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Abstract: Plasmonics is an emerging field that examines 
the interaction between light and metallic nanostructures 
at the metal-dielectric interface. Surface-enhanced Raman 
scattering (SERS) is a powerful analytical technique that 
uses plasmonics to obtain detailed chemical information 
of molecules or molecular assemblies adsorbed or attached 
to nanostructured metallic surfaces. For bioanalytical 
applications, these surfaces are engineered to optimize for 
high enhancement factors and molecular specificity. In 
this review we focus on the fabrication of SERS substrates 
and their use for bioanalytical applications. We review 
the fundamental mechanisms of SERS and parameters 
governing SERS enhancement. We also discuss develop-
ments in the field of novel SERS substrates. This includes 
the use of different materials, sizes, shapes, and architec-
tures to achieve high sensitivity and specificity as well as 
tunability or flexibility. Different fundamental approaches 
are discussed, such as label-free and functional assays. In 
addition, we highlight recent relevant advances for bioan-
alytical SERS applied to small molecules, proteins, DNA, 
and biologically relevant nanoparticles. Subsequently, we 
discuss the importance of data analysis and signal detec-
tion schemes to achieve smaller instruments with low cost 
for SERS-based point-of-care technology developments. 
Finally, we review the main advantages and challenges of 
SERS-based biosensing and provide a brief outlook.

Keywords: Raman; surface-enhanced Raman spectro-
scopy; plasmonics; analytical biosensors.

1  Introduction
Surface plasmons (SPs) are the collective excitation of free 
conductive electrons excited by electromagnetic radiation 
at the metal-dielectric interface [1]. They are supported 
by noble metal thin films or nanoparticle (NP) surfaces. 
The study of the interaction between light and metal-
lic nanostructures is a rapidly emerging research area 
known as plasmonics [2–5]. Targeted engineering of plas-
monic nanostructures gives us the ability to control and 
manipulate visible light at the nanometer scale [6–8] for 
applications that can make a real-world impact such as 
integration and miniaturization of electronics, photonic 
interconnects, or sensitive analytical devices.

There are two types of SPs: (i) propagating and (ii) 
nonpropagating [1, 9]. Propagating SPs are called surface 
plasmon polaritons (SPPs) generated on noble (such as Au 
or Ag) metallic thin films 10–200  nm in thickness. Non-
propagating SPs, on the other hand, are called localized 
surface plasmon resonances (LSPRs) and are generated 
on the surface of NPs 10–200  nm in size or created by 
nanosphere lithography [9, 10]. The electromagnetic field 
that is generated for SPPs on the noble metallic thin film 
propagates 10–100 μm in the x and y directions and 200–
300 nm in z direction along the metal-dielectric interface. 
The propagation distance depends on the type of metal, 
film thicknesses, and surface roughness [5, 10, 11].

The effect of an electric field created by LSPR excita-
tion on a molecule can be understood if we look first at 
a simplified structure such as a sphere and consider a 
molecule at a distance d from the surface of the sphere. 
In this case, the electric field created outside the sphere 
by the electrostatic dipole inside the sphere will decay by 
1/(r + d)3, where r is the radius of the sphere. The surface-
enhanced Raman spectroscopy (SERS) intensity, on the 
other hand, will decay with 1/(r + d)12, which indicates 
that the highest intensity is obtained for a molecule at 
the surface and the intensity will decay very fast as the 
molecule is moved away from the surface of the sphere. 
It is, however, important to note that “long-range” effects 
(for molecules at 10  nm or more away from the metallic 
surface of the sphere) can be observed as well [12, 13].
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The plasmonic properties of metallic NPs include the 
resonance frequency of the SPs and magnitude of the elec-
tromagnetic field generated at the surface. These proper-
ties are strongly dependent on their type, size, shape, and 
composition and the dielectric environment [14–17].

Several types of plasmonic devices have been devel-
oped such as plasmonic filters [6], wave-guides [6–8], and 
nanoscopic light sources [9]. Due to the ability to tune their 
response to incident light, plasmonic nanostructures have 
also been used in biomedical applications [18]. Several 
studies show the use of plasmonic nanostructures in bio-
physical research [19, 20], biomedical imaging and sensing 
[21, 22], medical diagnostics [23], and cancer therapy [24, 
25]. In addition, the research that explores the combina-
tion of plasmonics with chemistry, chemoplasmonics 
[26–28], is another rapidly growing field. Chemical modi-
fications made on the surface of the plasmonic structure 
may impart chemical specificity as well as higher sensi-
tivity for improved analytical capabilities in applications 
based on SERS [29], LSPR spectroscopy [30], or surface 
plasmon resonance (SPR) spectroscopy [31, 32].

The electromagnetic fields generated by SPs and 
localized SPs at the surface of the metal will interact with 
the incoming photons and also with the Raman emitted 
photons to provide significant enhancement of the Raman 
scattered photons (electromagnetic enhancement). If the 
molecule is chemically bound to the surface of the metal, 
additional enhancement can be observed that is gener-
ated by the charge transfer between the metal and the 
molecule (chemical enhancement). These processes are 
forming the basis of SERS and will be discussed in greated 
detail below.

SERS is a powerful technique that uses the enhance-
ment of the Raman signal of molecules situated in the 
near vicinity of metallic nanostructures to obtain detailed 
information regarding the identity of those molecules 
[33–36], with sensitivities down to single-molecule level 
[37–39]. The enhancement of the Raman signal is based 
on two mechanisms: electromagnetic enhancement [40, 
41] and chemical enhancement [42, 43]. Electromagnetic 
enhancement is due to the excitation of the SPs of noble 
metal nanostructures. When a Raman scattering molecule 
is subjected to intense electromagnetic fields generated 
on the metal surfaces, the higher electric field intensity 
results in stronger polarization of the molecule, and thus 
the higher induced dipole moment is obtained. This is 
directly related to the intensity of Raman scattered light 
[44]. Electromagnetic enhancement is considered the 
major component (enhancement contribution of 104–107) 
of the enhancement mechanism [44]. Chemical enhance-
ment is due to charge transfer between metal and adsorbed 

molecules on plasmonic nanostructures. The contribution 
of chemical enhancement is smaller (a factor of 10–102), 
and its magnitude depends on the chemical structure of 
the molecule [44–47].

Since electromagnetic enhancement is the major 
contributing mechanism, research focuses on targeted 
engineering of novel plasmonic structures to obtain 
high enhancement factors while maintaining reproduc-
ibility across the substrates. Plasmonic properties can 
be tuned by changing physical properties such as size 
[48–52], shape and type [53–61], composition [62–64], 
and dimensionality (2D and 3D) [65–73] of the plasmonic 
nanostructures. When the physical characteristics of 
nanostructures are tuned, the resonance frequency (or 
wavelength) of the SPs is changed. Higher SERS enhance-
ment factors are obtained when the wavelength of the 
SPs of the nanostructure (λSP) is located between the exci-
tation wavelength (λexc) and the wavelength of Raman 
signal (λRS). Theoretical and experimental results demon-
strated that the maximum enhancement occurs when the 
λSP is equal to the average of the λexc and the λRS, that is, 
when λSP = 1/2(λexc + λRS) [44, 74–77]. Tuning the physical 
properties of nanostructures also changes the magnitude 
of the electromagnetic field generated on the surface-
when exposed to monochromatic light. The intensity and 
distribution of the electromagnetic field generated on the 
plasmonic nanostructures determines to a great extend 
the SERS enhancement factor, which is directly propor-
tional to the fourth power of electromagnetic field inten-
sity generated on the plasmonic nanostructures [10, 78]. 
Thus, one of the main tasks in engineering plasmonic 
structures is generating intense electric fields on their 
surface. Electrodynamic calculations can help estimate 
the resonant frequency and electric field intensity of 
the SPs generated by light in nanostructures of various 
geometries. Discrete dipole approximation (DDA) [10, 
79] and finite-difference time-domain [80] methods are 
commonly used for such theoretical calculations. As an 
example, Figure 1 shows the electrodynamic calculations 
of plasmonic properties of silver nanoparticles (AgNPs) 
having different shapes using DDA method to estimate 
the enhancement factor [10]. The extinction wavelengths 
and the intensity and distribution of electric fields (E) on 
the surfaces are simulated. Figure 1B–D show contours 
of |E|2 around three of the particles for wavelengths cor-
responding to λmax and for polarizations that lead to the 
largest |E|2.

So far we discussed how physical properties of metal-
lic nanostructures could affect their plasmonic proper-
ties and therefore their SERS enhancement factor. There 
are, however, other parameters influencing SERS, such as 
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molecule-substrate distance, type of structures (colloids 
and solid substrates), and aggregation status. Molecules 
must be covalently bound or in close vicinity (in the range 
of a few nanometers) to the substrate in order to obtain 
significant Raman enhancement. As the distance between 
molecule and substrate decreases, larger enhancement is 
obtained [81, 82]. There are two types of SERS substrates 
mostly used in SERS experiments: colloidal suspensions 
(NPs) and solid substrates. Colloidal suspensions are 
common due to the easeof preparation and relatively high 
enhancement factors. Molecules or molecular structures 
must be bound to or in the vicinity of noble metal nano-
structures, in the range of 1–4 nm, for a significant SERS 
enhancement. Due to the fact that this distance is influ-
enced by the nature of the interactions between molecules 
and nanostructured surfaces, the charge properties of 
molecules and molecular structures play an important 
role in the performance of SERS-based Raman measure-
ments. When colloidal noble metal NPs are used, the 
surface charge of NPs and the charge of molecules must 
be carefully considered [83, 84]. The SERS activity is 
stronger when the detected molecules possess the oppo-
site charge of the interacting colloidal NPs. This is due 
to the induced aggregation caused by the reduced zeta 
potential of NPs [84]. When NPs aggregate, SERS activity 
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Figure 1: Simulations of extinction efficiencies and intensity contours. 
(A) Simulation of extinction efficiency of the silver nanoparticles 
having different shapes and |E|2 contours for a (B) sphere, (C) cube, 
and (D) pyramid, plotted for wavelengths corresponding to the 
plasmon peak in (A), with peak |E|2 values of 54, 745, and 9770, respec-
tively [10]. These results show that the highest enhancement factor 
(108) is obtained when the shape of the nanoparticles is pyramid-
shaped due to the approximation of the enhancement factor as |E|4. 
Reproduced with permission from Ref. [10].

also increases. Controlling this aggregation helps gener-
ate higher SERS enhancement due to the increased possi-
bility of “hot-spot” formation [85, 86]. One must consider, 
however, that very large aggregates diminish the effective 
formation of SPs due to the deformations and dampening 
of the electron cloud in the aggregate and therefore gener-
ate poor SERS activity. Small-sized aggregates composed 
of 200–300 AGNPs generally seem to achieve the largest 
enhancement factors [87].

Another important consideration is related to the 
availability and cost of optical components and detectors, 
which makes the visible and near-infrared (NIR) ranges 
more accessible. Yet another factor in the wavelength 
selection (for SERS applications only) is the position of the 
plasmon resonance absorption band. The maximum SERS 
signal is obtained when the laser wavelength is tuned to 
be slightly blue-shifted compared to the plasmonic reso-
nance [88]. In practice, it is easier to tune the plasmonic 
resonance through material and structure modifications. 
As such, numerous and diverse plasmonic nanostructures 
have been fabricated.

2  �Review of SERS substrates

2.1  �Materials for SERS substrates

Most metals, including Al and Cu, exhibit plasmonic 
properties in the UV region and can therefore be used 
as SERS substrates [13, 89]. Although Cu-and Al-based 
nanostructures are cheaper than the other metals, easy 
oxidation and relatively low enhancement factor are 
serious disadvantages. Up to date, plasmonic nanostruc-
tures based on Au and Ag are most commonly used due 
to their higher enhancement factors and availability of 
plasmonic resonances in the visible and NIR regions [88]. 
However, the tunability range of the plasmonic resonance 
is wider for Ag (300–1200 nm) than for Au (500–1200 nm). 
The intensity/magnitude of SPs generated on the nano
structures is directly proportional to the quality factor 
Q = w (dεr/dw)/2(εi)2, where w is the excitation frequency, 
and εr and εi are the real and imaginary components of 
the metal dielectric function, both of which vary with the 
excitation wavelength of light. Ag has the largest Q across 
the spectrum of the SPs and therefore the largest enhance-
ment factor [12, 90]. Another advantage of Ag is that it has 
a lower cost compared to Au. Ag is therefore an excellent 
choice for analytical SERS measurements due to its rela-
tively low cost, wide tunability range, and high enhance-
ment factor.
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In addition to the specific materials used in analytical 
SERS, the physical characteristics of the material struc-
tures, such as size, shape, type (colloidal, 2D, and 3D), 
and composition, are also extremely important. Briefly, 
the SERS substrates can be dived into three main groups 
as colloidal, solid, and flexible structures. The detailed 
information regarding types of SERS substrates are given 
below. Figure 2 shows scanning electron microscopy 
(SEM) images of some SERS substrates fabricated in the 
literature using different methods.

2.2  �Colloidal structures

Colloidal suspensions of NPs are widely used for SERS 
enhancement due to easy preparation and tunability of 
the plasmonic resonance. Tunability of the plasmonic 
resonance is generally achieved by changing size, shape, 
type, or composition of the colloidal structures, as dis-
cussed earlier. The SERS activity of spherical gold nano-
particles (AuNPs) and AgNPs improve by increasing the 
size. Spheres [50, 97], nanorods [56, 61, 91], nanoplates 
[60], nanowire [98], nanobars [92], and nanorice [92] have 
been successfully prepared and shown to have different 
SERS properties.

Hollow AuNPs (30  nm) were also prepared and uti-
lized for pH measurements. The authors demonstrate in 
this article that SERS activity of hollow NPs is nearly 10 
times higher compared to standard AgNPs [99]. A SERS 
active structure composed of a biocompatible dendrimer- 
and peptide-encapsulated few-atom Ag nanoclusters for 
the measurements of single molecules via anti-Stokes 
Raman spectroscopy was also demonstrated [100].

Bimetallic NPs can be fabricated via different methods 
[101–107]. The most common method is wet chemical syn-
thesis [62–64]. The bimetallic NPs can be prepared homo-
geneously with the reduction of two metal ion alloys. They 
can also be prepared heterogeneously by following reduc-
tion of two metal ions called core-shell NPs. Material com-
position can also tune colloidal NPs SERS enhancement. 
Various metal alloys are achievable, such as AuAg, CuAu, 
and AuFe. SERS activity is strongly dependent on the 
composition and ratio of the bimetallic alloy [108–110]. 
Although there are many factors, Au-coated AgNPs (Ag@
Au) or Ag-coated AuNPs (Au@Ag) [111–113] were found to 
have greater SERS activity than their single metal counter-
parts. Dielectric core-metal shell NPs have also been used 
for SERS application [114–116]. For this type of core-shell 
NPs, core size, type of metal shell, and shell thickness are 
the critical factors for SERS activity [114–116].

Figure 2: SEM images of different types of SERS substrates. (A) Spherical gold nanoparticles [50], (B) gold nanorods [91], (C) silver nanobar 
[92], (D) silver plasmonic nanodome array [93], (E) gold nanocluster [94], (F) gold nanoholes [67], (G) silver nanovoids [73], (H) silver nanoco-
lumnar film [95], and (I) silver nano-pillars [96]. Reproduced with permission from Refs. [50, 67, 73, 91–96].
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While colloidal NP suspensions can be physically 
tuned to achieve higher enhancement factors, the dis-
tance of the analyte to the metallic structure also plays 
a significant role. This distance depends on the nature 
of analyte-metal interaction. Direct chemisorption of the 
analyte to the metal is generally preferred as it yields a 
shorter distance. Physisorption plays a significant role as 
well, and it depends on the charge of the analyte relative 
to the charge of the NPs. To obtain homogenous and stable 
NPs, they must carry charges. Depending on the prepara-
tion methods, negatively or positively charged NPs can be 
obtained. When the charges are opposite, analytes inter-
act with the NPs via attractive forces and induce the aggre-
gation of NPs by reducing the zeta potential of the NPs. 
The aggregates result in a superior SERS enhancement. 
SPs of aggregates also shift to longer wavelengths with the 
broad spectrum which is critical for different excitation 
laser lines [117].

2.3  �Solid structures

Two- and three-dimensional plasmonic nanostructures 
have been fabricated and widely used in SERS studies. 
Two-dimensional plasmonic nanostructures are thinly 
patterned substrates. They can be fabricated by assem-
bly of NPs or vapor deposition of metal on a substrate 
to obtain thin film plasmonic nanostructures. Inter-par-
ticle distance, orientation, type, and size of NPs in the 
assembled NPs are critical factors for SERS performance 
[85, 118, 119]. Roughness and thickness of the film and 
type of the metals are the influencing parameters for 
SERS when thin films are used as SERS substrate [120]. 
There are only a few reports regarding 2D SERS sub-
strates due to their poor SERS activity. Three-dimen-
sional nanostructures are plasmonic surfaces with more 
physical depth. Nanoholes, nanovoids, Nanodomes, 
nanoclusters, and nanoarrays are 3D nanostructures, 
which have been successfully fabricated. Nanoholes can 
be prepared using electron beam lithography (EBL) [67, 
71], focused ion beam [68], or soft lithography [66, 69, 
121]. Nanovoid arrays are prepared using porous anodic 
alumina [122] or the combination of nanosphere lithog-
raphy and electrochemical deposition technique [65, 
72, 123]. Plasmonic properties were tuned by changing 
the diameter and periodicity of the nanoholes to obtain 
maximum SERS enhancement [67, 68, 71]. Changing 
the diameter and height in nanovoids tunes their plas-
monic properties [65, 72]. Nanoholes and nanovoids 
show around 104–106 SERS enhancement [66–69, 71]. Au 
and Ag nanodomes were fabricated using nanoreplica 

molding [124, 125]. Depending on the inter-dome 
spacing, SERS enhancement factor of Ag and Au nano-
domes were 8.51 × 107 and 1.37 × 108, respectively. Some 
plasmonic nanoclusters fabricated using EBL have their 
plasmonic properties tuned by cluster size, geometry, 
and inter-particle spacing [94]. Ag nanorod arrays are 
uniform, reproducible, and large-area substrates with 
high SERS enhancement and are fabricated by oblique 
angle vapor deposition (OAD) [126]. The diversity in 
fabrication methods is driven by the wide array of poten-
tial applications. Nanoporous Au was also fabricated 
as a highly active, tunable, stable, biocompatible, and 
reusable SERS substrate. The largest enhancement was 
obtained when the nanofoams with average pore widths 
of 250 nm were used for 632.8 nm excitation [127]. More 
recently, significant attention was dedicated towards 
the fabrication of graphene-based SERS substrate and 
their analytical applications [128–130]. The results dem-
onstrate that graphene-based SERS substrate can be 
used for the detection of chemical and biomolecules 
with high sensitivity and quantitative analysis.

2.4  �Flexible structures

Flexible SERS substrates have potential applications in 
low-cost embedded and integrated sensors for medical, 
environmental, and industrial markets [131]. These are 
mechanically flexible, low-cost, reproducible, and sen-
sitive and can be manufactured using various advanced 
methods [73, 95, 96, 132–141] to have large areas. Their plas-
monic properties can be tuned by changing shape, size, or 
morphology of nanostructures and also by mechanically 
bending, stretching, and twisting. Flexible SERS sub-
strates have been fabricated out of paper and polymers 
[131]. Electrospinning was used to obtain flexible SERS 
substrates with 109 enhancement by assembling AgNPs 
on poly(vinyl alcohol) [132]. Gold nanodimers were pre-
pared on a stretchable elastomeric silicon rubber, and the 
SERS performance was tuned by changing the interparti-
cle gap between nanorod dimers using mechanical strain 
[133]. Large-area flexible SERS substrate arrays (including 
pillar, nib, ellipsoidal cylinder, and triangular tip) have 
been also fabricated on poly(dimethylsiloxane) (PDMS) 
surfaces using shadow mask assisted evaporation. SERS 
performance was tuned by changing the morphology of 
the array, with the largest enhancement obtained using a 
triangular tip [96]. Silver nanocolumnar films were depos-
ited on a flexible PDMS and polyethylene terephylate 
using OAD [95], and the SERS performance changed with 
mechanical (tensile/bending) strain [95]. Sand paper was 
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used as template for the deposition of silver to obtain 
SERS substrate to use for the detection of pesticides on 
difference surfaces [134].

A simple method consisting of a combination of soft 
lithography and nanosphere lithography was used to fab-
ricate large-area, tunable, and mechanically flexible plas-
monic nanostructures [73]. Soft lithographic methods that 
use elastomers such as PDMS offer increased parallelism, 
simplicity, and flexibility. Nanosphere lithography, on the 
other hand, uses small spherical particles to obtain a tem-
plate for lithography. In this, spherical sulfate latex parti-
cles with different diameters were deposited on a regular 
glass slide. PDMS elastomer was poured on the deposited 
latex particles and cured to obtain bowl-shaped nano-
voids. The Ag layer (60 nm) was sputtered on the PDMS 
with and without Cr (5 nm) to obtain flexible plasmonic 
nanostructures. The plasmonic properties of these nano-
structures were tuned by changing the size of the latex 
particles. Larger particles had larger diameter and deeper 
nanovoids, and smaller particles had smaller diameter 
and shallower nanovoids. Maximum enhancement factors 
(1.31 × 106 and 1.42 × 106) were obtained for nanostructures 
coated with a Ag layer having 1400  nm diameter (for 
785 nm laser excitation) and 800 nm diameter (for 633 nm 
laser excitation) [73].

3  �Functional and label-free assays
SERS has some advantages over other types of assays 
for detecting molecules of interest. High enhancement 
of the Raman signal is inherently built into the assay, 
allowing for easier detection of low concentrations. 
Multiplexing is another advantage due to the Raman 
peaks allowing for easier distinction of different mol-
ecules. The simple spectroscopic detection mechanism 
is low cost and reliable. Extremely small distances 
between the analyte and the resonating structures are 
needed to achieve surface enhancement and make 
useful assays. This distance depends on the mechanism 
used to bring the analyte close to the metallic surface. 
Direct chemisorption of molecules to the metal yields a 
shorter distance and allows for specific binding. Phys-
isorption, on the other hand, depends on the charge of 
the analyte relative to the charge of the NPs and can also 
be used to build assays.

Next, we will review how SERS assays are built by 
binding the analyte to the surface using antibodies, 
aptamers, another compound, or sometimes no function-
alization at all. Label-free assays, which allow for direct 

measurement of the analyte, are also gaining popularity 
and will be discussed as well.

3.1  �Functional assays

Detecting an analyte in a system often requires specific 
capturing of the molecule onto a substrate. This can be 
achieved via functionalization, which uses a specific 
capturing molecule. The capturing molecule is usually 
an antibody, peptide, or nucleic acid sequence that 
has high binding affinity to the molecule of interest. A 
marker may be added to the other end of the binding 
molecule in the form of a label. This is the basic prin-
ciple behind immuno-assays such as enzyme-linked 
immunosorbent assay (ELISA) or radioimmunoassay. 
The substrates that these assays use are designed to 
hold the capturing molecule but do not play a role in the 
detection mechanism. In contrast, SERS-based assays 
are built on metallic substrates that actively enhance 
the Raman signal and therefore are part of the overall 
detection process.

The capturing molecules in SERS assays are most 
often made from antibodies or aptamers. Aptamers are 
small nucleic acid molecules made from DNA or RNA that 
form structures capable of specifically bringing proteins 
to cellular targets. Aptamers are used to detect a variety 
of molecules [142–147]. Antibodies or immunoglobulins 
are large proteins which specifically attach to antigens or 
targets such as bacteria. Antibodies are the most common 
connector molecule in a SERS system. There are reported 
limits of detection (LODs) in the femtomolar range for 
prostate-specific antigen (PSA) in serum [148]. Antibod-
ies have been used in a multi-analyte system where they 
have maintained sensitivity and specificity [149]. Anti-
body-based SERS assays have also been used for in vivo 
tumor detection in live animals [150]. There is, however, 
a significant disadvantage of antibodies when it comes 
to direct detection of the analyte because their relatively 
large size sets a large distance between the analyte and 
the substrate. There are other capturing molecules that 
are gaining some attention such as enzymes, molecu-
larly imprinted polymers, and affimers [151–153]. While 
they hold promise for functional SERS assays, they have 
yet to gain momentum for both research and real-world 
applications.

While functionalization offers specific detection of 
molecules of interest, non-functionalized assays involve 
binding directly to the surface of the metal. The lack of 
capturing molecules removes a potentially expensive iso-
lation step in the assay, and it enables the analyte to be 
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physically closer to the enhancing field, thereby allowing 
for stronger enhancement.

3.2  �Label-free assays

Label-free SERS assays directly measure the SERS spec-
trum of the analyte. This can be difficult to achieve, 
especially because of the distance added by larger cap-
turing molecules. Since they are smaller than antibodies, 
aptamer-based assays have a greater possibility for label-
free detection. For example, aptamer-based detection of 
coagulation protein α-thrombin has been demonstrated 
for concentrations as low as 100 pM [144] and shows 
Raman peaks that can be used forthe developemnt of 
similar assays [145, 146]. However, not all label-free assays 
need to be functionalized. The development of label-free, 
non-functionalized assays is promising [154]. Even in 
unpurified samples, single picomolar concentrations can 
be measured [155]. There is a variety of detected mole-
cules, including TNT [155], neurotransmitters dopamine 
and serotonin [156], and incubated Escherichia coli [157]. 
Label-free SERS assays have also been developed using 
PDMS in an integrated microfluidic device for biomo-
lecular detection [158]. Stuart et al. also detected glucose 
molecules using “molecular combs” to slow down the dif-
fusion near SERS substrates [159].

3.3  �SERS nanotags

In labeled assays, a nanotag is used as the reporter mol-
ecule. The tags are chosen to have specific, unique, and 
strong SERS signals. Preference is given to tags that exhibit 
peaks outside the fingerprint Raman region of biological 
molecules, such as nitriles, alkynes, or diynes. However, 
tags that exhibit strong SERS spectra in the fingerprint 
region can be used as well. Tens of SERS nanotags can 
be used in a multiplexed assay [160, 161]. Fluorescence 
assays also work by attaching a specific binding molecule 
to the detectable particle. However, unlike fluorescent 
assays, SERS nanotags can be excited by any wavelength, 
and, even though their fluorescence may decrease (if the 
tags exhibit fluorescence), their SERS intensities do not 
decrease with laser exposure. This lengthens the period of 
detection and simplifies the excitation conditions, while 
maintaining a multiplexing ability unparralelled in other 
methods.

There are several studies focusing on the develop-
ment of novel SERS nanotags for the specific detection 
of biological molecules [150, 160–169]. Such assays have 

been developed to target cancer cells [164], other cancer 
biomarkers [166], and proteins [163]. SERS assays contain-
ing nanotags consist of three components: (1) SERS sub-
strates such as AuNPs or AgNPs to enhance the signal, (2) 
Raman active molecules/reporters to obtain unique spec-
trum, and (3) an attachment molecule allowing for bio-
specificity. The attachment usually involves coated glass 
or polymer beads, which makes easy surface chemistry 
for the attachment of different targeting molecules. SERS 
nanotag assays have been mostly prepared as core-shell 
NPs such as silver core-glass shell [160], gold core-silica 
shell [162], or gold core-silver shell [166, 167] for use in bio-
sensing [150, 168, 169].

3.4  �Peak/frequency shift based assays

A great deal of information is embedded in a SERS spec-
trum. Changes in certain peak intensities are directly pro-
portional to the concentration of the analyte. Changes in 
the frequency of a certain vibrational peak sometimes 
occur when materials are in a certain state of stress or 
strain, making the development of a stress-sensitive nano-
mechanical biosensor possible [170–172]. This method 
provides a novel biosensing approach with high selectivity 
and possibility for label-free biomolecule detection. When 
binding occurs between targeting agents and binding 
molecules, a stress on the bond causes small frequency 
shifts that may be detected with high-resolution spectros-
copy [170]. This approach may be applied to protein assay-
swhere a frequency shift upon the binding of the analyte 
to the antibody is measured and quantified.

4  �Bioanalytical applications of 
SERS

4.1  �SERS of small molecules

Current analytical methods for detection and quantifi-
cation of small molecules include mass spectrometry, 
chromatographic-based techniques, and immunochemi-
cal methods (Figure 3). SERS promises to be a viable alter-
native due to its multiplexing ability, potential for high 
sensitivity and specificity, capability of rapid measure-
ments, and possibiltiy to be integrated in small packages 
for measurements in the field or at the point of care.

SERS is particularly well suited to detect small mol-
ecules because of the close proximity of the analyte to the 
plasmonic structure. There are several categories of assays 
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being developed for SERS on small molecules. Monitoring 
certain components of food is important from a regulatory 
and public health standpoint. Several types of dangerous 
ingredients can be found in food such as excessive addi-
tives, mycotoxin, and pesticides. Regulated food additives 
which are only safe at low levels need to be inspected, 
including some coloring agents and antimicrobials. A 
dangerous chemical called melamine is illegally added 
to food to artificially enhance levels of protein. Fungi can 
grow on food and produce mycotoxins, which can cause 
nerve damage when ingested by humans. Similarly, pesti-
cides can remain on foods and are toxic to humans. There 
are also many non-food applications of SERS. Environ-
mental monitoring of organic pollutants in soil and water 
that can leak into the food chain or disrupt an ecosystem 
should be performed regularly for public safety. In addi-
tion, SERS assays to test narcotics have been developed 
for rapid testing.

Antimicrobials and colorants are added into some 
processed foods for preservation and visual appeal. For 
example, the adulterant melamine is illegally added to 
increase the appearance of protein. At high levels, these 
food additives are dangerous and toxic. The food and 
drink colorant azorubine or E 122 found in beverages is 
another example of one such additive, and SERS was used 
to quantify the levels with no sample preparation [175]. 
Various prohibited colorants, such as amaranth, eryth-
rosine, lemon yellow, and sunset yellow, are also good 
candidates for SERS [176]. Sudan I dye is a class three car-
cinogen that can be found in culinary spices and can be 
detected even in a chemically complex sample [177]. SERS 

detection of colorant is also possible in non-food samples, 
such as in textiles [178]. Various plasticizers can be found 
in orange juice using SERS at around seven orders of mag-
nitude lower than FDA limits [179]. Adulterants can be 
detected using SERS [180] in wheat gluten, chicken feed, 
cakes, and noodles [181]. Melamine can be found in liquid 
milk [182, 183], milk powder [184], and infant formula 
[185] at very low levels.

Toxins from fungi called mycotoxins also appear in 
food and can cause harmful side effects such as nerve 
damage. Four major aflatoxins, a type of myotoxin, which 
appear in food are B1, B2, G1, and G2. They can be detected at 
low concentrations in solution [124] and in ground maize 
[186] using SERS. Quantitation has been developed for 
at least B1 [173]. Mycotixin citrinin, which is produced by 
several fungi species, can also be detected in trace amounts 
[187]. There are severe consequences for mycotoxin con-
sumption for both humans and domesticated animals.

Pesticides are also dangerous toxins found in food. 
They can readily be found on the surface of fresh fruits and 
vegetables. A SERS measurement on fruit can nondestruc-
tively detect various pesticides [174, 188, 189], making a 
good candidate for a high throughput assay. Quantifica-
tion is possible under controlled conditions [190]. Assays 
also exist to detect the insecticide methyl-parathion [191] 
and ferbam fungicide [192]. In addition to food, pesticides 
can leak into the ecosystem.

Organic pollutants in the water and soil can leak into 
the food supply or adversely affect an ecosystem. They are 
found in rural and urban environments and are associated 
with elevated cancer rates [193]. Detection is important 
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for environmental monitoring. Some of these present a 
challenge because they have an unusually low Raman 
cross section and require special enhancement materi-
als, but many assays have been developed for the diverse 
array of analytes. An enhancement substrate consisting of 
an Au-coated TiO2 nanotube array can be used to detect 
benzenethiol, 1-naphthyl-amine, and pyridine [194]. A 
reusable substrate of Au-coated TiO2 was developed to 
measure an array of pollutants, herbicides, and pesti-
cides [195]. A substrate made from ZnO, reduced graphene 
oxide, and Au NPs was developed to detect Rhodamine 
6G [196]. Pentachlorophenol, diethylhexyl phthalate, and 
trinitrotoluene can be measured using Ag and carbon-
coated Fe3O4 microspheres [197].

Narcotics and controlled substances are another good 
candidate for SERS [198]. A quick and simple technique 
for rapid detection of active ingredients in pills or powders 
would be a great tool for law enforcement. It also allows 
for an alternative identification technique to HPLC/mass 
spectroscopy (MS). Assays have been developed for detect-
ing amphetamine in 26 collected XTC tablets with a good 
LOD [199]. Dihydrocodeine, doxepine, citalopram, trimi-
pramine, carbamazepine, and methadone can be detected 
at 1 mg/sample from blood or urine [200]. In addition to 
narcotics, doping in athletics calls for quick and simple 
testing. Doping drugs, such as clenbuterol, salbutamol, 
and terbutaline, can be detected using SERS and AuNPs 
[201].

4.2  �SERS of proteins

The accurate, sensitive, and rapid identification and 
characterization of proteins is critically important in 
both clinical and industrial applications. They can exist 
as enzymes or hormones and be involved in transport 
mechanisms. Protein detection is generally divided into 
two types of approaches. The first type is an immunoas-
say-based method employing antibody-antigen interac-
tion based on fluorescence measurements [202]. However, 
the broad emission spectra of the dyes makes multiplex-
ing a challenge, and the detection limits are higher due 
to photobleaching [203]. The second type of approach is 
MS after separation and purification [204, 205]. Although 
MS-based detection is sensitive and reliable, the high 
cost, time requirement, and need for skilled labor to 
interpret the data are drawbacks. Identification of bio-
logically related molecules and structures using SERS is 
more attractive due to the “finger printing” property and 
the limited influence of water on the signal. Spectra with 
peaks of narrow bandwidth create unique fingerprints 

and allow for greater multiplexing and specificity. The 
limited influence of water allows for detection in aquatic 
solutions and of minimally processed biological samples.

Detection and identification of proteins using SERS 
can be specific or non-specific. Specific detection utilizes 
targeting agents like antibodies or aptamers to capture the 
specific proteins. Non-specific detection uses the intrinsic 
spectra of proteins. Several reports have been published 
regarding the detection and identification of proteins 
and protein mixtures in the literature using different 
approaches, which have been classified and schemati-
cally illustrated in Figure 4.

Specific SERS detection uses targeting agents to 
capture the proteins of interest. SERS spectra are then 
obtained from either labels or by monitoring the peak shift 
at a specific wavenumber due to the structural deformation 
on the bond as a result of antibody-antigen binding event. 
When Raman reporter molecules and targeting agents 
are used, the approach can be described as specific and 
labeled SERS. However, when only capturing agents are 
used, the method can be described as specific and label-
free for the protein detection and identification. Raman 
reporter molecules have become increasingly popular for 
SERS-based immunoassays. In those studies, the Raman 
reporter molecules/dyes are covalently bound to the 
metallic NP with the capturing agents. When the binding 
between proteins and targeting agents occurs, a change in 
the SERS spectra obtained from the dyes indicate the pres-
ence of certain molecules. Dye-functionalized NP probes 
were used for specific protein-binding, and SERS was used 
to probe for protein-small molecule and protein-protein 
interactions [206]. Silver staining was performed to obtain 
higher SERS signal that allows to obtain lower LOD. A 
novel SERS-based immunoassay method for the detection 
of PSA was reported. In this study, 30 nm AuNPs were used 
as SERS substrate and also to bind the Raman reporter and 
bioselective targeting agent. The results demonstrated 
that PSA can be detected as low as ≅ 1 pg/ml and ≅ 4 pg/ml 
in human serum and bovine serum albumin, respectively 
[148]. A SERS-based immunoassay was developed for the 
detection of hepatitis B virus (HBV) surface antigen using 
AuNPs modified with mercapto benzoic acid (MBA-Raman 
reporter) with a specific antibody for the HBV targeting 
agent. Silver staining was also used to enhance the SERs 
signal to lower the LOD to 0.5 μg/ml [209]. Ag/SiO2 core-
shell Raman tags were prepared and used for the simple, 
fast, and inexpensive detection of human α-fetoprotein, 
which is a tumor marker used for the diagnosis of hepa-
tocellular carcinoma, with the LOD of 11.5  pg/ml [210]. 
Surface-enhanced resonance Raman scattering (SERRS) 
was also used for immunoassay-based protein detection. 
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For the first time, a SERRS-based immunoassay on the 
bottom of a microtiter plate was reported [211]. In this 
study, fluorescein isothiocyanate was used as a Raman 
probe and was compared to ELISA. The SERS method and 
ELISA provided similar LODs of 0.2 ng/ml. The results 
demonstrated that the proposed SERRS-based immuno-
assay may have great potential as a high-sensitivity and 
high-throughput immunoassay. SERS peak shift was also 
used for specific label-free protein detection [170–172]. 
The reports describing this approach measure Raman fre-
quency shifts of capturing agents upon chemical binding 
to molecules of interest. Peak shifts obtained in this way 
can be used for quantitative analysis of binding, due to the 
fact that the frequency shift is directly proportional to the 
analyte concentration. A novel protocol based on SERS-
based immunoassay for detection of protein-protein and 
protein-ligand interactions has been reported [212]. Such 
work has great potential for high-sensitivity and high-
throughput chip-based protein measurements.

Non-specific label-free protein detection uses the 
intrinsic spectra of proteins. Colloidal NPs and metal-
lic nanostructures have been employed as substrates 
for the label-free SERS detection of protein. Molecules 
or molecular structures must be on surfaces or in close 

vicinity to the surface of noble metal nanostructures for a 
satisfactory SERS enhancement. The charge properties of 
molecules and molecular structures are important for the 
performance of these measurements because they deter-
mine the distance between molecules and nanostructured 
surfaces. When colloidal noble metal NPs are used, the 
surface charge properties of the NPs and molecules must 
be carefully considered [83, 84]. The SERS activity of mol-
ecules that possess the opposite charge of the colloidal 
NPs is superior due to the induced aggregation causedby 
the reduced zeta potential on the NPs [83]. Controlled 
aggregation may also help to increase the reproducibility 
and intensity of the SERS spectra when colloidal NPs such 
as AuNPs or AgNPs are used as substrates. Proteins can 
carry varying amounts of charge depending on the pH of 
environment, so the charge properties of NPs must also be 
considered. There are several reports describing label-free 
protein detection using colloidal NPs, especially AgNPs 
due to their superior plasmonic properties. Proteins car-
rying a heme group were particularly well characterized 
with SERS [83, 213].

One way to obtain reproducible and sensitive SERS 
spectra from proteins for label-free detection is by inducing 
controlled aggregation of NP-protein mixtures. Acidified 

Figure 4: Approaches for SERS-based protein detection. (A) Dye-functionalized nanoparticle probes for detection of SERS-based protein-
small molecule and protein-protein interactions [206], (B) capturing agents based on the frequency shift upon the binding of molecules to the 
antibody [170], (C) convective assembly method used for the controlled aggregation of proteins and AgNPs to obtain rich and reproducible 
SERS spectra for the label-free protein detection [207], and (D) an approach combining the separation of proteins using PAGE and transferring 
the protein spots onto cellulose membrane (western-blotting) and detecting with SERS after staining with colloidal AgNPs [208]. Reproduced 
with permission from Refs. [170, 206–208].
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sulfate has been used as an aggregation agent to induce 
interactions between AgNPs and proteins and obtain sen-
sitive and reproducible label-free detection. This protocol 
allows for simple, sensitive, and reproducible label-free 
detection proteins with LODs as low as 50 ng/ml [214].

A layer-by-layer technique was also demonstated for 
highly sensitive and reproducible protein detection. In 
this case, the protein is assembled between two layers 
of NPs for label-free detection [215]. Another study dem-
onstrated that convective assembly can be used for con-
trolled aggregation of proteins and AgNPs to obtain rich 
and reproducible SERS spectra for label-free protein 
detection and identification. This approach demonstrated 
a LOD of 0.5 μg/ml [207]. A novel method based on the 
aggregation of suspended droplet of mixture contain-
ing AgNPs and proteins from a hydrophobic surface was 
reported for the label-free detection of proteins with a LOD 
down to 0.05 μg/ml for the model proteins [216]. A simple 
sample preparation method for sensitive (LOD 0.5 μg/ml) 
and reproducible label-free detection of proteins based on 
the self-assembly of AgNPs and proteins on hydrophobic 
surfaces was also demonstrated [217].

Two-dimensional solid metallic nanostructures can 
be used for protein detection to eliminate the influence of 
charge properties and background interference on SERS 
spectra. However, the SERS spectra are obtained only 
from proteins touching the SERS active metallic structures 
which typically provide poor and irreproducible spectra. 
On the other hand, well-defined 3D metallic nanostruc-
tures exhibit large enhancement factors reproducible 
across large areas and therefore more likely to obtain rich, 
strong, and reproducible SERS spectra of proteins with 
the elimination of background interference and charge 
properties. Recently, well-defined 3D plasmonic nano-
structures were fabricated using a combination of soft 
lithography and nanosphere lithography. These struc-
tures were then used for label-free protein detection with 
no background [218]. Other well-defined structures such 
as arrays of gold concave nanocubes on a PDMS film were 
also used for label-free protein detection [219].

SERS can be also used for the detection of proteins in 
a mixture [220, 221]. An approach combining the separa-
tion of proteins using polyacrylamide gel electrophoresis 
(PAGE) and transferring the protein spots onto a cellulose 
membrane (western blotting) and detecting with SERS 
after staining with colloidal AgNPs was reported [208]. 
Label-free detection of proteins can be performed with dif-
ferential separation from their mixtures after a convective 
assembly process. Binary and ternary proteins were mixed 
with AgNPs and assembled using convective assembly 
into ordered structures. The spectra acquired from the 

different assembled area indicated that the proteins were 
differentially distributed [222].

4.3  �SERS-based DNA detection

Technologies for detection of DNA are important in 
several fields. Medicine uses bioanalytical chemistry 
for disease diagnosis, detection of gene mutation, and 
identification of bacteria and viruses. The current gold 
standard for detection of DNA is polymerase chain reac-
tion (PCR), which has single DNA sensitivity. However, the 
PCR method is still labor-intensive and time-consuming 
and needs qualified scientists as well as requires expen-
sive instrumentation [223]. The development of methods 
for rapid, easy-to-use, and cost-effective DNA detection 
is crucial, especially for point-of-care diagnostics. SERS-
based DNA detection is an emerging research field due 
to the several advantages compared to other detection 
methods such as PCR and fluorescence-based microar-
rays. The narrow peaks and the larger number of reporter 
molecules makes SERS a better candidate for multiplex 
detection. Simple sample preparation and relatively low 
cost and labor are also advantages of SERS for DNA detec-
tion compared to other methods [223]. SERS-based DNA 
detection can be label free or can use exogenous labels 
(Figure 5).

Research focusing on label-free SERS detection of 
DNA is limited due to the poor interaction of negatively 
charged NPs and DNA. In addition, different DNA mole-
cules present extremely similar SERS spectra which are 
dominated by the vibrational modes of adenine. There 
are few reports of label-free SERS of DNA using SiO2@Au 
core-shell nanostructures. DNA was incubated with the 
SERS substrates, and spectra were obtained. This study 
demonstrated that this approach can be successful in 
obtaining high-quality and reproducible SERS spectra 
of single-stranded and double stranded DNA molecules 
[228]. Positively charged AgNPs were successfully syn-
thesized and used for label-free detection of negatively 
charged DNA. This was achieved with a phosphate back-
bone that helps increase the interaction of DNA and AgNPs 
and allows to obtain more intense and reproducible SERS 
spectra at nanogram level by inducing aggregation [229]. 
Iodide-modified AgNPs were also used for sensitive and 
reproducible label-free detection of single- and double-
stranded DNA in aqueous solution by inducing interac-
tion between AgNPs and DNA [224].

SERS DNA detection with labels can be done with 
either a sandwich or hairpin approach. The sandwich 
approach uses target DNA-Raman reporter molecules 
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[225,  230–240]. The first report of SERS DNA and RNA 
detection using sandwich structures was published 
by Mirkin and co-workers. In this study, AuNPs probes 
labeled with oligonucleotides and Raman active dyes 
were used. The SERS signal was obtained by forming 
sandwich structures of microarray DNA-target DNA-
AuNPs probe. Multiplex DNA detection using different 
Raman active dyes can be achieved using this approach 
with a 20 fM LOD [225]. A similar approach was used for 
the detection of BRCA1 breast cancer gene. ssDNA, which 
is the complementary of target BRCA1 gene, was assem-
bled on a silver-coated SERS substrate. Raman active 
and dye-labeled BRCA1  ssDNA was incubated with the 
substrate for hybridization. AgNPs were used to increase 
the SERS signal coming from dye. The strongest SERS 
signal was obtained when the target DNA bound the 
SERS substrate [230]. Nonfluorescent Raman tags can 
also be used as labels. Both DNA probing sequence and 
Raman tags were covalently attached to the AuNPs and 

used for the multiplexed detection of target DNA [231] 
and for gene splicing [232]. Multiplexed DNA detection 
for different strain of E. coli was achieved with SERRS 
using NPs modified with six different DNA sequences 
and Raman dyes [233]. A magnetic capture-based SERS 
assay for DNA detection was developed using Au-coated 
paramagnetic NPs modified with probe DNA for target 
DNA. RNA genomes of the Rift Valley fever virus and West 
Nile virus were successfully detected by using malachite 
green and erythrosine B Raman dyes, respectively [234]. 
Novel SERS substrates of Ag nanorice antennas on Au tri-
angle nanoarrays were fabricated for the detection of the 
HBV DNA as sandwich assay with a LOD of 50 aM [235]. 
Ag@SiO2 core-shell nano-SERS-tags were prepared for 
the detection of specific DNA targets based on sandwich 
hybridization assays. AgNPs served as SERS substrates 
with a label to probe the target DNA. The multiplexing 
capability was successfully tested using four different 
SERS tags and showed excellent potential [236].
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Raman dye-labeled hairpin DNA probes are similar 
to molecular beacons used in fluorescence-based detec-
tion. Tuan Vo-Dinh and coworkers have developed a 
method called molecular sentinel [226, 227, 241–244]. The 
sensing mechanism of this approach is based on struc-
tural changes of DNA probes upon hybridization with the 
target DNA that results in a change of the SERS signal. 
There are two approaches (on-off and off-on), depend-
ing on the SERS signal change upon hybridization with 
the target DNA. In the first approach, Raman dye labelled 
hairpin-DNA probes are attached to the plasmonic NPs 
or nanostructures to form a stem-loop configuration. 
This is called a “closed state”. At this state, intense SERS 
signals are obtained due to touching the Raman labels to 
the SERS active substrates. This mode is called “signal 
on”. Upon the hybridization of the target DNA with 
this surface, the stem-loop configuration is disrupted 
and becomes open state so that Raman labels separate 
from the SERS active surface and results in decreasing 
SERS scattering intensity. This mode is called “signal 
off”. “Off-on” is the opposite phenomenon of the “on-
off” approach. At the first open state stage, there is no 
SERS signal. Upon the hybridization of target DNA with 
this surface, the stem-loop configuration is obtained to 
become a closed state such that Raman labels are getting 
closer to the SERS active surface, resulting in higher SERS 
scattering intensity. One group detected a gene sequence 
of human immunodeficiency virus (HIV) using AgNP-
molecular sentinel probes based on on-off approach with 
SERS [241]. Another report showed the multiplexed detec-
tion of breast cancer marker genes using SERS-based 
molecular sentinel technology and the on-off approach. 
The results demonstrated that SERS-based molecular 
sentinel techniques can be used for multiplexed DNA 
detection [242]. Molecular sentinel probes can be also 
immobilized on a solid structure. Development of rapid, 
cost-effective biosensors for DNA detection was achieved 
using SERS-based molecular sentinel technology. In this 
case, the probes were attached to a metal film over nano-
sphere and used for the detection of a common inflamma-
tion biomarker [226]. Another similar study demonstrated 
the detection of a DNA sequence of the Ki-67 gene (which 
is a breast cancer biomarker) using metal-coated trian-
gular-shaped nanowire SERS substrate [243]. Sensitive, 
reproducible, and multiplex DNA detection using SERS 
was also performed using a molecular beacon [244]. The 
molecular beacon probes were successfully immobilized 
onto AuNPs attached on the surface of silicon nanowire 
arrays. In the absence of target DNA, the SERS signal 
was obtained due to the close distance between Raman 
active dyes and metallic AuNPs. In the presence of target 

DNA, the stem-loop configuration is disrupted due to 
the hybridization. Thus, in this “on-off” approach, dye 
molecules separate from the AuNPs and lead to weaker 
SERS intensities. Another “off-on” approach used a novel 
DNA bioassay based on bimetallic nanovave chips. Using 
this approach, specific oligonucleotide sequences of the 
dengue virus 4 were detected [227].

4.4  �Detection of other biologically relevant 
nanoparticles

SERS is capable of detecting biologically relevant NPs, 
such as exosomes and viruses (Figure 6). Exosomes are 
a class of extracellular vesicles that are approximately 
30–200 nm diameter. Until recently, they were thought to 
be part of a mechanism used by cells to dispose of waste. 
Now it is believed that exosomes play a role in intercel-
lular communication. Understanding their composition is 
crucial in elucidating their biological function. Exosomes 
from stressed or abnormal cells are secreted at differ-
ent rates and with different contents. Since exosomes 
are found in most body fluids, they offer an opportunity 
for non-invasive diagnostic for diseases such as cancer. 
Another potential candidate for SERS-based assays, which 
appears in body fluids, are viruses. HIV, influenza, and 
many other viruses have had severe effects on humans on 
both population and individual level. Whole viruses are 
20–300 nm long, making them good candidates for SERS 
detection.

The biomolecular diversity of exosomes can be 
observed using SERS [247]. As the exosome solution dries, 
the exosomes burst. Spectra taken while an exosome solu-
tion is drying provides data on the membrane and then 
the contents [245]. When exosomes from healthy and 
tumorous colon cells were concentrated, the exosomes 
from tumorous cells showed an identifiably stronger RNA 
signal in a SERS spectrum, while exosomes from healthy 
cells showed a stronger lipid spectrum [248]. Exosomes 
from hypoxic ovarian tumor cells have different biomark-
ers from normal tumor cells [249]. Exosomes may play a 
role in cancer signaling, allowing cells to send a command 
for senescence when treatment starts, and thus increasing 
the resistance. SERS of exosomes thus shows potential for 
both cancer diagnosis and research for the mechanisms 
by which tumors respond to their environment.

While there are many ways to detect viruses with 
SERS, including using proteins, DNA, or RNA, whole 
viruses can be detected as well. In 2005, a sandwich immu-
noassay was developed to detect feline calcivirus with a 
limit of 106 viruses/ml [250]. The sensitivity of SERS, using 
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tip enhancement, can detect a single tobacco mosaic 
virus [251]. Ag nanorod arrays have been used to detect 
adenovirus, rhinovirus, and HIV virus [252], respiratory 
syncytial virus (RSV), HIV, and rotavirus [253] and used 
to differentiate between strains of RSV [254]. Innovative 
detection mechanisms, such as using cicada nanopillar 
arrays as a substrate scaffold [246], are being developed. 
Commercially available substrates detect bovine papular 
stomatitis, pseudocowpox, and Yaba monkey tumor virus-
eswithout the need for reagents or labels and can be used 
to identify an unknown parapoxvirus [255]. While virus 
detection through SERS is moving to development using 
antigens [256] or nucleic acid, specific and sensitive whole 
virus detection is possible.

5  �Conclusions and outlook
We presented a review of current literature related to 
the use of SERS in bioanalytical applications. We first 
introduced the fundamentals of plasmonics and SERS, 
including a phenomenological description of the mecha-
nisms leading to the enhancement of the Raman signal 
of molecules located in close proximity to metallic nano-
structures. We then discussed materials available for plas-
monics as well as various types of structures that can be 
fabricated to generate large SERS enhancement factors. 
A review of potential assays and their classification is 

presented, followed by specific examples of assay devel-
opments and analytical measurements of different classes 
of molecules, ranging from small molecules to proteins 
and DNA, and finally to small particles such as exosomes 
and viruses.

While the examples presented in this review show 
potential for analytical measurements, there are still 
significant problems that need to be addressed before 
SERS can become a mainstream tool beyond the research 
laboratory. One important point to discuss is the spatial 
reproducibility of SERS substrates that determines the 
consistency for both inter- and intra-sample measure-
ment. Most reports demonstrating excellent reproducibil-
ity also show a lower enhancement factor. This is due to 
the absence of highly efficient hot spots that are associ-
ated with extremely high enhancement factors. However, 
the need for lower LODs in certain applications means that 
the availability of high-density homogeneous hot spots in 
those situations may be beneficial, especially for analyte 
concentrations below approximately 10–50 pM. The 
dilemma is how to still achieve analytical-quality meas-
urements when large fluctuations in SERS signal exist not 
only in different points along the substrate but sometimes 
also in the same spot, which are characteristic for single 
molecules. Performing measurements for longer periods 
of time to average all fluctuations is one potential solu-
tion. Another way to improve the statistics in the meas-
urement is by illuminating the sample with a larger laser 

Figure 6: Detection of biologically-relevant nanoparticles. (A) Ag/PDMS SERS substrate is used to detect purified exosomes. During the 
drying process, they burst and new spectral peaks become visible as the contents become exposed [245]. (B) A SERS assay to detect animal 
viruses uses Ag-coated chitin biomimetic scaffolding from cicada wings [246]. Reproduced with permission from Refs. [245, 246].
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spot and collecting the signal from this area. Yet another 
potential solution is by scanning the excitation beam and 
collecting the signal over a large area. Quantification may 
be achieved in this case by averaging the intensity of the 
SERS signal in each pixel. For very low concentrations, 
however, where single molecules are expected in each 
pixel, quantification may be achieved by counting and 
plotting the number of pixels that exhibit a SERS signal a 
as function of concentration.

While improving the SERS substrates is one important 
area of future research, effective combination of plasmon-
ics with chemistry, which we call here chemoplasmonics, 
for targeted analyte detection is another area of impor-
tance. In addition, improvements in the signal detec-
tion by the development of better detectors and more 
efficient spectrometers will also play a significant role in 
the improvement of the sensitivity of bioanalytical SERS 
instrumentation. Given that the sample volume that is 
needed for SERS measurements is in the picoliter range, 
the combination of SERS with microfluidics will also likely 
become a major component in future developments. Yet 
another area of future research is related to the develop-
ment of in situ bioanalytical assays.

Overall, bioanalytical SERS holds great promise to be 
used for applications beyond the laboratory. Due to their 
relatively low cost, easier sample preparation, and smaller 
sample volumes, SERS assays may become accessible and 
inexpensive enough to be an important tool in testing ana-
lytes in low resource settings or at the point of care.
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