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Abstract: The main crux of this manuscript is to establish the existence and uniqueness of solutions for non-
local fractional evolution equations involving )—Caputo fractional derivatives of an arbitrary order a € (0, 1)
with nondense domain. The mild solutions of our proposed model are constructed by employing generalized
y-Laplace transform and some new density functions. The proofs are based on Krasnoselskii fixed point
theorem and some basic techniques of y—fractional calculus. As application, a nontrivial example is given
to illustrate our theoritical results.
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1 Introduction

Fractional differential equations are a generalization of ordinary differential equations and integration of ar-
bitrary noninteger orders. The theory of fractional calculus is an interesting and popular tool in modelling
many phenomena in various fields of engineering, physics and economics. It often appears in viscoelasticity,
electrochemistry, control, porous media, electromagnetic, etc. (see[8, 13, 14, 18, 20, 22]).Due to an increase
in applications to queries regarding the generalization of this form of calculation, this theory has changed in
both internal structure and scope. Among these generalizations, the researchers in [2] manage to define a frac-
tional derivative which remains the most valid, they consider a Caputo type fractional derivative with respect
to another function. Some properties between fractional derivatives and fractional integrals are proved in
their paper. The reader can consult articles as well [3, 9-12, 21, 25] and the references therein for more details.
As is known, the nonlocal Cauchy problem is motivated by physical phenomena and abstract partial differ-
ential equations with fractional derivatives in space and time are known as fractional diffusion equations.
They’re valuable for modeling anomalous diffusion, which occurs when a plume of particles expands in a
way that isn’t predicted by the classical diffusion equation. ewski in [3] pioneered nonlocal circumstances by
demonstrating the existence and uniqueness of mild and classical solutions for nonlocal Cauchy problems.
According to Byszewski and Lakshmikantham [13], the nonlocal condition can be more effective in describing
some physical processes than the normal initial condition. In physics, the nonlocal condition has a better ef-
fect than the classical data condition x(0) = xq, for example ¢(x) might be expressed by ¢(x) = Z;ﬁl cix(t;),
where ¢;,i=1,2,...,n are given constants and O < t; < t, < ... < ty < a. Zhou et al in [26], studied nonlocal
Cauchy problem for fractional evolution equations in an arbitrary Banach space X. Some several criteria of
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the existence and uniqueness for mild solutions are established.

As a result of Hille-Yosida Theorem (see [24]) it is well known that a lineare unbounded operator A is the
infinitisimal generator of a Co—semigroup { T(t)}so if and only if

1. Aisclosed and D(4) = X,

2. there exist two constant w, M € R such that (w, +o0) C p(A) and

- M
AI-A)k < —— _ foralld>w, k> 1.
1T = 200 < 5=
Now, the main question is how to investigate the fractional evolution problem with the absence of a dense
domain D(A) for the operator A?

Some researchers use the operator Ay which is a restriction of A on D(A) defined as follows:

D(Ap) = {x € D(A) : Ax € D(A)},
AOX = Ax.

G.M. Mophou and G.M. N’Guérékata in [23] discuss the existence and uniqueness of the integral solution
for a nondensely fractional semilinear differential equation with nonlocal conditions in a Banach space X.
They precisely considered the following evolution problem:

{qu(t) = Ax() +f(t, x(1)), te[o, TI,
x(0) + g(x) = xp.

Where T is a positive real constant, O < g < 1, the operator A : D(A) C X — X is not necessarily densely
defined, f: [0, T]xX — Xand g: € ([0, T]) — D(A) are continuous functions. They used Krasnoselskii theo-
rem to prove the existence and uniqueness results. Gu et al in [17] studied the existence of integral solutions
for two classes of fractional order evolution equations with nondensely defined linear operators. First, They
look at the nonhomogeneous fractional order evolution equation and use Laplace transform and probability
density function to construct the integral solution. They established the existence of this integral solution by
using the noncompact measure approach.

Motivated by the above works especially by [17], we study the existence and uniqueness results for the fol-

lowing 1p-Caputo fractional evolution equation:

CDEYx(H) = Ax(6) + f (t, x(D), te]=]0,T], "
x(0) + @(x) = xo.

Where CDS;"' is the y—Caputo fractional derivative of order @ € (0, 1), T > 0, xo € X, the operator A : D(A) C
X — X is not necessarily densely defined, f : [0, T] x X — X and for [ > O there exists a positive function
€ L=(J, Ry) such thatsup |If (¢, x) || < () . @ : € ([0, T], X) — D(A) is a K-Lipschitz function with K > 0.
x|sl

Our paper is organized as |fo‘llows. In Section 2, we give some basic definitions and properties of p—-fractional
integral and y-Caputo fractional derivatives which will be used in the rest of this paper. In Section 3, we
construct the mild solutions for )—Caputo type fractional problem (1) by using generalized Laplace transform
and a new density function. We establish our main results in Section 4.As application, an illustrative example
is presented in Section 5 followed by conclusion in Section 6.

2 Preliminaries

In this section, we give some notations, definitions and results on y-fractional derivatives and i-fractional
integrals, for more details we refer the reader to [2, 4, 16].

Notations

¢ We denote by X a Banach space.



274 —— Ali El Mfadel, Said Melliani, Abderrazak Kassidi, and M’hamed Elomari DE GRUYTER

e We denote by C := C(J, X) the Banach space of all continuous functions endowed with the topology of
uniform convergence denoted by
[[x]leo = sup [Ix(£)]].
te]

¢ We denote by B, the closed ball centered at 0 with radius r > O.

Definition 1. [1]Letq > 0,g € L*(J, R) and € C"(J, R) such that ' (t) > O forall t € ].
The y-Riemann-Liouville fractional integral at order q of the function g is given by

t

1380 - 1 / WEWO - p(s)* gs)ds.

0

Definition 2. [1] Leta > 0,g € C""}(J,R) and y € C"(J, R) such that '(t) > O forall t € J.
The Y-Caputo fractional derivative at order q of the function g is given by

DS~ 1o / W EWO - Y gl s)ds.

Where

["](s)—<¢();> g(s) and n=[a]+1.

And [q] denotes the integer part of the real number a.

Remark 1. In particular, if a €]0, 1[, then we have

t
DLV g(r) = ﬁ / (O - P(s)* g (s)ds.
0

And

Cp&¥g(t) = 137V ( i((?)) .

Proposition 1. [1] Let g > 0, if g € C""1(J, R), then we have
D “Dgl1gVe() = g(0). o

[k )
) 15 DY e(t) - g(0) - Z (0 - (o).

3) I ¥ is linear and bounded from C(J, R) to C(J, R).

Proposition 2. [1] Let t > 0 and a, 8 > 0, then we have
D PO - o)y - Lo - poyr.

I'B+a)
2 D%y - oyt = LB VOO
3) “DEY((D) - Y(O)" =0, forallneN.

re-

Definition 3. [19] Let x : ] — X be a function. The generalized Laplace transform of x is given by

Ly {y(O}(s) := x(s) = / Y (0)e SOV (pgt.
0
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Definition 4. [19] Let f and g be two functions which are piecewise continuous on J and of exponential order .
The generalized y—convolution of f and g is defined by

t
GRCE / FS)g@™ @p(e) + () - (s (s)ds.
0

Lemma 1. (See [19]). Let ¢ > 0 and y be a piecewise continuous function on each interval [0, t] and Y(t)-
exponential order. Then we have

L Ly I8 y(0)(s) = %

2. L,/,{CDgL"by(t)}(s) =5

n-1
Ly{y(O)} - Zsklf(k)(o)} , wheren = [q] + 1.
k=0

Definition 5. (See [21]) Let p € [0, o). The one-sided stable probability density is defined by

oo

walp) = - S (o) - YO

n=1

an-1 M sin(nna).

Lemma 2. [21] The Laplace transform of wq(t) is given by

oo

/ e AVOVO) (O (Dde = e
0

Theorem 1. ( Krasnoselskii Theorem [5] ) Let C be a closed convex and nonempty subset of a Banach space
X. Let F and L be two operators such that
1. Fx+ Ly e Cwheneverx,y € C,
2. Fis a contraction mapping,
3. Liscompact and continuous.
Then there exists z € C such that z = Fz + Lz.

3 Construction of mild solutions

In this section, we use the y-Laplace transform to construct the integral solution for the fractional evolution
problem (1). For this purpose we need to prove to the following lemma.

Lemma 3. The fractional evolution problem (1) is equivalent to the following integral equation

X(£) = xo + ISY (Ax(6) + f (¢, x(D) ), Vt € J. @
Proof. Let x be a solution of the problem (1), then we apply the y)—fractional integral 18‘1‘/’ on both sides of (1)
we get

15 DS x(t) = 1Y [Ax(®) + f (£, x(D) ],

and by using Proposition 1 we obtain

x(6) - x(0) = ISY[Ax(t) + f(t, x(1))],
since x(0) + @(x) = xq, it follows that
1

t
x(t) = xo - D(x) + @ 0/ P ()W) - ()™ [Ax(s) + f (s, x(s))]ds.
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Hence the integral equation (2) holds.

Conversely, by direct computation, it is clear that if x satisfies the integral equation (2), then the equation
(1) holds which completes the proof. O

Definition 6. A function x(t) is said to be an integral solution of (1) if
1. x:]J—X,

2. I&¥x() € D), vt €],

3. x(f) = x(0) + @) + AISPx(6) + ISV f (8, x(1)))

Remark 2. We have the following remarks.

1. By using Proposition 1, we have I¥x(t) = Il"“"plgilpx(t).

2. If x(t) is an integral solution of (1), then I “1'/’x(t) € D(A), Vvt € J, which implies that
IMPx() = %Y 1% x(t) € D(A) for t € J.

3. The limite limj,_,, % f[”h x(s)ds € X, for t € J shows that x(t) € D(A).

Let Ag be the part of A in Xy = D(A) defined by

D(Ao) = {x € D(A) : Ax € D(A)},
Aox = Ax.

We assume the following hypotheses throughout the rest of our paper.
(H{)The linear operator A : D(A) C X — X satisfies the Hille-Yosida condition, that is, there exist two constant

w, M € R such that (w, +o0) C p(A) and
_ M
AL-A)* < =
”( ) HL(X) (/1 _ w)k
(H,)T; is continuous in the uniform topology for ¢ > 0.
(H3)MK < 3.

(Ha)M (K+ sk (],]RJ) <L

forallA> w, k=1.

loc

Since the operator A satisfies the Hille-Yosida condition, we can find the mild solution on D(4g). For this
purpose, let us consider the following auxiliary problem:

CDEYx(t) = Aox(t) +5(t),  te],

x(0) + @(x) = xq.

Wher g is a given continuous function.

Lemma 4. Let A > w, then the resolvent R, of A satisfies

LS}

Ry:= (- A)" = /efA(tp(t)fw(o))T (W(6) - (0)) Y (B)dt.

0

Proof. Let x € D(A). From (H,) it follows that

/e_A(w(t)—w(o))T(¢(t)_¢(o)) )ap'(t)dt:/ e MT(t)dt,
S 0
= (AI-A)'x.

That’s true of all x € D(A), which implies the results. O
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Proposition 3. If the fractional integral equation x(t) = xo + @(x) + Igllp (on(t) + g(t)) holds and g takes
values in Xy, then we have

Y(t)-p(0)
X(8) = S, (BO0x0 - DCO) + / Ray (000 - h(s)) &) (s)ds,
0
where
Sa,p(®) = IR, 4 (0),
and

[

Ra’lp(t) = ta_l /a (l/)(p) - l/)(o)) wa(p)Tt“(l/)(p)—l/)(O))) llj,(p)dp'

0

Proof. Let A > 0. From Lemmas 1 and 3 we have

~ 1 1 ~ o~
X=Z(X0_®(X))+;Ta(‘40x+g)’

we obtain
X =A% (A% - Ag) ! (x0 - D)) + (AT - Ao) ' &

Let’s pose I; = A1 (/1"‘I—A0)_1 (xo - @(x)) and I, = (A“I—Ao)_1§ ie I,= /e""aS Tsgds.
0

From Lemma 4, we get

AL = (AT - Ag) ™ (xo - ()

_ / oA (WE-$(0) T y(s)-p0) (X0 — D0O) W' (s)ds
0

+o0

= [ ae OOPON T,y (x0 - D00) (0~ YO (0

0

oo +oo

-a / / e MPOPONBEPO) ., () Ty 0 piope (Xo = DY) ((E) - (O™ 9y () (B)ditdp
0 O

o +oo

_ A(HO-p(0)) _ () BO-pOYT
ao/o/e Xa(P)T%)H (X0 - @(x)) @) = PO)F Y ()Y (Hdtdp

oo LS

_ a-1 , ,
_ / e AHO-40) / a)(a(p)%T(‘p([),lp(o))a (x0 - () ¥ (0)dp] W (B)dt.
0 0

= Ly (Ray) (6 = $(0)) (X0 - @(x)) .

Y(p)-$(0)

Where

= [ aya(p) PO =90 e 0 & (o)
Ren(® O/ W) oy - pone ()" Do~ PRI YOI

we can write

oo

Rqy(6) =t / WPOaPIT () o) ¥ (0)dp,
0
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where

walp) = (¥(0) - P(0)) * Xa (wl( (m) i ¢(o)>> .

On other hand, we have
VIGERI(O) o
oy <(r(1a))> W=,

Which implies that

Ity <("’(2(; v Rw(.)> 0

= Ly (I"YR, (D).

Let us calculate I,.

oo

o= / e MWOVOIT ) LY (Dt
e N (V(O-1(0) o-A(Y(s)-$(0) T 20-p08) o () (Ddsdt
& (00 - p(@) " e (10040)) APOVONT o8 (S (Ddeds

- (AO-Y(©@) (P(p)-(0)) ) o-A($(5)- lp(o))(P)T(lp(t) syt (HO) - P(0)

‘S

ABOWE) T (B0 - ()"

[
Ef,) Y (s)y (t)dtdsdp
/

3 0\8 % O g O — 3 — g °

- o . d d d
0/ axelp)e (B9)" (i) - o S OV sy 0t
YO-Y(0) oo el
_ “AP(O-$(0)) )T - (',b(t) - Eb(S))
0/ e [ 0/ 0/ axa(p) (;”;‘ﬁ,;‘fﬁ’g))a (lp(p)—w(o))"—( »(o) - ’P(O))a

gy ()Y (s)dpds| ' (t)dt
= Ly (Rayy (PO - (s))) .

Thus x(t) can be written as follows

Y(6)-1(0)
x(t) = S () (xo — (X)) + / Ray (Y1) - (s)) g(s)y (s)ds,
0
where S, () = I 1‘“"/’Ra,¢(t). Which complets the proof. O

Remark 3. From (H;) we have ||R,|| < 1 —Ma)’ then we get

lim ||Ry|| < M.
A—+o0

Proposition 4. We assume that @ is K-lipschitz and (H>) holds, then
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1. forafixedt >0, {Rqy()}r-0 and {Sq y(f)}+>0 are linear operators.
2. forx € Xo, then |Ra,¢(t)x| < %|x| and {Sa,,/,(t)x] < Mix|.
3. {Ray®)}t-0 and {Sy y ()} 50 are strongly continuous,

ie. Forx e XoandO< h<T,

tllig[}z ‘Rayw(tl)x - Ra,!/l(tZ)X| =0and t}gl}z |Sa,¢,(t1)x - Sa,¢(t2)x| =0.

S

. ’ 1
Proof. Since we have / apwa(p)Y (p)dp = Ara then
0

M
|Rq, (0| < mm.

From the above inequality it follows that

[Sap (O - YO = IV Rey (PO - Y(O))x

. MY () - p(0))*?
N I'l1+a)

x|

. MI(a)
TTIl+a)

x|
M

s —[xls
a

which implies that |S, ,()x| < 2 |x]|.

Lemma 5. The integral solution of the problem (3) is given by

Y(t)-(0)
X(0) = S44(Ox0 - PL) + Tim / Rap ($(0) — (s)) Rag(s)p (s)ds. (4)

Proof. We have that
xa(6) = Rax(t) , ga(t) = Ryg(t) , xp = Ryx(0).
By applying R, to (3), we have
x(t) = xy + AoIg ¥ xy(8) + I5Y gp (1)

hence
P(t)-1(0)

00 = SapO0+ [ Koy - pisNg1 s,

since x(t), x(0) € Xy, we have
x7(8) = x(6), xp = x(0), Sq,y(O)x3 — Sq,y(6)x(0), asA — +oo.
Thus (4) holds. This completes the proof. O

Y(t)-(0)
Lemmaé6. Letx € Xand t = 0, then lim / Koy (1/1(5) - v,b(s)) RAxw'(s)ds exists and the mapping

A—+oo
0

Y(t)-h(0)
Na,p(¥) = Alim / Ko,y (Y(s) - ¥(s)) R,\xgb'(s)ds define a linear operator from X into Xj.
—>+oo
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Proof. . Let ¥, ,(t) be the following operator

Y(t)-(0)
W, (00 = / Ky () - 9(S)) Ryxody (S)ds,

for xo € Xgand t = 0.
Then,the following operator

Sap(t) = A - AP, ,(DAI-A)", 1> w,
extends ¥, () from X, to X.
This definition is independent of A due to resolvent identity. Since ga,,l,(t) maps X into Xy, then we have
Ca,y(Ox = Al_iﬂo RjGa,p(t)x

= AEIIIM lPa,l/) (t)R}lX.

This completes the proof.

Lemma7. Let x € X, and ¢ > O, then we have CDgil/’ Wo,p(O)x = Sq y(Ox and S (£)x = AW, (t)x + x.
Proof. The proof of this Lemma derived directly from the definitions of S, y(t) and ¥, ,(f) for ¢ > 0. O

Lemma 8. The following statements hold.
(i) Letx € Xandt =0, then
I8¥ 6,4 (Ox € D(A),

and
() - ¥(0)

Sap(OX = AUV G0,y (D(D) = h(0))0) + r1+a) “X_

(ii) If x € D(A), then
qa’lp(t)Ax +x =S4 y(0)x.

Proof. To show (i), let x € X and t > 0, then we have
§(0) = NI Wy (DAL - A) ' x

£) - 1(0))? i )
* %W ~ A) X - Wy (DA - A)'x.

Clearly {(0) = 0. From Lemma 7 we have

CDEP L) = AWa(OAL - A) ™ x + (AT - A) x - ¢, D O A)x
= AW (AT = A) 'x + (AT = A) X = Sy (AT - A) 'x
= AW, (O - A) 'x + (AT - A) "X - AW, (DI - A) 'x - (AT - A) 'x
= AW (DAL - A) ' x - AW, 4 (AT - A) 'x
= (AL - A)¥, (DAL - A) 'x
= Ga,p (DX,

It follows that

{(6) = 137 64,y (DX + £(0)
= 157604 (O,
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and
(AI - A)¢(6) = (AI - A)Iailp(;a,lp(t)x
= ALY 6 (DX + W© - ypo)**

Tra * Saw(Ox.
thus () - PO)*
_ P -
Ca,lp(t)x = A(Ig+ Ca,lp(t)x) + WX-
Now, we prove (ii). Let x € D(A), it follows from Lemmas 6 and 7 that

Y(6)-$(0)

Sap(OAX = lim_ / Koy (h(S) - h(O)RAxiY (s)ds
0
Y(t)-(0)
_ lim 4, / Kap(S)Rxp ()ds

A—+o0
0

= Ao Wqy(Ox = Sg y(O)x - x.

This completes the proof.

Theorem 2. The mild solution of the evolution problem (3) is given by

t
(0 = Sap (0= 000) + lim [ Koy (000~ 4(5) Rig(s)ds.
0

Proof. The proof is given in several steps:

1) Step 1: Let g be always differentiable, then for ¢ € J, we have.
PO-P(0)
X0 = / Koy ORIEE)P (5)ds
0

Y(O)-p(0) s
_ K, ,(s)Ry(g(0) + / g (Y (s)ds
0 0
P(O-¥(0) Y(6)-p(0) s
= Kayl,,(s)R,\g(O)lp'(s)ds+ / KW(S)R,\/g’(r)dr)l,[)'(s)ds
0 0 0

t
~ ¥, (OR,g(0) + / ¢°, ((O) - PINRg (Ddr.
0

By Lemma 7 for t € J, we obtain

x(t) = lim XA(t)
A—+oo

t
— Gy (Dg(0) + / Sap (O - PONgR)dr
0

(@) - p(0)“
I'l+a)

@@ - p(()*
I'l+a)

= AUSY 64y (D5(0)) + 5(0)

t
+ / [AUSY 6y (D) - () + g (Ndr
0

— 281
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t
— ALY 4 (DF(O) + / 15V D4, (P(0) - P(P)E (dr]
[0)

t

@0 - p(0)° 1 .

rare SO i / (0 - p(n)*g ()dr
0

t
= A%V g, 4 (D2(0) + 5% / Dy ((O) - Y(P)E (D]
0

t

* ("b(lt")(l_ipg)))) 80)+ 1"(11+ ) /(ll)(t) - Y()*g (Ndr
0

= A%V X(0) + I%¥g(0) .

2) Step 2: Now, we approach g through continuously differentiable functions g such that.
sup |g(t) - gn(8)] — 0, as n — oo.
te]

Letting
t
Xn(t) = lim / Ko,y (P(s)Rpgn(s)ds,
0
we have
xXn() = AUZY xn(0) + 15V gn(D) -
Hence

t
xal®) = xm(0)] = | lim / Koy ()R (5) - gm(s))ds|
0

t
* T(a) 0/ W (0) - ()™ gn(s) - g(s)|ds
_MmT*
(@) llgn — gmll,

which implies that {x,} is a Cauchy sequence and its limit is denoted by x(t), thus we obtain
x(t) = A(Ig;’l’x(t)) + Igiwf (), for t € J. This completes the proof.
O

Corollary 1. By using Definition 6, Remark 2 and Theorem 2 we can give the mild solution of the fractional
evolution problem (1) as follows:

t
X(0) = Sy (x0 = @(0) + lim / Kap (W) = 9(5)) Ryf (s, x(s) (s)ds.
0

4 Main results

In this section, we use Krasnoselskii [5] fixed point theorem to prove existence and uniqueness results of (1).

Theorem 3. Assume that the hypotheses (H3) - (H,) are satisfied, then the fractional evolution problem (1)
has a unique mild solution defined on J.
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Proof. We give this proof in two several steps.
Step 1: Existence of solution.
Consider the following operators F and L.

Fx(t) = Sg, () (x0 - g(x)),

P(O)-1p(s)
L= im0~ (6" Pay (O - PR, X(5)ds.
0

oo

where Pa,t/)(t) = /a (lP(P) - 1/’(0)) wa(p)Tta(l/,(p),ll,(o))l/),(p)dp.

0
¢ Choose a ball of radius r. If x, y € By, then

1)+ (LY < 1S, (60 = PO
YO-Y(s)
clim | [ GO ) Py O - PR, YD S)ds|
0
< [Say®llllxo - (]
Y(O)-P(s)
e im0 PO Py 0O - YO IRAIF, Y] (5)ds

0

M
< 2o - 20|

. (B0 - ()

F(a+1) MHHHL""

Since @ is Lipschitzian with a positive constant K, then

(¥(T) - (0))*

[Fx + Ly|| < M (||xo| + [|®@(0)|| + Kr) + @+ 1)

Mplz=-

. T)-(0))"
So just one can takes r = 2M (||x0\| +]|@(0)]] + %M\W”qu,m)) to find the result.

¢ F'is a contraction mapping.
foranyt € J, x, y € Br we have

IFx(6) = Fy(O)]] < [Sa,p(6) (@) - @()) ||
< [|Sa,p@]l|2x) - 2]
< MK||x = ¥||oo-

|Fx — Fy|leo < MK||x - y||oo Which implies that By the hypothesis (H3), MK < 1, F is a contraction mapping.
e [ is continuous and compact.
Continuity of L.
Let (xn) be a sequence in By = {x € X, ||x|| < r} such that x, — x in B,. Since f is a continuous mapping, we
have

f(s, xn(s)) — f(s, x(s)) , n — oo.

For all t € J, we have
Y(6)-y(0)
|Lxn - Lx|| < lim_ / W) = P()* [Py, (t = )IRAIIf (5, Xn(s)) = £(s, x(s)[|'(s)ds,
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we get
Y(O)-1p(0)
L= Lxl < M [ GO = W)™ s, xalo) s, x(sDds,
0

for all t € J. Therefore, using on the one hand the fact that
W) =)™ If(s, xn(s))-f(s, x(8))]| < 2u(OW()-p(0)* ! € L'(J, R.), fors € ], by using Lebesgue
dominated convergence Theorem we obtain that

PO-(0)
Jlim / (6 = () If (s, xn(s)) - f(s, x(s)I[Y (s)ds = 0.
0

Consequently,
lim ||Lxn — LX||eo = O.
n—oo

In other words L is continuous. It is easy to check that (Lxy) is uniformly bounded.

¢ Compactness of L.

By using Ascoli-Arzela Theorem [15], we first prove that {Lx : x € B,} is relatively compact in X.
Obviously, {Lx(0) : x € B,} is compact. Fix t € [0, T]each h € [0, T] and x € B;, define the operator L" by

PO-p(R)
L' = lim / W) = () Py (W) — Y($)Rf (s, x(s)) (s)ds
0
YO-P()
= AEIPOOHPa,lp(l/l(h)—l/J(O)Nl / W(6) = Y($)* Py () - (k) — P(s))
0

xRyf(s, x(s))y'(s)ds.

Since the operators P, y are compact in X for ¢ > 0, then the sets {L"x : x € By} are relatively compact in
X for each t € J. Moreover, now let’s use the fact that A is an infinitesimal generator of a Cosemigroup, we
have

Y(t)
|Lx-L"x] = lim_ / (WO~ Y()* [Py (O ~ () [RAllIFs, x(s) 1 (s)ds
PO-y(h)
T{X

< Far oM lm0.80 (B0 - ().

Therefore, we deduce that {Lx : x € B} is relatively compact in X for all t € [0, T] and since it is compact
at t = 0 we have the relative compactness in X forall t € J.
Now, let us prove that L(B;) is equicontinuous. The functions Lx, x € B, are equicontinuous at t = 0.
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ForO < t, < t; < T, we have

P(t2)-1h(0)

L) -l = im0 = ) Py ) - P - Pag (6~ ()
0
Ryf(s, x(s))y'(s)ds||
Y(t2)-9(0)
dim [ () - ) - ) - )
0
Sap(t2) — (DR (s, x(5)P (s)ds]|
P(t1)-1(0)
o dm [ ) - PO Sy () - DRSS, X ds]
P(t2)-(0)

SIl +Iz+I3.

Where

P(t2)-(0)
L= lim | / (W(t1) = h(0)F (P (W(t1) - () = Py ((t2) = Y(SNIRAf (s, x(s)Y (s)ds]] ,
0
P(t)-(0)
I = lim | / ((t1) = PN = () - Y()* Py, ((£2) — YO)RAf(s, X(s)Y (s)ds]

0

and
P(t1)-(0)
L= dim [ G = ) Pay(hler) ~ DRSS, X (5]
Y(t2)-1h(0)

I, I, and I5 tend to 0 independently of x € By when t, — t;. Indeed, let x € B;. We have

P(t2)-p(0)
hos lim [ 06~ PO Py hlEr) ~ YO - Py (62 $O))
0
Ryf (s, x(s)||Y'(s)ds
P(t2)-1(0)
/IEIPN, / |(p(t1) - (0)*?

IN

0
(Pa,yp ((t1) = P(t2)) + (P(£2) = P(s))) = Py, ((t2) - (0)))

Raf(s, x(s))[|9'(s)ds
Y(t2)-p(0)

1Gh(2) = PON* 1 [1Sa, (P(22) = Y(s))

IN

(Pa,yp(h(tr) - (t) - D) lim
0

[IRAlIf(s, x(s))|[Y'(s)ds

(SapWle0) = (E2) = D) lim T g .

IN

Therefore the continuity of the function t — ||S, , || for f € (0, T) allows us to conclude that

lim Il =0.

th—t

On the other hand,
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P(t2)-1(0)

Ls lim / () = PN* ! = (W(t1) - YD) ™S, W(E2) = Y(S)RAF(S, X())|[1 (s)ds
0
Y(t2)-(0)
< lim / (p(t2) = () = (lt2) = YN 1S,y (h(t2) = (SN IRANIF(s, x(sDIIY (s)ds
0
Y(t2)-P(0)
<M / (L) = PN = (W(t2) - Y()* L pr| ()Y (s)ds
0
Y(t2)-(0)
< M|prll =g &) / () - PN — ((t1) - Y(s)* P (s)ds
0
F(a+ 1)\|Hr||Lw(] ry|P(t) - P(t2)|".
Hence lim I, = 0.
ty—ty
Y(t1)-1(0)
< lim / W) = YD) Sy (1) = YODRAF(S, X(3))||9 (s)ds
Y(t2)-1(0)
Y(t1)-(0)
< lim / W) = YD) 1S,y (&) = Y(S)) [RAllIf (s, x(s)l[1 (s)ds
Y(t2)-(0)
M Y(t1)-(0)
S / W(t1) - Y(s)* L u(s) (s)ds
lp(tz) Y(0)

ey sl V(6 - B

Consequently, tlin} =0

22—l
In short, we have proven that L(By) is relatively compact, for r € (0,1),{Lx : x € B:} is a family of
equicontinuous functions. Hence by using the Arzela-Ascoli Theorem [15], L is compact.
Finally, since F is a contraction , L is compact and Fx + Ly € By for x,y € By, then by using Krasnoselskii
Theorem [7] we conclude that (1) has at least one mild solution on J.

Step 2: Uniqueness of solution:
To prove the uniqueness of solution we use Banach fixed point Theorem. For this purpose, let us define the
operator T: C — Chy

P(O-(0)
Tx = Sap(xo = @0O) + lim / W(0) = ()" P,y (P(1) = Y(ODRAF (s, X(s))y (s)ds.
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Note that T is well defined on C. Let t € J and x, y € C, We have

Y()-P(0)
[Te =Ty ¢ [Sap@(@C) -+ lim_ / (W0 - PO | p(H(O - Y(s))
0
Ry(f(s, x(5)) - f(s, y(s)))|[Y'(s)ds
< ISayp®IP0) - DG
Y(t)-y(0)
L N R UORORS DUIORTO)
0
IRAIIf(s, x(5)) - (s, y(s))|[Y'(s)ds.
It follows that
ITXO - TYO] < ML|x- Y|
P()-(0)
M / W(6) - () L (5)]x - y||ds
0
PO-$(0)
< MBIx-Ylig+ s g X - Vil + / WO - YN 1P (5)s
I(g)"" "R /
MT®
s (MK+ WHVIHL}DCU’RJ) 1% = ¥lloo-
So we get
7~ T|ee < (MK+ %nmnwm) I =Yl

MMT* . . .
Ta+1) l[pal LLOR) < 1 and in view of Banach contraction mapping

principle, we can conclude that 7 has a unique fixed point in C. O

Therefore, from (H,) we get MK +

5 Anillustrative example

In this section, we give a nontrivial example to illustrate our main result.
Consider the following fractional evolution problem:

D utt, ) = 2ule, )+ 5o eosult, ), (6 € [0, 11x0, 1],
u(t,0)=u(t,1)=0, telo,1], (5)

10
u(0, x) = Zﬁi|u(ti,x)|, Bi>0, 0<t;<T, i=1,2,..,10and x € [0, 1].
i=1

We choose X = ©([0, 1] x [0, 1], R) and we consider the operator A : D(A) C X — X defined by

D(A) = {u cX: a—zu € X and u(0, x) = u(0, 1)=0},

ox?2
aZ

Au = Wu.
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Then, we have

D(A) = {u eX:u(t,0)=u(t1)= O}.
D(A) # X, p(A) = (0, +oo) and for A > 0, |[R(A, 4 < 1.
This implies that A satisfies (H;) with M = 1. Since it is well known that A generates a compact
Co-semigroup (Sa,l,,) 120 011 D(A) such that ||S, || < 1. Hence (H,) is satisfied with M = 1.

In this example weseta = 1, T =1, Y(¢) = ¢, f(t, u) = ﬁcos(u(t, X))

10 10
and O(x) = Zﬁi|x(ti)| with > B; < 1.
i=1 i=1
Itis clear that |f(t, x(t))| < p(t) = % and f is continuos, we have

9+
10
D00 = | > Bilx(t)
i=1

]

it follows that 0
@001 <> Bilxdl
i=1
On the other hand, we have

|@(x(1)) - @(y(0)] =

]

10 10
> Bilx(t) - Bily(t)
i-1 i-1

from which, we have

10
|00 - @) <> Bilx -,

i=1

10
thusK = B;.

i-1
—~t o
We take pu(t) = o5 and MK + %Hyll\%ﬂ,m <1, whenever 0 < K < 1- .3~
Finally, all the conditions of Theorem 3 are satisfied, thus it is easy to see that the fractional nonlinear problem
(5) has one solution defined on [0, 1].

6 Conclusion

In the present paper, we studied the existence and uniqueness of solutions for nonlocal fractional evolution
problem with nondense domain involving Caputo type fractional derivative with respect to another function
Y. The forme of mild solutions is given by using semi-group and a density function. Our proofs of the
existence results are based on Krasnoselskii fixed point theorem. As application, an example is given to
illustrate the obtained results.
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