MATERIAL PRUFUNG

<u>Herausgeber</u>

BAM Bundesanstalt für Materialforschung und -prüfung

DGZfP Deutsche Gesellschaft für zerstörungsfreie Prüfung

DVM Deutscher Verband für Materialprüfung VDI-Gesellschaft Werkstofftechnik

Organschaft

Die Zeitschrift ist Organ des Normenausschusses Materialprüfung im DIN

Aufsatz-Redaktion Berlin

Dr.-Ing. D. Aurich, Ltd. Dir. u. Prof. (verantwortlich) Dr. J. Sickfeld

Dr. U. Völkel

BAM, Unter den Eichen 87, D-1000 Berlin 45 Tel. 030/8104-1, Telefax 030/8112029

Redaktion Darmstadt

Dr.-Ing. Th. Stöckermann (verantwortlich) Carl Hanser Verlag, Marburger Straße 13, D-6100 Darmstadt Telefon 06151/700940 Telefax 06151/700948 Telex 176 151 836 Teletex 6151836

Beiträge und Mitteilungen für den redaktionellen Inhalt sind an die Redaktion Darmstadt zu senden, Fachaufsätze (Originalbeiträge) an die Aufsatz-Redaktion Berlin.

Fachbeirat

Prof. Dr. G.W. Becker, Berlin (Sprecher) Prof. Dr. A. Bäumel, Darmstadt Dir. Prof. Dr. H. Gräfen, Leverkusen Dr.-Ing. W. Hansen, München Dir. Prof. Dr.-Ing. E. Mundry, Berlin Dir. Prof. Dr.-Ing. C. Razim, Stuttgart Prof. Dr.-Ing. K. G. Schmitt-Thomas, München

Carl Hanser Verlag

Kolbergerstraße 22, D-8000 München 80 Telefon 089/9 26 94-0 Telex 5-22837 Telefax 089/98 48 09

© Copyright by Carl Hanser Verlag 1988

Inhalt

30. Jahrgang April 1988 Heft 4

4/88

Kurzfassungen/Summaries	86
Impressum	88
Leitartikel	
G. W. Becker: Der neue Fachbeirat und seine Aufgaben	89
Notizen	90
Kalender	92
Aufsätze	

K. H. Kloos, J. Granacher, A. Scholz, R. Tscheuschner: Prüfung metallischer	
Werkstoffe bei hohen Temperaturen (Teil 1)	93
H. Wern, A. Peiter: Auswerteprinzip für Einbohrverfahren	
zur Eigenspannungsmessung	99
H. Kockelman, A. Schlüter: Bruchmechanische Werkstoffprüfung	103
M. Stadthaus, H. M. Thomas: Anwendung eines Bildverarbeitungssystems zur	
Ermittlung der Anzeigenerkennbarkeit beim Magnetpulver- und	
Eindringverfahren	109
P. Brennan, C. Fedor, G. Pausch: Sonnenstrahlung, Ultraviolett	
und Kurzbewitterung	115
E. Sembritzki: GZP-Gütezeichengemeinschaft Zerstörungsfreie	
Werkstoffprüfung e.V	120

Kurzberichte

Prüfverfahren für den Fogging-Test. Handlicher Stahlseiltester Mikroprozessorgesteuertes Härteprüfgerät Endoskop zur Inspektion von Dieselmotoren. Farbmessung und -abstimmung PC-unterstützte Materialprüfung Spektroskopie mit neuer Computergeneration Automatisierte Prüfung an Ringproben. Zerstörungsfreie Prüfung von Beton-Armierungen. Akustische Rastermikroskopie Filme für die zerstörungsfreie Werkstoffprüfung	98 101 102 102 108 108 114 114 119 122 123 123 123
Normen und Richtlinien, Bücher	124
Report	126

Titelanzeige

Das abgebildete Vielstellen-Meßgerät UPM 60 verkörpert modernste Gerätetechnik für das elektrische Messen mechanischer Größen. Es verarbeitet die Signale von bis zu 60 Meßstellen unterschiedlicher Art, wie z.B. von Dehnungsmeßstreifen (DMS), DMS-Aufnehmern, induktiven Aufnehmern, Thermoelementen und Widerstandsthermometern. Das Gerät kann durch seine Mikroprozessoren eingenständig den Meßablauf und die Datenausgabe steuern, kann aber über seine Schnittstelle (IEEE 488 und RS-232-C)

auch von einem Rechner gesteuert werden, der die Meßwerte zur weiteren Auswertung übernimmt. Ein bevorzugtes Einsatzgebiet des UPM 60 sind Messungen für mechanische Beanspruchungsanalysen.

HOTTINGER BALDWIN MESSTECHNIK GMBH Postfach 4235 Im Tiefen See 45 6100 Darmstadt

