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Abstract: In this paper, we formulate a mathematical model of vector-borne disease dynamics. The model
is constructed by considering two models : a baseline model of vector population dynamics due to Lutambi
et al. that takes into account the development of the aquatic stages and the female mosquitoes gonotrophic
cycle and an SI-SIR model describing the interaction between mosquitoes and human hosts. We briefly study
the baseline model of vectors dynamics and, for the transmission model, we explicitly compute the equilib-
rium points, and by using the method of Van den Driesshe and J. Watmough, we derive the basic reproduction
number R. Otherwise, thanks to Lyapunov’s principle, Routh-Hurwitz criteria and a favorable result due to
Vidyasagar, we establish the local and global stability results of the equilibrium points. Furthermore, we es-
tablish an interesting relationship between the mosquito reproduction number R, and the basic reproduction
number Ry. It then follows that aquatic stages and behavior of adult mosquitoes have a significant impact on
disease transmission dynamics. Finally, some numerical simulations are carried out to support the theoreti-
cal findings of the study.

Keywords: Mathematical model, mosquito population, gonotropic cycle, vector-borne disease dynamics, ba-
sic reproduction number, Lyapunov principle, numerical simulations.
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1 Introduction

Vector-borne diseases are central to social and economic concerns across the world. They are caused by
pathogenic germs (viruses, parasites, bacteria), conveyed and inoculated by vectors (mosquitoes, ticks, bugs,
sandflies, etc.), this vector having itself been infected on a viraemic host. Mosquitoes are the source of trans-
mission of the most endemic vector-borne diseases with very high death rates. They transmit to humans
malaria, dengue, Zika virus disease, yellow fever, West Nile fever also called West Nile virus, chikungunya,
etc. They are among the most dangerous animals in terms of the number of deaths they cause in the world.
Their ability to carry diseases and transmit them to humans results in thousands of deaths each year. It is
estimated that all of the major vector-borne diseases account for about 17% of the global burden of com-
municable diseases and more than 700000 deaths annually. The most affected areas are the tropics and the
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subtropics. In addition, it is noted that more than 80% of the world population lives in areas exposed to the
risk of at least one vector-borne disease, [1, 15].

The first mathematical contribution in epidemiology dates back to April 1760 with the model of Daniel
Bernoulli, [5, 10], on smallpox. Indeed, in a thesis from the Academy of Sciences in Paris, Bernoulli pre-
sented a model and his calculations about the smallpox epidemic, rife at the time, called “smallpox"”. Thanks
to the mathematical study of his model, Bernoulli demonstrated in front of the academy of sciences that
the generalization of smallpox, imported from the East, in the fight against smallpox, despite the dangers
it presented, would make hope pass from 26 years and 7 months to 29 years and 9 months. Other consider-
able contributions to mathematical epidemiology are the work of some authors such as W. H. Hamer, A. G.
Mc Kendrick and W. O. Kermack, [16]. However, the most important contribution to the body of epidemiol-
ogy is that of doctor Donald Ross, [28], who can therefore be considered as the founding father of current
mathematical epidemiology based on compartmental models. Compartmental models are ideally suited for
modeling vector-borne diseases. This consists in dividing the host population into as many compartments
as there are clinical states and connecting them to each other through flows of individuals via the different
levels of transfer. Ross worked on malaria and proposed the first compartmental model of the dynamics of
malaria transmission, [28]. The study of his model allowed him to demonstrate that it was not necessary to
eliminate all mosquitoes to eradicate malaria, but that it was simply necessary to lower their density below
a certain critical threshold. In 1957, Georges Macdonald, [24], improved Ross’ model, adding additional bi-
ological hypotheses. It follows important works on the mathematical modeling of malaria in order to better
understand the factors influencing its transmission. One of the greatest advancements in the modeling of
infectious diseases is the inclusion of acquired immunity proposed by Dietz, Molineaux and Thomas, [4, 11].
Some works have also included environmental effects, [12, 13, 29], the spread of drug resistance, [2, 22], the
evolution of immunity, [17], the treatment and impact of vaccination strategies, [3], as well as the duration of
the incubation period, [7].

Even today, vector-borne diseases are a fact and several mathematical models have been further proposed.
We can list among others the works of P. Zongo, B. Traoré, [32-36], F. Niyukuri, O. Koutou, [19-21] in the con-
text of the fight against malaria, the work of A. Abdelrazec et al., [1], S. Hossain et al., [15], in the fight against
dengue fever, etc. One of the greatest advances in the models proposed is the fact of taking into account the
growth dynamics of the vector, and in particular that of the immature stages. Indeed, the importance of the
immature stages is no longer to be demonstrated, due to the resistance of the eggs. In addition, the conditions
favoring the development of these eggs are numerous and very varied. This step is essential in the transmis-
sion of the disease because it constitutes the manufacturing plant of mosquitoes. Taking these immature
stages into account in mathematical models of vector-borne diseases is therefore an excellent asset for the
control of these diseases. In addition, one of the innovations is the inclusion of climatic factors in the trans-
mission dynamics of vector-borne diseases caused by mosquitoes. Indeed, the transmission cycle of these
diseases is closely linked to climatic variations. Typically, the female mosquito digests blood faster and feeds
more often in warmer weather, thereby, accelerating transmission. During this time, the parasite completes
its life cycle faster and thereby, increases its replication. It is then in view of the importance of these factors
in the evolution of these vector-borne diseases that many researchers have taken them into account in the
development of their models, [2, 12].

One of the recent contributions is that of A. M. Lutambi et al. [23] who took into account the constituent
stages of the gonotrophic cycle in the life cycle of mosquitoes and showed the major importance of these
stages in the life cycle of the vector. In this work, we are starting from this major innovation in order to deepen
the mathematical study on their proposed vector model and to couple it to a model of transmission of SIR-type
vector diseases. The aim is to mathematically study the impact of immature stages and the gonotrophic cycle
on the transmission dynamics of vector-borne diseases transmitted by mosquitoes. Indeed, mosquito eggs
are very resistant and therefore represent a reliable source of mosquito proliferation and consequently dis-
ease persistence. In addition, the immature stages as a whole constitute the generating phase of mosquitoes,
so, it is important to take an interest in them in order to know their real impact in the process of transmis-
sion of these infectious diseases. As for the gonotrophic cycle, it is essential because it brings together the
different classes of mosquitoes that promote the transmission and disease progression. Thus, it has a con-
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siderable impact on the dynamics of transmission and a knowledge of this impact could inspire targeted
control methods adapted to each class of mosquitoes in this cycle. Finally, taking into consideration these
two phases (aquatic and aerial) makes the model more realistic and could therefore make it possible to make
good predictions about disease spreading.

After this introductory section in which we present the general context, the interest and the goal pursued
by our work, section 2 is about the presentation of the vector model of A. M. Lutambi et al. [23], the math-
ematical study already done on this model and our contribution concerning this model. In this section, we
highlight the impact of the gonotrophic cycle materialized by the parameter rg, on the threshold parameter
Ry, governing the evolution of the vector density. Then, in section 3, we present our model of the transmission
dynamics of vector-borne diseases of the SIR type transmitted by mosquitoes, from which we do a mathemat-
ical study. In this section, we highlight the impact of the parameter Ry, on the parameter R that predicts the
course of the disease. In section 4, we present our numerical simulations results in order to corroborate the
obtained theoretical results. We conclude in section 5.

2 Baseline model of vector population dynamics: description and
main results

In this section, we briefly recall some significant results of the baseline model due to Lutambi et al. [19, 21,
23, 26, 37], that describe mosquito population dynamics.

2.1 Mathematical model description

A mosquito life cycle begins with eggs (E), which hatch into larvae (L) when conditions are favorable. The
larvae then mutate into pupae (P), from which adult mosquitoes emerge. After mating, female mosquitoes
disperse in search of hosts to bite ; We denote these mosquitoes by A,. By gorging themselves with blood, they
recover the proteins essential for the maturation of their eggs. Once engorged with blood, the female takes
refuge in a shelter until complete development of the eggs ; we denote these ones by A,. Then it searches
for a favorable place to lay eggs ; we denote the mosquitoes that lay eggs by Ay. After the laying, it leaves
again to feed and the cycle resumes. This feeding cycle is called the gonotrophic cycle, and repeats until the
female dies. We distinguish all of these stages because interventions may be applied to any one of them. This
information on our state variables is summarized in Table 1, [32, 33, 36].

Table 1: Definition of the state variables of the female mosquitoes model.

Variables Description
E density of eggs
L density of larvae
p density of pupae
Ay density of mosquitoes searching for hosts
Ay density of resting mosquitoes
Ao density of mosquitoes searching for oviposition sites

Initial conditions are : E(0), L(0), P(0), A(0), A.(0), Ao(0). The six subgroups have different mortality
and progression rates. Each subgroup is affected by three processes: increase due to recruitment, decrease
due to mortality, and development or progression of survivors into the next subgroups. Our model parameters
are summarized in Table 2.

The compartmental representation of the life cycle of female mosquitoes is given in Figure 1.
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Table 2: Description of mosquito model parameters.

Variables Biological description
b number of female eggs laid per oviposition
PE egg hatching rate into larvae
prL rate at which larvae develop into pupae
Pp rate at which pupae develop into adult (emergence rate)
UE natural egg mortality rate
ML, natural larvae mortality rate
ML, density-dependent larvae mortality rate
Up natural pupae mortality rate
Pa, rate at which host seeking mosquitoes enter the resting state
Pa, rate at which resting mosquitoes enter oviposition site searching state
Pa, oviposition rate
Ha, natural mortality rate of mosquitoes of searching for hosts
Ua, natural mortality rate of resting mosquitoes
Ha, natural mortality rate of mosquitoes searching for oviposition sites
Aquatic phase
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Figure 1: Compartmental representation of the different stages of growth of female mosquitoes.
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We thus obtain the following model of the complete life cycle of female mosquitoes:

dE
q - bpa,Ao ~ (g + pE)E,

dL
2 ~ PEE- (ur, +pr,L+pr)L,

dP
q - prL — (up + pp)P,
M

dA
dith =ppP +pa,Ao — (Ma, +Pa,)An,

dA
Ttr =paAn— (g, +pa)Ar,

dA
Tto = pa,Ar = (Ha, +Pa,)Ao-

We move now to the mathematical analysis of this model. In the following, we denote the boundary of D by
oD.

2.2 Mathematical analysis

2.2.1 Existence, boundedness and uniqueness of the solutions

Let
f1X) bpa,Ao - (ug + pp)E
E LX) PeE - (ug, + g, L +pp)L
L
P f3(X) prL - (up +pp)P
X(t) = A and f(X)= = ,
A},l fa(X) PpP +pa, Ao — (Ua, +Ppa,)An
A
° f5(X) pa,An = (ua, +pa)Ar
fe(X) pa,Ar = (Ua, +Ppay)Ao
then when the initial conditions are (t(, Xp) € R+ x RS, system (1) can be written as follows:
dax(t)
—= = f(X(1)),
= @) o

(to, Xo) € Ry xRS,

Theorem 2.1. (Existence and positivity of solutions) The Cauchy problem (2) admits a unique maximal so-
lution ([0, T], X) and when X, > O, then this solution is positive (X > 0, V t € [0, T]).

Proof. Indeed:

Function f is of class €*° so it is of class ¢, therefore it is locally Lipschitzian on R®. We deduce the existence
and the uniqueness of a maximal solution ([0, T], X) to the Cauchy problem (2). In addition, as f is ¥*° then
this solution is also €.

We show by using the absurd method that X > 0 when X; > 0.

Let us .#(t) = min { E(t), L(t), P(t), Ap(t), Ar(t), Ao(t) } and assume that there exists t; € ]0, T[ such as :

///(t1)=0and///(t)>0, Vte[O,tl[.
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If .#(t) = E(t),soVt € [0, t1[, E(t) > 0and Aq(t) > 0. Consequently, according to the first equation of system
(1), we have :

dE
E > _(HE +PE)E,

which gives by integration between 0 and ¢4,
E(ty) > E(O)e—(H£+PE)t1 .

So
0 = E(t;) > E(0)e”#=*Pp)ti 5 ¢,

which is absurd. So thereisno t; € ]0, T[ such as .Z(t{) = 0.
We obtain the same contradictions when .Z(t) = L(t), .#(t) = P(t), .#(t) = Ap(t), 4 (t) = Ac(t), .4 (t) = Ao(0).
Thus, when X, > 0, the solution X is strictly positive (X > 0, Vt € [0, T)).

O

For the rest, we state the following hypothesis, [32, 33, 36] :
(H1) :It is assumed that the number of female mosquitoes that lay eggs (Ao) does not exceed a number noted
C,ie

Vit=0, Ag(t) < C. 3)
Let now :
M=E+L+P+Ay+Ar+Ao, K=bps,Cand m=min{pug, ur,, Up, Ua,» Ha,» Ha, } -

Proposition 2.1. Under hypothesis (H1), the unique solution of system (1) is bounded. Moreover the domain
Dy containing it, defined by :

E
L

Dy = Pl cge OSE+L+P+A,,+A,+A0S5
Ah m
Ay
Ao

is positively invariant and attracts all positive orbits in R,.
Proof. By taking the sum of the six equations of system (1), we obtain :

M'() = bpa,Ao - (MEE + (up, + Mp,L) L+ upP + pa, Ap + pua, Ar + payAo) .

So
M () < bpa, Ao — (MEE + pur, L + upP + g, Ay + Ha, Ar + pa,Ao) -
We then have
M () < bpa, C - min {pg, pr,, Up, Ma,» Ba,» Ka, } M(D).
Consider
K =bpy,C and m =min {ug, p,, Up, Ma,» Ma,> B4, | »
S0

M (t) <K - m M(0).

First, let’s solve the equation
Ni(t) = K — m Ny(b).
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Moreover, by applying the constant variation formula between ¢ and ¢y, a particular solution is given as fol-
lows:

O CIORE I R

Therefore, Ny — % as t — +oo and we obtain Ny(t) < % By applying the principle of comparison, we
obtain : X

ltlglm sup M(t) < g
Therefore, 0 < M(t) < £, then M is bounded and T = +oo.

m

Suppose now that
K
M(t) > g

we then have
M@ <K-mxX,
m
i.e
M (¢ < 0.
In this case the mosquito population is decreasing and as the domain is compact, thus all the solutions remain
there. O

2.2.2 Existence and stability of equilibrium points

Proposition 2.2. Model (1) has exactly one equilibrium point on oDy given by X; = (0, 0, 0, 0, 0, 0). We label
X;, the mosquito-free equilibrium point.

Proof. Setting the right side of system (1) to zero, it is clear that X; = (0, 0, 0, 0, 0, 0) is solution, therefore a
point of equilibrium. O

In the following, we will calculate the vector reproduction number R,. This is the average number of female
mosquitoes produced by a single female mosquito during its lifespan without any influence of density. We
will use the next-generation matrix for computing this rate.

Letx; = E, x =L, x3 =P, x4 = Ap, x5 = Ay et xg¢ = Ag be the respective densities of mosquitoes in
compartments 1, 2, 3, 4, 5and 6, then X = (x1, X2, ..., XG)T. Consider F;(X) the rate of new recruitment (egg
laying), V{ (X) the transfer rate of mosquitoes into a compartment i and V; (X) the transfer rate of mosquitoes
out of the compartment i and let V;(X) = V; (X) - V{(X). System (1) can be written :

i ()= V(X), i=1, 2,..., 6.
dt
F and V are then given by :
bpy, (Mg + pE)E
0 (e, +ur,L+pr)L - pgE
(up + pp)P —prL
g and V - Mp +pPp L

(M4, +Pa)AR — ppP - pa,Ao
(Ma, +pa)Ar —pa,An

o © O O

(Ma, +Pag)Ao —pa,Ar
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We calculate Fj; = 9%i and V; = Vi to obtain :
aX]' X aX]' X
0 0
0 0 0 O O bpy, UE + PE 0 0 0 0 0
0 0 00O 0 —-PE ML, +PL 0 0 0 0
0 0 00O 0 0 -pL Up +pp 0 0 0
F = and V =
0 000 O 0 0 0 -pp Ha, +Pa, 0 P4,
0 0 00O 0 0 0 0 —Pa, Ma, +Pa, 0
0 0 00O 0 0 0 0 0 —pa, Ma, +Pa,

The next-generation matrix FV ! is given by :

=
o
=
)
=
w
=
IS
=
G
=
N

O O O o O
S O O O O
oS O O © O
o O O o O
S O O O O
S O O © O

with:

pj >
b
1}_1 (Hf’fpf
Pa;
1- _PA
1;[ (.UA,- +PA,>

)
- H (HAlpAil)A,-)
(%)

J , wWhere j=P,Ap,Ar,Ao and i=h,1,0;

G
o1 (555

J , Where j=Ay,Ar,Ap and i=h,1,0;

1- 1;[( Pa; )
TGt
- I;I(VA.ppr,>
(43)
('

Pa; )
Ha; T P4;

, where j=E,L,P,Ap,Ar,Ap and i=h,r,0;

K1 =

Ky = , Where j=L,P,A;,Ar,Ap and i=h,r,0;

, where j=A;,Ag and i=h,r,0;

, where j=Aqg and i=h,r,0.

Il
I
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(ii)
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Thus :

oI (3%5)

Ry =p(FV Y =k, = ! 5 , where j=E,L,P,Ay,As, Ao and i=h,r,0. (%)
1- _ A
; (VAi +PA,~>

Where p(F V1) is the spectral radius of the next-generation matrix FV 1.

Remark 2.1. .
—  The probability that a mosquito in class j survives and move on to the next stage is y'li]p .
j T Pj
— Thevaluerg = H (piA) €[0,1], i=h,r,0,istheprobability that a mosquito survives the feeding
o \Ha; 1 P4
cycle.
— Thevaluer, = bH <y lfp ) , j=E,L,P,isthe probability that a mosquito survives in the aquatic stage.
; j T Fj
j
So
Tal
R, = L& (5)

1-rg
Although the inter-specific competition (given by pr, L) of larvae affects the mosquito population, Ry does not
depend on this quantity.
Theorem 2.2. When R, > 1, model (1) has a mosquito persistence equilibrium solution

X =(E",L",P", A}, Ay, Ap), whose components are given by :

B bpa,Ao - +pL)(Ry - 1) P pLL’

_FE+PE’ UL, ’ _IJP+PP’
* * * A* * *
Ah _ ppP va , Ar _ pAh h and AO - pArAr ,
(Ma, +Pa,)B1 Ha, +Pa, Ha, + P4,
where
_ Pj .
By =b]] (T +pj) pour j=E, L, P, Ay, Ar, Ao. ©)

j

Proof. When we set the right side of system (1) to zero, the resolution gives us the values of
E', L', P", A}, Ay and Ay given. O

Theorem 2.3.
(i) The mosquito-free equilibrium X(*) is locally asymptotically stable when Ry < 1.
(ii) The mosquito persistence equilibrium X} is locally asymptotically stable when R, > 1.

Proof. For the demonstration we proceed as follows :
According to Varga’s theorem [38], the mosquito-free equilibrium X is locally asymptotically stable when
Ry < 1.
For the study of local stability of the equilibrium point of persistence of mosquitoes X}, we proceed in much
the same way as in [23, 27, 29, 30]. We determined the Jacobian matrix of system (1) about this point and its
characteristic polynomial. Then, by using the Routh-Hurwitz criterion [21, 23, 26, 27, 30], we show that the
eigenvalues of the Jacobian matrix have their real parts strictly negative.

(]

For the rest, consider

ay = U+ PE, A2 = U, +PL, A3 = Up +Pp, A4 = YA, +Pa,, A5 = Pa, + PEand ag = Pa, +Pa,-
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Theorem 2.4. The mosquito-free equilibrium Xy, is globally asymptotically stable when Ry, < 1.
Proof. Let the following Lyapunov candidate :
V(Ey L) P) Ahy A?’y AO) = BlE + BZL + ﬁ3P + ﬂl}Ah + BSAr + ﬁ6AOy

with

B = PEPLPpP AL A, 5= PLPpPALA, _ PpPa,Pa, \ = Pa,PA4, Bs = PA and Be =
a1a2a3a4a5a6’ (12(13(1405(16’ 3 (13614(15616, a4a5a6’ > asdg

Let’s pose X = (E, L, P, Ay, Ay, Ag)T € R®, we then have :
V(X3) =0, and vV X € RS\ {xg}, V(X) > 0.

On the other hand

av
ar P (bpa,Ao — a1E) + B, (pgE - (az + uy,L)L) + B3 (oL L - asP)

+B4 (opP + pa,Ao — asAp) + Bs (0a,An — asAr) + Be (pa,Ar — agAo)
By developing and reorganizing, we obtain :

A~ (Baps - Brav)E + (Bypr, - Baaa)L + (Bapp - B3a5)P + (Bspa, - Baai)Ay

+(Bspa, — Bsas)Ar + (bB1pa, + Bspa, — Beas)Ao — Bapr,L*
Then,

Bapg - Brar =0, B3pr, —Baaz =0, Pupp-PB3as =0, Bspa, —Psas=0 and Bepy, - Psas = 0.

Also, we have :
PAaLAPA,
(HAh +PAh)(IlA, +pPa, )(HAO +PA0)
((IlAh + PAh)(HA, + pA,)(HAO + PAO) —PAaPALA,

bB1pa, +Bapa, —Bsas = Bi

= B;- (n, +Pa)a, +pa)fa, +Pag)
- B - %
()
bB1pa, +Buapa, —Bsds = %\;‘1)
So
% Bl(j;{v 1)A0 ‘ﬁzlleLz.
Thereby,

when R, < 1, we then have % <0.

Therefore V is a strict Lyapunov function when Ry < 1.

Finally
dV *
W(X) —0<:>X—X0.

According to Lasalle’s invariance principle [20, 21, 30], X(*) is globally asymptotically stable when R, < 1. [

Theorem 2.5. The mosquito persistence equilibrium point X is globally asymptotically stable when R, > 1.
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Proof. LetX = (E,L,P, Ay, Ar, Ao)T € R® and consider the following function :

U(X)=15—15*—15*1n§+d1 <L—L*—L*ln#) +d (P—P*—P*lng)

+d3 Ah—AZ—A;llnA—f +d, (A,—A;*—A:ln’ii> +d, (AO—AB—ABInA—?>,
A} A; A

with d d
a aja ajaa a aza
1 , dy = 172, d= = 14243 ds = 3Uy and dS _ 434445

dl = — 3 ) 4
PE PEPL PEPLPP Pa, PAPA,

We then have :
UX})=0, and V X € R®\ {X}}, Ux) > 0.

Moreover, we obtain :

au E' L P’
T ( - f) (bpa,Ao — a1E) +d; (1 - f) (ogE - a2L) + d; <1 - ?) (oLL - a3P)

A* A* A*
+d3 1—7h (ppP+pA0A0—a4Ah) +d4 1-=F (pAhAh—ag;Ar) +d5 1-20 (pAyA,—a6A0) .
A, A Ao

Taking into account that
bpa,Ao = aiE", pgE = ayL”, prL” = asP’, ppP’ +pa, Ay = asAp, pa,Ap = asAy and py Ay = agAy,

we obtain

au 1 . EL* LP* PA, A,A; AA, AoE
e N ol - - -
dr = “bPacAo ( sz> ta (6 LE" PL" AP AA, AcA,  EA,

. b 5 AoA;
+d3pa,Ao (3 - Andr _Arfg Ao h> .

AL AgAy AAY
The first term is automatically negative when R, > 1. Furthermore, since the arithmetic mean exceeds the

geometric mean, it follows that the second and third terms are also negative. Hence % < 0, so U is a strict

Lyapunov function when R, > 1.

On the other hand
dU *
E(X) :O<:>X:X1.

According to Lasalle’s invariance principle [20, 21, 27, 29], X} is globally asymptotically stable when R, >
1. O

Remark 2.2. It emerges from this study that the asymptotic behavior of the model is linked to the threshold
parameter Ry. Thus, if this threshold is less than or equal to one, then the mosquito population converges towards
a state of extinction, while if it is strictly greater than one, there is a proliferation of the vector population,
which demonstrates the importance of taking into account the complete life cycle of female mosquitoes in the
formulation of mathematical models of vector-borne diseases. It is then clear that Ry is a good vector density
control parameter.
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2.2.3 Impact of the gonotrophic cycle on the vector reproduction rate Ry

We have obtained in (5) the relation Ry = 1r“ rf .
—Tg

Let study the function R, with respect to the unknown rg € [0 ; 1[. We then have :

dRy _ T >0 so Ry isincreasing from [0;1[ to [0 ;+oo.
drg 1-r1g

Moreover
O0<Ry<sl=0<rgs

1 1
>1= <rg<1.
ra+1andiRV 1—:>raJrl rg<1

Theorem 2.6. We have the following results :
(i) IfO=<rg <
stablle.

@ii) If — < rg < 1then Ry, > 1 and the mosquito persistence equilibrium point X is globally asymptotically

stable.

then 0 < R, < 1 and the mosquito-free equilibrium point Xy is globally asymptotically

ra+1

Remark 2.3. This study allowed us to highlight the impact of the gonotrophic cycle materialized by the param-
eter rg on the vector reproduction rate Ry. The gonotrophic cycle is then of major importance in the life of vector;
it is therefore essential to take it into account in the process of controlling the vector density and the fight against
diseases transmitted by mosquitoes.

3 About the transmission dynamics model

3.1 Mathematical formulation of the model

In this section we build a model of the dynamics of vector-borne diseases transmitted by mosquitoes. We took
into account the compartment eggs (E), larvae (L) and pupae (P) of aquatic stage. Then, the compartments of
healthy mosquitoes searching for hosts (4;;), of resting healthy mosquitoes (Ars), and of healthy mosquitoes
seeking to lay eggs (Ags), of healthy mosquitoes gonotrophic cycle. Otherwise, the compartments of infec-
tious mosquitoes searching for hosts (Iy), of resting infectious mosquitoes (4,;), and of infectious mosquitoes
seeking to lay eggs (4;), of infectious mosquitoes gonotrophic cycle. Finally, the compartments (Sg) of sus-
ceptible humans, (Ig) of infectious humans and (Rg) of recovered humans, representing humans. Due to
their short lifespan, we do not consider the class of recovered mosquitoes in the construction of our model.
This information about our state variables is summarized in Table 3. The initial conditions of the model are :

E(0), L(0), P(0), Aps(0), Ars(0), Aos(0), Ai(0), Aoi(0), Iv(0), Sy(0), In(0), Ry (0).

We also have the following definitions :

— the population of mosquitoes searching for hosts to take a blood meal for egg maturation noted Ay, is
defined by : Ay, = Aps + Iy,

— the population of resting mosquitoes noted A, is defined by : Ay = Ays + A};

— the population of mosquitoes seeking to lay eggs noted Ay is defined by : Ag = Aps + Ag;-

The total population of adult mosquitoes denoted Ny is defined by :

NV =Ahs+Ars +A05 +Ari+AOi+IV =Ah +Ar +A0.
The total population of humans denoted Ny is defined by :
NH =SH+IH+RH'

We now give the following definitions :
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Table 3: Definition of the state variables of the transmission model.

Variables Biological description

E density of eggs

L density of larvae

P density of pupae
Ay density of healthy mosquitoes searching for hosts
Ars density of resting healthy mosquitoes
Aos density of healthy mosquitoes seeking to lay eggs
Ay density of resting infectious mosquitoes

Api density of infectious mosquitoes seeking to lay eggs
Iy density of infectious mosquitoes searching for hosts
Su density of susceptible humans

Iy density of infectious humans

Ry density of recovered humans

— By is the rate of mosquito bites on human hosts per unit time,

— By is the rate at which a human is bitten by mosquitoes per unit time,

— ayy is the probability that contacts with a human is infectious for a mosquito,

- apy is the probability that contacts with a mosquito is infectious for a human.

The rate of transmission of the disease from mosquitoes to humans that we note Syy is defined by Syg =
Bvayy and that of transmission of the disease from humans to mosquitoes that we note Sgy is defined by

Brv = Buany.
Thus, the force of infection for mosquitoes A that we note Ay is defined by :

I ayyl
Av(Iy, Iy) = BVHFZ - BVN% _

We recall that p,, is the rate of female mosquitoes that rest after taking a blood meal.
The rate of uninfected mosquitoes after a blood meal that we note A}, is then defined by :

Ay, Iv) = pa, - AvUg, Iy).
The force of infection for humans induced by infectious mosquitoes that we note Ay is defined by :

I agyl
Al Iy) = By - = ALY

In addition to the parameters listed in Table 2, we use the parameters from Table 4. When a mosquito in the

Table 4: Description of transmission model parameters.

Variables Description
Ay constant recruitment of susceptible humans
Uy natural death rate of humans
VH rate of infected humans

Ajps compartment bites a human, it has a probability ayg to be infected. Two scenarios can then arise :

— if not infected, it follows the cycle Ay, Ars, Ags, Aps of healthy adult mosquitoes. Indeed, it passes to
class Ays of healthy mosquitoes which rest, then class Ags of healthy mosquitoes which lay and finally it
returns to class A, of healthy mosquitoes searching hosts and so on,

- ifitisinfected, it integrates the cycle 4,;, Aoi, Iy, A,; of infected adult mosquitoes. In fact, it passes into
compartment A,; of infected mosquitoes which rest for the maturation of eggs, then compartment Ag;
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of infected mosquitoes which lay eggs and finally it integrates compartment I, of infectious mosquitoes
searching for hosts and the cycle resumes.
When a susceptible human is bitten by an infectious mosquito, it may be infected with a probability agy.
Once a human is infected, it passes after a certain time to class Iz of infectious humans and is in turn capable
of infecting mosquitoes and so, the disease spreads. Some infected humans acquire immunity to the disease
after a certain time, they then pass to class Ry of recovered humans of the disease. The interactions between
humans and mosquitoes are summarized in the compartmental representation given in Figure 2, [32, 33, 36].

1254
Ry Ars — Ha, Mp
: pr
2" HA;, Q
; Hay <— Aos < Q 2
< P,
~. 4o _
Sl -
Mg ~— - - - - - - - - - - - - — oo 1\7\7:\ ffffff > L — f‘
A \\\\ y 5’?
)
2
’él: Ha, «<— Ap; 04 -\Q \\\\o\\ E
T - RS
9% I \ AN
|
HH a- - - - - : > A, — Ma, E —— HUE
L Pa,
Y | x
= | )
=| Y
Ha, bpa,

Figure 2: Compartmental representation of the interaction between humans and mosquitoes.

The solids arrows linking the compartments show the passage from one compartment to another, the dotted
arrows between the compartments of humans and those of mosquitoes indicate the direction of infections,
the arrow of Ag indicates recruitment at the human level and the other arrows represent natural mortalities.
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From this diagram we obtain the following disease transmission model :

% = bpa,(Aos + Aoi) — (Mg + pE)E,

% =peE - (u, + ur, L +p1)L,

% =prL - (up +pp)P

dﬁfs =ppP +pa,Aos - ("Ah + vy, 1v) + Ay U, IV)) As:
dgtrs = Ay, Iv)Ans — (Ua, + pa)Ars,

d;‘?s = pa,Ars - (Ua, + Pag)Aos,

d;tri = Ay, Iv)Aps + pa,Iv — (Ua, +pa,)Aris
dﬁtol' = paAri = (g, +pag)Aois

% = pagAoi — Ma, +pa)lys

ddif =Ag - AgUy, Iv)Sg — uuSw,

% = Au(Ug, Iv)Sk - (vu + ur)lg,

dRy

ar vl - uuRy.

3.2 Mathematical analysis of transmission model

3.2.1 Existence, boundedness and uniqueness of the solutions

For the rest, the initial conditions being (ty, Xo) € R+ x R12, we write system (7) as follows :

With :

X (t) = h(X(0),
(to, Xo) € Ry x R12,

X()=(E, L, P, Ays, Ars, Aos, Ay, Aoi, Iv, Su, In, Ry)

7)

)

Theorem 3.1. (Existence and positivity of solutions) The Cauchy problem (8) admits a unique maximal so-
lution ([0, T], X) and when Xo > O, then X > 0, V t € [0, T].

Proof. Indeed,

As his of class € so it is of class ¢!, therefore locally Lipschitzian on R'?, we deduce from it, the existence
and uniqueness of a maximal solution of the Cauchy problem associated with system (7) and relative to the
initial condition (to, Xo) € RxR2. Moreover h being of class ¥, we deduce that this solution is also of class

€.
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The proof of the positivity of X > 0 when X, = 0 is done in a similar way to that of Theorem 2.1.

Consider
N=E+L+P+Aps+Ars+Ags+Ar +Agi+Iy=E+L+P+Ah+Ar+Ao, K=Dbpy,C

and
n = min {HEi HLis Hps Ha,s HA,» HAO} .
C being the constant defined in (3) under the assumption (H1).

Proposition 3.1. System (7) admits a unique solution and this solution is bounded. Moreover the set

O<E+L+P+Aps+Ars+Ags +Ay+Ag+Iy < K,
Dyy = € R}?

A
" OsSH+IH+RHsﬁ—Z

is positively invariant and attracts all the positive orbits in R..
Proof. By taking the sum of the nine (9) first equations of system (7), we obtain :

N'(t) = bpayAo — (MEE + (pp, + M1, L) L+ upP + pa, Ap + fa, Ar + pa,Ao) -

So
N'(t) < bpayAo — (MEE + Up, L + UpP + fa, A + Ha, Ar + UayAo) -
We then have
N'(O) < bpa,C - min {pg, ur,, Up, Ka,» Ha,» Hao } N.
As
K =bpa,C and n=min{pg, pr,, up, Ha,» Ha,» Mao | »
then ,
N (t) < K-nN.
Let us solve the equation ,
N,(t) = K - nN,.

Thanks to the constant variation formula between ¢t and ¢(, a particular solution is given as follows :
N0 - o+ (Watto) - X ) )

Therefore, N, — K when t — +oco0 and we obtain N;(¢) < %

By applying the principle of comparison, we obtain :

S|

lim supN(t) <
t—+oo
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We therefore conclude that K
0<N(t) < o

so, N is bounded and T = +oo.

Suppose now that
K
N(t) > Ey

we then have
N©<K-nxX,
n
ie
N'(®) <o.
In this case the mosquito population is decreasing and as the domain Dyy is compact, we conclude that all
the solutions remain there.

On the other hand, by taking the sum of the last three equations of system (7) and by simplifying, we
obtain the differential equation
Ny =Ay - pugNy.

Using the constant variation formula between t and tg, a particular solution is given as follows :

Ng(t) = /LH + (NH(tO) — AJ) o Hn(t=to)
Hu MH

Therefore, Ny — ;ﬁ when t — +oco0 and we have :
H

0 < Ny(t) < A—H
HH

So Ny is bounded and T = +oo.
Then Dyy is bounded and we therefore deduce the global existence of the solutions in [0, +oo].

On the other hand, if we assume that Ng(¢) > A—H, we have Ny () < Ay — pp x % i.e Ny(t) < 0.

H
In this case human population would be decreasing and as the domain is compact, thus all the solutions
remain there. O

3.2.2 Existence and stability of equilibrium points

Theorem 3.2.

(i) When Ry < 1 then system (7) admits in domain Dyy a disease-free equilibrium point without mosquitoes

Xy =(0,0,0,0,0,0,0,0,0,S},0,0), with Sj; = %H
H

(ii) When R, > 1 then system (7) admits in domain Dyy a disease-free equilibrium point with mosquitoes
X; = (E*, L*’ P*’ A;IS’ A:S’ Aas’ O’ O’ O; S;—]’ O’ O)’

where . . .
- prOAO’ "= (UL, +pr)Ry - 1), P prL A - ppP Ry ’
ME +PE ML, up +pp (Ma, +Ppa,)B1

* A* * A* *
A= Pl pe _ PAAr g SHzAJ’
Ha, + P4, Hao T P4, HH

Proof. Since there is no disease then Ay (I, Iy) = Ag(Iy, Iy) = 0 and A (Iy, Iy) = Pa,-
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(i) Letpose h(Xg) = 0, we then obtain a unique equation Ay — uySy = 0. We then have Sy, = ;ﬁ
H

(ii) Setting the right side of system (7) to zero and solving this equation gives us the values of E*, L", P",
A}, Ars, Ags and S.
O

Remark 3.1. The disease-free equilibrium point X;, represents the case where there is no disease and the area is
completely devoid of mosquitoes. This case is difficult to obtain in most areas where malaria is intensive due to
the difficulties in completely eradicating the mosquito population. The disease-free equilibrium X represents
the case where the mosquito population exists but there is no disease. Therefore, in this paper, we focus our
study on the XI equilibrium point because it is more biologically realistic [20, 32, 33, 36].

In the following part of the section, we determine the basic reproduction number. This number noted R is
defined "heuristically" as the average number of new cases of infection, generated by an average individual
(during his period of infectivity), in a population entirely made up of susceptible. Mathematically Ry is de-
fined as the spectral radius of next-generation matrix [37]. Consider the compartments carrying the disease
A,i, Aoi, Iy and Iy, and adopt the notation x = (4,;, Ag;, Iy, I). We have the following vector functions

IgAp
ﬁVHTHS pa v —(ua, +pa)As
0 Pa,Ari— (g, +pay)Aoi
Flx) = et V(x) =
PacAoi — (ua, +pa )y
I
Buv vSH ~(vg + u)lg
Ny
The next-generation matrix is —Jacs(X})(Jacy(X})) " where
00 O BL*A%
Sy
* 0 0 0 0
Jacs(X;) = and
0 0 0 0
0 0 Buv 0
—(ua, +pa,) 0 Pa, 0
. pa, ~(Ma, +Pa,) 0 0
Jacy(Xy) =
0 Pao ~(ua, +pa,) 0
0 0 0 ~(yg + ug)
We then have .
o o o P VH’L}h
K;S,
* *an 0 0 0 0
~Jacy(X1)(Jacy(X)) ' =
0 0 0 0
M, My M; 0




DE GRUYTER Mathematical modeling =— 223

With
Mlsz,PAORvﬁHV Mo = PacsRPuy . asaeRvBuv g K, =

+ .
0405(1631 ’ 2 04050631 ’ 3 04050631 "HTHH

We recall that we previously posed :
a; =MUg+Pg, A2 =My, +Pr, A3 =Up+Pp, Ay =HUa, +PA,, A5 =HUHa tP4a,, Qg =Ha, tPA4,-

BvaM1A},

The eigenvalues of ~Jacs(X})(Jacy(X]))* are 0 and s
19y

The basic reproduction number is given by :

* S MA*
Ro = p(Jacs K acy () 1) = o[ PR
19

By successively replacing M1, A}, P*, L" and Sy by their expressions, we obtain :

Ro = \/alaﬁﬂHﬁVHﬁHvﬁﬁ(va -1)

bpgpa,ML,asB1K1 Ay
Whether 5 5
_aiayppPvePavRy
bpepa, i, asB1K1Ay’
We then have :

:RO =V K(j{v - 1).

We find that this number R is closely related to the vector reproduction rate R, .

Theorem 3.3. When R, > 1, system (7) admits in Dyy an endemic equilibrium X, defined by :

* *k

*k * Kk Kk Kk *k *x *k K,k * ok *k *k
X2=(E ’L ,P ,Ahs,ArS9AOS’ Ari’AOi’ IV’ SH’IH, RH)

where : . ” o
E** _ prO (AOS +A0i) L** _ aZ(RV - 1) P** _ /L
a ’ ML, ’ as ’
o asagAgRvppP”" o PayAnsAn — HuBvily A o paArs
Ahs - *x 9 AI’S = A ’ AOS = >

asasasBiAy +pa,pauuaBvaRvly asAy as
A = PaIv An + HuBvaly Ap AT paAn = Pa,PaMuBvaRV Iy Ay

n (15AH ’ oi deg » v (1405(16B1AH ’

o Ag—-Kily o 2_ - I
sy An—Kaly 61405616131/111(510 1) and R} = Y01H

Mu asasagB1KiRG +pa,pa,MaBraRy MH

Proof. When we set the right side of system (7) to zero, the resolution gives the values of

*k

*k *k Kk *k *k Kk *x *k Kk *k *k .
E™, L™, P, A}, Avs, Ane, Ari, A, Ty, Sy, Iy and Ry given. m

Theorem 3.4. The disease-free equilibrium point with mosquitoes X is locally asymptotically stable when
Ro < 1 and unstable when Rq > 1.

Proof. Indeed, from Varga’s theorem in [38], the disease-free equilibrium X is locally asymptotically stable
when R = p(-Jacs(X])Jacy(X])) ™) < 1. O

For the study of the global stability of our transmission model, we state the following fundamental theorem
[8, 32, 33, 36, 39].
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Theorem 3.5. Consider the following ordinary differential equation :

X =f(X); X e R",
)
Y =g(X,Y); Y e R™,

Let (X", Y") be an equilibrium point for system (9) i.e.,
f(X)=0 and gX",Y") =0.

If system (9) satisfies the following assumptions :
- X" is globally asymptotically stable for the subsystem X = f(X),
— Y is globally asymptotically stable for the subsystem Y = g(X", Y),

then (X", Y") is locally asymptotically stable for system (9).
Moreover, if there exists a positively invariant compact Q C R" x R™ containing (X", Y") in its interior, then
(X", Y") is a globally asymptotically stable equilibrium for the restriction from system (9) to Q.

For the application of Theorem 3.5, to our transmission model (7), we rewrite it in two subsystems as follows:

% = bpa,(Aos + Aoi) - (g + pE)E,

% =peE - (u, +pr,L+pr)L,

% =prL ~(up +pp)P

A8t poP s pagos ~ (a, + Ayl 1) + Ayl 1)) Aps, (S
dgtrs = AyUg, Iy)Aps — (Ua, +pa)Ars,

d’sl?s =paArs — (Ua, + Pag)Aos,

d&“t’i = Av st T)Ans + paIv = (Ua, +pa)A s,

dAoi

dr - Pa,Ari — (Ua, +Pag)Aois

dl
T;/ = payAoi — (Ua, +pa v,

das

TtH = Ag = Ag(w, Iv)Sy — UaSH,

dl

Dt U, 1S~ G+ )l (52
dRy

ar - vely - MuRg.

By adding the compartments A;¢ and Iy, Ars and A,;, Ags and Ag;, then taking into account the fact that
Aps + Iy = Ap, Ars + Ay = Ar, Ags + Agi = Ao and Ay(Ig, Iy) + Ay(Ig, Iy) = pa,, this model becomes the
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equivalent model (10):

% = bpa,Ao - (Mg + pE)E,

% =peE - (g, +ur,L+p1)L,

% =prL - (up + pp)P

% =ppP +pa,Ao— (Ha, *+Pa,) A, (51)

% = pa,An — (Ha, +pa)Ar, (10)
% = pa,Ar = (Ua, +pay)Ao,

dditH = Ay~ AuUs, 1v)Sk - i,

ddil{f = ATy, Iv)Su — O + w1, (52)

dcl%H =vlg ~ MuRy.

If we replace Ag(Iy, Iy) by its expression in subsystem (S2), it becomes :

dSy

_ 1. BavlySu
at ~ M

NH _HHSHy

dly _ BuvlvSy _
ar - 7NH (va + umly, (S2)

dR
TtH = vuln — uHRH.

Subsystem (S1) is the same as system (1) which we wrote previously in the following way :

X =f(X).
On the other hand, by posing :
gi(X,Y) Ap - L%}‘;S*’ - UuSH,
SH
Y=| Iy and gX,V)=| &X,Y) |-= ﬁHl]l\{VSH ~ G + u) s
Ry H
&1 Yyuln — uaRE
subsystem (S2) can be rewritten as :
Y =g(X, 7).
Thus, system (10) can be rewritten:
X = f(x),

Y =gX,Y).
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Consider
Su
Dy = Iy GR3|OSSH+IH+RHSf
Ry
Let:
Dyy = Dy x Dy,
then

X5=X",Y") e Dyy, withX" = (E",L", P, A}, Ay, Ag)and Y* = (S, 0, 0)

is a disease-free equilibrium with mosquitoes of system (10). By Theorem 2.5, X" is globally asymptotically
stable for (S1) in Dy when R, > 1.
We obtain from subsystem (S2), the following limit system Y' = g(X", Y) :

dSy _ BuvlySu _
dt =Ag Ny yHSH’

dly _ BuvIySu _
dr - TH (va + uply, (S3)

R
7dtH = vuln — uuRH.

Thus, according to Theorem 3.5, to show that X3 is globally asymptotically stable for system (10) in Dy when
Ry > 1and Ry < 1, just show that Y is globally asymptotically stable for (S3) in Dy when R < 1.

Theorem 3.6. The equilibrium point Y" is globally asymptotically stable for system (S3) in Dy when R < 1.
Proof. Consider the following function :

V(Y) = (sH -Sy-Syln %) + Iy + Ry with Y = (Sy, Iy, Ry)T € R>.

H
So, we have :
V(Y")=0 and vV Y ¢ R3\{Y*}, V(X) > 0.
On the other hand
av _ dSy  dly dRy
dt_<1 SH> e "t *dt
We replace d;f % nd —* dRH by their expressions to get

av S} IyS IS
ar (1 - i) (AH - ﬁHII/\IiZH - HHSH) + L”I/\I;{/ ® — Oy + Iy +vul - uaRy.

As I, = 0 therefore

av S}
— = (1-"2 ) (A5 - usSn) - uuly - uaRy-
dt SH

Taking into account that
Ax = UaSh,
we obtain :

av S} .
q (1 - ﬁ) (HHSH —HH5H> —uulg - upRy.

By rearranging, we obtain :

v Sy - Sp)?
dr =_NH7( HSH 1) = Muly — PRy,
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From where av
vV YeR3\ {Y} Zrn<o.

So, V is a strict Lyapunov function when Ry < 1.
Finally

dV *
E(Y)—O@Y— Y;.

According to Lasalle’s invariance principle [20, 21, 27, 29], we deduce that Y is globally asymptotically stable
for system (S3) in Dy when R < 1. O

We have just shown that Xj is globally asymptotically stable for system (10), which allows us to do the fol-
lowing conclusion:

Theorem 3.7. The disease-free equilibrium with mosquitoes X is globally asymptotically stable for system (7)
in Dyg when Rg < 1.

We can write the endemic equilibrium point of system (10) as follows :
X, =X, Y"), withX" = (E",L", P", A}, Ay, Ag) and Y™ = (Sy, If, Ryy).

By Theorem 2.5, X~ is globally asymptotically stable for (S1) in Dy when R, > 1.
We obtain from subsystem (52), the following limit system Y = g(X*, Y) :

dSy _ ,  BuvlySu _
ar Ag TH MuSH,

dly _ BavlySu _
dRy

dr - Yuln — UnRy-.

So, to show that X, is globally asymptotically stable for system (7) in Dy when Rg > 1, just show that Y™ is
globally asymptotically stable for system (S4) in Dy when Rq > 1.

Theorem 3.8. The equilibrium point Y"" is globally asymptotically stable for system (S4) in Dy when Rg > 1.
Proof. Consider the following function :
V(Y) = Ny -Ng - Ny In g’i with Y = (S, Iy, Rp)T € R?,

H

so we have
V(Y™)=0 and V Y ¢ R3\{Y"}, V(Y) > 0.

On the other hand "
av. _(, _Ny ) dNu
dt Ny ) dt’

which gives :

dv Ny - Ny dN
W(Y)= HTHH(AH_VHNH) because TtH =AH—}1HNH.
We have
Ag = upNy,
which allows us to obtain : X
dv .. (Nu-Ny)
E(Y) = _HHT-
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From where av
V Y eR3\ {Y} Zrn<o.

Then, V is a strict Lyapunov function when R > 1.
Finally

d V ok

W(Y) =0«<=Y=Y .
According to Lasalle’s invariance principle [20, 21, 27, 29], we deduce that Y™ is globally asymptotically stable
for system (S4) in Dy when Rq > 1. O

We have shown that X, is globally asymptotically stable for system (10), which allows us to draw the following
conclusion:

Theorem 3.9. The endemic equilibrium point X5 is globally asymptotically stable for model (7) in Dyy when
Ro > 1.

4 Numerical simulations

The objective of this section is to corroborate by numerical results the mathematical theoretical results es-
tablished during the study of our models. The MATLAB technical computing software with the fourth-order
Runge-Kutta method is used to perform our numerical simulations.

4.1 Numerical simulations of vector model

In this part, we present some results of numerical simulations to predict the evolution of mosquitoes in the
case of persistence and extinction. Our initial conditions are as follows: E(0) = 150, L(0) = 25, P(0) =
10, Ap(0) = 55, Ar(0) = 19 and Ag(0) = 12. The numerical values of the parameters used are summarized

in Table 5.

Table 5: Numerical values of the mosquito model parameters.

Symbols Values for persistence Values for extinction Range Sources  Units
b 100 50 50-300 [23,31] -

PE 0.50 0.33 0.33-1.0 [14, 31] /day
PL 0.16 0.08 0.08-0.17 [14, 31] /day
Py 0.50 0.33 0.33-1.0 [14,31] /day
UE 0.56 0.80 0.32-0.80 [23, 25] /day
Ui, 0.44 0.58 0.30-0.58 [23, 25] /day
Ui, 0.05 0.05 0.0-1.0 [21, 23] /day/mosq
Up 0.37 0.52 0.22-0.52 [23, 25] /day
Pa, 0.46 0.322 0.322-0.598  [6,23]  /day
Pa, 0.43 0.30 0.30-0.56 [6, 23] /day
P, 3 3 3.0-4.0 [6, 23] /day
Ma, 0.18 0.233 0.125-0.233 [6, 23] /day
Ha, 0.0043 0.01 0.0034-0.01 [6, 23] /day

Ma, 0.41 0.56 0.41-0.56 [6, 23] /day
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For the case of the persistence of mosquitoes, we obtain the curves of Figures 3, 4 and 5.
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Figure 3: Distribution of population of eggs, larvae and pupae when rq4
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These curves describe the evolution of the different classes of the female mosquito population for rq ~

7.2291, rg ~ 0.6261 > -

1

1 and Ry ~ 12.1037 > 1. We observe a persistence of the population of the

a
different classes and the solution X = (E, L, P, Ay, Ar, Ag) of system (1) converges towards the equilibrium
point of persistence of mosquitoes X] = (1981, 133, 24,50, 53, 7), which is globally asymptotically stable,
which confirms the result obtained in Theorem 2.5.
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4.1.2 Dynamics of vector model for Ry < 1

DE GRUYTER

By using the initial conditions given previously and the values of parameters for the case of extinction stated
in Table 5, we obtained the curves of Figures 6, 7 and 8.

Figure 6: Distribution of population of eggs, larvae and pupae whenr; ~ 0.6871, rg ~ 0.4731 <
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Figure 8: Combined curves of different populations for rs ~ 0.6871, rg ~ 0.4731 <

1
1 and R, ~ 0.6171 < 1.

The curves obtained here describe the evolution of the different classes of the female mosquito population

forrs ~ 0.6871, rg ~ 0.4731 <

and Ry ~ 0.6171 < 1. We observe an extinction of the different popu-

Yaq+
lations of each class from a certain time. In addition, we note that the equilibrium point XS =(0,0,0,0,0,0)

is globally asymptotically stable, which confirms the result obtained in Theorem 2.4.
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Remark 4.1. We note that the threshold Ry has a considerable influence on the evolution of the mosquito pop-
ulation and this, at each stage of their evolution. In fact, the more this threshold increases, the more the number
of eggs, larvae and pupae increases, which leads to the growth of adult mosquito populations Ay, Ay and Ao.
Moreover, if this parameter is less than or equal to one, then the mosquito population converges towards a state
of extinction, while if it is strictly greater than one, there is a proliferation of the vector population. So, it is a
good control parameter of vector density. It will then be a question of finding suitable control methods which
will minimize this threshold as much as possible in order to reduce the population of adult mosquitoes or to
eradicate them. Some of these methods would then aim at reducing the parameter rg, which would lead at the
same time to reduce the threshold parameter R, .

4.2 Numerical simulations of the transmission dynamics model

Here we are interested in the numerical simulation of our transmission model under the influence of the
mosquito model through the threshold R,. In other words, our objective is to obtain the curves of the evolution
of the disease in the human population in the case of persistence of the female mosquito populations.

4.2.1 Dynamics of the transmission model for Ry > 1and Ry < 1

The numerical values of the parameters that we use in this part are those of persistence in Table 5, except y,
which we replace by 0.0005 and those of the following Table 6 :

Table 6: Numerical values of other parameters in the case of extinction of the disease.

Parameters Values Sources Units
Bvu 0.27 [20, 21] /day
Bav 0.15 [20, 35] /day
Ay 900 [20, 21] humans/day
15% 0.025 [20, 34] /day

- 0.42 [20, 21] /day

The initial conditions are : E(0) = 150, L(0) = 25, P(0) = 10, Ays(0) = 55, Ars(0) = 19, Aps(0) = 12,
Ari(o) =20, AOI(O) =10, IV(O) =15, SH(O) =50, IH(O) =10 and RH(O) =45,
We thus obtain the curves of the following figures : Figures 9, 10, 11 and 12.
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Figure 9: Distribution of population of eggs, larvae and pupae when R, ~ 12.1037 > 1 and Ry ~ 0.2170 < 1.

In these figures, we observe a growth until stabilization of the population of eggs, larvae, pupae,
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Figure 10: Distribution of Ay, Ars and Ags mosquito population when R, ~ 12.1037 > 1 and Ry ~ 0.2170 < 1.
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Figure 12: Distribution of the population of susceptible humans, infectious humans and recovered humans when R, ~
12.1037 > 1and Rp ~ 0.2170 < 1.

Ays, Ars and Ags mosquitoes and susceptible humans Sy while that of A,;, Ag; and Iy mosquitoes, in-
fectious humans Iy and recovered humans Ry decreases until canceled. The disease therefore disap-
pears after a certain time. The parameters used allow us to obtain R, ~ 12.1037 > 1 and Ry =~
0.2170 < 1 and the solution of transmission model (7) converges towards the disease-free equilibrium
X] = (2091509, 14404, 2649, 5534, 5861, 739, 0, 0, 0, 36000, 0, 0) which is globally asymptotically sta-
ble. This result clearly illustrates our theoretical result obtained in Theorem 3.7.

4.2.2 Dynamics of the transmission model for Ry > 1and Ry > 1

The initial conditions in this part are : E(0) = 150, L(0) = 25, P(0) = 10, A;5(0) = 55, Ars(0) = 19, Aps(0) = 12,
A,;(0) = 40, Ao;(0) = 10, I,(0) = 25, Sx(0) = 25, I(0) = 10, R4(0) = 55.
The numerical values of the parameters that we use in this part are those of persistence in Table 5, except i,
which we replace by 0.000011 and those of the following table : Table 7.
Thus, we obtain the curves of Figures 13, 14, 15 and 16. On these figures obtained for R, =
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Table 7: Numerical values of other parameters of the model in the case of disease persistence.

Parameters Value Sources Unity
Bvh 0.37 [20, 21] /day
Bav 0.25 [20, 35] /day
Ay 900 [20, 21] humans/day
Un 0.025  [20, 34] /day
YH 0.42 [20, 21] /day
1; 14000 2500
é | é 8000 ?;.3-
w 08 -1 6000 [-Y 1000
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Figure 13: Distribution of population of eggs, larvae and pupae when R, ~ 12.1037 > 1 and Rp ~ 2.2115 > 1.
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1, we observe a growth until complete stabiliza-

tion of the populations of different classes of our transmission model (7). We are indeed notic-
ing a persistence of mosquito and human populations with persistence of the disease. The solution
(E,L, P, Ay, Ars, Aos, Avis Aoi» Iy, Sh, Iy, Ry) of this transmission model (7) converges globally towards en-
demic equilibrium X; =(87175472,600184, 110379, 217745, 222488

,28056,21773,2746,12870, 7876, 1580, 26544), which illustrates the result obtained in Theorem 3.9.
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Figure 16: Distribution of the population of susceptible humans, infectious humans and recovered humans when R, ~
12.1037 > 1and Rp ~ 2.2115 > 1.

Remark 4.2. We retain from these results that the behavior of the disease in the different populations is gov-
erned by the threshold parameter Ry. Indeed, when this is less than or equal to one, the disease disappears
and when it is strictly greater than one, there is persistence of the disease.Thus, the control methods against
vector-borne diseases due to mosquitoes must aim at influencing the parameters related to this rate in order to
minimize it. One of the approaches must then consist in reducing to the maximum by suitable methods of con-
trol the rate of passage of the gonotrophic cycle rg in order to reduce at the same time the rate Ry, then the rate
Ro. We can therefore affirm that the gonotrophic cycle has a great influence on the transmission mechanism of
vector-borne diseases and it is therefore very important to give an interest to it in the context of the fight against
these epidemics.

5 Conclusion

In this work, we were interested in the modeling and the mathematical analysis of the dynamics of vector-
borne diseases transmitted by mosquitoes, which are endemic diseases that plague the world’s poverty belt,
particularly in Africa. We started with the presentation of a model describing the evolution of the mosquito
population, in particular the aquatic phase and the gonotrophic cycle due to A. M. Lutambi et al. [23]. After
this step, we presented the mathematical results they obtained and our mathematical contribution to this
model. Indeed, this mathematical analysis revealed the existence of a threshold parameter R, which makes
it possible to predict the evolution of the vector density in the area. Indeed, the extinction of the mosquito
population is governed by the condition R, < 1 while mosquitoes invade the area when R, > 1. This first
study highlighted the need to take into account the immature stages and the gonotrophic cycle in strategies
to fight against these diseases because they constitute the manufacturing plant of anopheles and therefore
one of the sources of the problem.

Then, in order to know the impact of the stages constitutive of the mosquito’s life on the transmission
dynamics of the vectorial disease, we developed a mathematical model of the transmission dynamics of the
disease by coupling the two models previously studied. The mathematical study of this model revealed the
existence of another threshold parameter R which, when it is greater than one (R > 1), the disease persists
giving an endemic equilibrium point with mosquitoes which is generally stable and when it is less than one
(Ro < 1), the disease disappears giving a disease-free equilibrium point with an overall stable mosquitoes
population. We were also able to establish a relationship between R, and Ry which shows that the spread
of the disease is governed by these two threshold parameters. The fundamental result of this study is the
following: the vector density regulation threshold is a very important parameter that can intervene in control
strategies for vector-borne diseases transmitted by mosquitoes because it influences considerably the basic re-
production rate. These results therefore demonstrate the great need to consider the stages that make up the
aquatic stage and the gonotrophic cycle of mosquitoes in plans for the eradication of vector-borne diseases.
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The last stage of our work consisted in presenting some results of numerical simulations, in order to
illustrate our theoretical results. The observations are that these results are in conformity with our previously
established theoretical results.

In our future work, we would like to take into account control strategies in these two studied models in
order to highlight the most suitable control strategy to the fight against mosquitoes borne diseases, taking
into account the different classes of adult mosquitoes.
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