a significant contribution to



1348 —— C.Chengetal.: Monolithic optoelectronic integrated broadband optical receiver

Intensity (a. u.)

e

1200 1500 1800 2100 2400 2700 3000

Raman shift (cm-")

DE GRUYTER

|
I
I
I
RMS:1.8 nm |
|
I
I

Graphene

Figure 4: Raman spectra of the transferred graphene on the surface of silica (A) and silicon nitride (B) indicate that the surface of the pas-
sivation layer on the IC chip did not bring any additional damages to the performance of the graphene. (C) The scanning electron microscopy
image shows the graphene channel clearly due to high electrical conductivity of the graphene material. (D) The atomic force microscopy
image at the boundary of graphene and silicon nitride shows more details of the graphene material and silicon nitride. The scale bar is

500 nm.
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Figure 5: Static photoresponse of optical receivers.

(A) Schematic measurement circuitry for static photoresponse features of GPDs. (B) Photocurrents of GPD versus bias voltages for different input
optical powers at 1550 nm were shown. (C) Broadband photoresponse of GPD was investigated by using light sources with different wavelengths.

the high responsivity as the external electrical field could
accelerate the photon-generated carriers. At a fixed bias
voltage, photocurrent increases with input optical powers
due to growing number of photon-generated electron-hole
pairs.

Broadband photoresponse of GPDs at a bias of
1 V was investigated and the tested photocurrents of
1.25 mW effective incident optical power with differ-
ent wavelengths (405, 532, 635, 1310, 1528, 1550, and
1600 nm) were shown in Figure 5C. The responsivity of
the GPD is about 1.6 mA/W for the illumination with a

wavelength of 1550 nm. For short wavelengths, a higher
responsivity about 8 mA/W is obtained probably due to
hot-carrier effect [44]. This photoresponsivity is compa-
rable with the reported pure graphene-based PD on silica
substrate [21], which indicates an excellent compatibil-
ity of graphene material and silicon nitride passivation
layer. Here, we should note that this is the first time that
GPD was fabricated on the surface of a standard silicon
IC chip successfully. Benefiting from broadband pho-
toresponse of GPD on surface of the TIA IC chips, a cost-
effective monolithic optoelectronic integrated optical
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receiver with broadband photoresponse was achieved
for the first time.

3.3 Dynamic performance measurement

The dynamic responses of GPDs and the optical receiv-
ers were measured using a test circuitry as shown in
Figure 6A. A 1550 nm continuous-wave from the laser
diode was modulated with a Mach-Zehnder modula-
tor driven by a signal generator (Agilent 33250A) and a
500 kHz optical sinusoidal signal was generated. Before
the optical signals were focused onto GPDs, an erbium-
doped fiber amplifier was used to amplify optical signal
power. A high-performance bias tee was used to apply
DC bias to GPDs and extract the output photocurrent
signals. In order to investigate the current amplification
features of TIA, two output modes were carried out. In
mode 1, the output signals were observed by an oscil-
loscope (Agilent MSO-X3034A) directly. In mode 2, the
output photocurrent signals were amplified by TIAs
firstly. Figure 6B shows output voltages of the photocur-
rent signals at 1 V bias with (red) and without (black)
TIAs under 20 mW effective incident optical power. The
v, (peak to peak voltage) of the black waveform is 13 mV
while the Vle of the red waveform is 291 mV, which means
22-fold photocurrent signal enhancement is achieved at
bias of 1 V successfully. Figure 6C displays the output |
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with (red) and without (black) TIAs as a function of the
bias under 20 mW effective optical power. At zero bias,
output Vpp without TIAs is small than 0.01 mV, however,
the output Vle with TIAs is about 35 mV, which indicates
the realization of a more than 3500 times signal ampli-
fication. As the magnification times increase obviously
with the decrease of the bias, this optical receiver can
operate with very low power consumption. In order to
investigate the performances of the GPD-based optical
receiver under a relative small effective incident optical
power, the output voltages of the optical receiver at 1
V bias under a 2 mW effective incident optical power
was obtained and shown in Figure 6D. The Ve, of the
output voltage is more than 50 mV, which means a much
smaller optical power can be detected with this OEIC-
based optical receiver.

As dark current of fabricated GPD is 325 pA at 1 V bias,
power consumption is 325 uW. The relatively large power
consumption results from zero bandgap of graphene
material. The GPD with asymmetric metal contacts [22]
operated at zero bias can be fabricated on the surface of
IC chips for zero power consumption of optical receivers
in the near future. Total capacitance of a GPD consists of
pad capacitance (Cp) and graphene capacitance (Cg). C,is
related to the structure of pads in GPD and C,is related
to both total channel charge and channel graphene area.
In principle, small pads and small graphene area mean
low device capacitance. With results in Ref. [21], total

A
Bias tee
2
—|TIA
1
1550 nm LD M EDFA
Agilent Agilent
Agilent MSO-X MSO-X
33050A 3034A 3034A
B C D
0.24" ] 004 Optical 2 mw
.24 [——with TIA { = 1 tical power: 2 m
—WoTA | 800 ——LY < 0.03- plical p
S < 2504 2
< o ; Y 0.02
S = 2004 & 0.01
= o 3
g 00 ; 150 2 0.00-
2 2 o0l Optical power: 20 mW %_0‘01
j=3
S -0.1 s} O ol
501 0.02
. . -0.08
0.2 Optical power: 20 mW 0 vos
-10 -5 ) 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 ‘—1() -8 6 4 -2 0 2 4 6 8 10
Time (us) Bias (V) Time (us)

Figure 6: Dynamic photoresponse of optical receivers.

(A) Test circuitry for dynamic responses of GPD and the optical receiver. (B) Output voltages of the photocurrent signals at 1V bias in mode 1
(black) and mode 2 (red). (C) Output V., values of mode 1 (black) and mode 2 (red) as a function of the bias. (D) Output voltages of the optical
receiver at 1V bias under a 2 mW effective optical power with a frequency of 500 kHz.
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(A) Normalized output signals of GPDs for pulsed optical signals. (B) Transfer curve of GFETs fabricated with same graphene as GPDs and

carrier mobility of the graphene material.

capacitance of our fabricated GPD is less than 230 fF,
where C (pad structure: 100X 100 um? in size and 50 pm
in distance) is less than 30 {F and C, (graphene area: 3x20
um?) is less than 200 fF. Therefore, a small graphene area
in GPD is required for a small capacitance and thus high
bandwidth in the future.

Figure 7A shows the normalized output signals of
GPDs for the pulsed optical signals. Rise time and fall
time are 0.5 and 0.5 us, respectively, which means the
bandwidth of fabricated GPD is 700 kHz. The relative low
bandwidth is attributed to the relative low carrier mobil-
ity of the commercial CVD graphene utilized in GPDs.
Carrier mobility of the CVD graphene used in the GPDs in
our work can be obtained from the transfer curve of gra-
phene field effect transistors (GFETs). We have fabricated
a GFET with the same graphene material and fabrication
process as the GPDs. The transfer curve under 50 mV bias
is displayed in Figure 7B. The carrier mobility for holes
(electrons) is 66 cm?V-'s™ (25 cm?V-'s™), which is much
smaller than the single crystal graphene obtained via a
mechanical exfoliated process [29].

3.4 Discussion

Finally, we discuss the potential superiorities of the

GPD-based monolithic optoelectronic integrated optical

receiver for future optical communication applications.

(1) Broadband optical receiver. With zero band gap,
graphene material can absorb electromagnetic radia-
tion in ultra-wide wavelength range. In this work,
GPDs can operate from 405 to 1600 nm, which cov-
ers the most important three optical communication
wavelengths (850, 1310, and 1550 nm). Therefore,
this GPD-based broadband optical receiver can serve
almost all optical communication systems.

(2) Potentially high operation bandwidth. As poten-
tial carrier mobility of graphene is extremely high,
the operation bandwidth of GPD is limited by RC
constant of the device structure and a 500 GHz [21]
intrinsic operation speed can be achieved in the
future. Although the first graphene-based optical
receiver achieved in this work just works at 500 kHz
with 1550 nm carrier waves, the performance can be
improved significantly if a single crystal graphene
with higher carrier mobility is used and an optimized
fabrication process [45] is carried out to reduce con-
tact resistance and remove residue on the graphene
surface. In addition, further collaborative parameter
optimization of the TIA chips and GPDs may increase
the operation speed to a great extent. Hence, a lot of
work can be developed to improve the performances
of GPDs in the future.

(3) Monolithic optoelectronic integration. OEICs are
kind of novel devices that integrate optoelectronic
components and electronic ones on one chip and
have attracted strong interest for their advantages of
small size and high reliability, and will find its roles in
many applications related to photonic and optoelec-
tronic domains. Here, a CMOS backend process com-
patible scheme has been provided to integrate GPDs
with simple MGM structure onto the standard IC chips
for a monolithic OEIC-based optical receiver. Actu-
ally, this integration scheme can support the mono-
lithic integration of optical waveguide-based GPDs
and silicon IC chips. Silicon nitride material can work
as an optical guiding medium due to its good optical
characteristics and CMOS compatible features. Inte-
grating graphene with silicon nitride waveguide is a
potential scheme to achieve GPD with high responsi-
bility and broadband photoresponse. In our former
works, we have monolithically integrated silicon



DE GRUYTER

nitride waveguides with IC chips through a post-
backend process successfully [12]. Hence, a silicon
nitride waveguide integrated GPD and even a wave-
guide integrated graphene optical modulator can be
achieved facilely along the waveguides. Therefore,
with silicon nitride material and graphene, both pas-
sive photonics devices and active optoelectronic ones
can be monolithically integrated with IC chips and 3D
OEIC with high integration density can be achieved
eventually.

(4) Potentially low cost. The cost-effective high quality
and large area CVD graphene material can be made
available with the rapid improvement of synthetic
technology and transfer process. The simplicity of
the GPD structure results in low-cost fabrication pro-
cesses. The total cost of a single monolithic optoelec-
tronic integrated optical receiver can be significantly
reduced due to the small size and mass production as
traditional IC chips from a 12-inch wafer. Moreover, as
the GPD-based optical receivers can serve all optical
communication systems, the demand would increase
quickly as optical interconnects become significant
in our daily life (such as “fiber to home” and “5G”).
Therefore, this optical receiver can be cost-friendly
compared with the commercial heterogeneous inte-
grated optical receivers.

4 Conclusion

In conclusion, we have developed a CMOS backend
process compatible method for integrating GPDs onto
silicon CMOS ICs for the purpose of achieving a broad-
band optical receiver. The photocurrent signal amplifier
ICs were obtained via a commercial silicon CMOS techno-
logy and GPDs were fabricated on the surface of the pas-
sivation layer of the IC chips via a micro-fabrication
process. The monolithic OEIC-based broadband optical
receivers could work at 500 kHz. With high-quality single
crystal graphene and optimized fabrication process, the
GPD-based optical receivers operating at tens of GHz can
be available easily benefiting from potential high carrier
mobility of graphene material. This work not only dem-
onstrates a successful monolithic OEIC-based broadband
optical receiver but also presents a feasible method for the
monolithic integration of graphene optoelectronic devices
and traditional silicon ICs.
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