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Abstract: In this paper, we formulate a mathematical model of vector-borne disease dynamics. The model
is constructed by considering two models : a baseline model of vector population dynamics due to Lutambi
et al. that takes into account the development of the aquatic stages and the female mosquitoes gonotrophic
cycle and an SI-SIRmodel describing the interaction betweenmosquitoes and human hosts. We briefly study
the baseline model of vectors dynamics and, for the transmission model, we explicitly compute the equilib-
riumpoints, and by using themethod of Van denDriesshe and J.Watmough,we derive the basic reproduction
number R0. Otherwise, thanks to Lyapunov’s principle, Routh-Hurwitz criteria and a favorable result due to
Vidyasagar, we establish the local and global stability results of the equilibrium points. Furthermore, we es-
tablish an interesting relationship between themosquito reproduction numberRv and the basic reproduction
numberR0. It then follows that aquatic stages and behavior of adult mosquitoes have a significant impact on
disease transmission dynamics. Finally, some numerical simulations are carried out to support the theoreti-
cal findings of the study.

Keywords:Mathematical model, mosquito population, gonotropic cycle, vector-borne disease dynamics, ba-
sic reproduction number, Lyapunov principle, numerical simulations.
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1 Introduction
Vector-borne diseases are central to social and economic concerns across the world. They are caused by
pathogenic germs (viruses, parasites, bacteria), conveyed and inoculated by vectors (mosquitoes, ticks, bugs,
sandflies, etc.), this vector having itself been infected on a viraemic host. Mosquitoes are the source of trans-
mission of the most endemic vector-borne diseases with very high death rates. They transmit to humans
malaria, dengue, Zika virus disease, yellow fever, West Nile fever also called West Nile virus, chikungunya,
etc. They are among the most dangerous animals in terms of the number of deaths they cause in the world.
Their ability to carry diseases and transmit them to humans results in thousands of deaths each year. It is
estimated that all of the major vector-borne diseases account for about 17% of the global burden of com-
municable diseases and more than 700000 deaths annually. The most affected areas are the tropics and the
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subtropics. In addition, it is noted that more than 80% of the world population lives in areas exposed to the
risk of at least one vector-borne disease, [1, 15].

The first mathematical contribution in epidemiology dates back to April 1760 with the model of Daniel
Bernoulli, [5, 10], on smallpox. Indeed, in a thesis from the Academy of Sciences in Paris, Bernoulli pre-
sented amodel and his calculations about the smallpox epidemic, rife at the time, called "smallpox". Thanks
to the mathematical study of his model, Bernoulli demonstrated in front of the academy of sciences that
the generalization of smallpox, imported from the East, in the fight against smallpox, despite the dangers
it presented, would make hope pass from 26 years and 7 months to 29 years and 9 months. Other consider-
able contributions to mathematical epidemiology are the work of some authors such as W. H. Hamer, A. G.
Mc Kendrick and W. O. Kermack, [16]. However, the most important contribution to the body of epidemiol-
ogy is that of doctor Donald Ross, [28], who can therefore be considered as the founding father of current
mathematical epidemiology based on compartmental models. Compartmental models are ideally suited for
modeling vector-borne diseases. This consists in dividing the host population into as many compartments
as there are clinical states and connecting them to each other through flows of individuals via the different
levels of transfer. Ross worked on malaria and proposed the first compartmental model of the dynamics of
malaria transmission, [28]. The study of his model allowed him to demonstrate that it was not necessary to
eliminate all mosquitoes to eradicate malaria, but that it was simply necessary to lower their density below
a certain critical threshold. In 1957, Georges Macdonald, [24], improved Ross’ model, adding additional bi-
ological hypotheses. It follows important works on the mathematical modeling of malaria in order to better
understand the factors influencing its transmission. One of the greatest advancements in the modeling of
infectious diseases is the inclusion of acquired immunity proposed by Dietz, Molineaux and Thomas, [4, 11].
Some works have also included environmental effects, [12, 13, 29], the spread of drug resistance, [2, 22], the
evolution of immunity, [17], the treatment and impact of vaccination strategies, [3], as well as the duration of
the incubation period, [7].

Even today, vector-bornediseases are a fact and severalmathematicalmodels have been further proposed.
We can list among others the works of P. Zongo, B. Traoré, [32–36], F. Niyukuri, O. Koutou, [19–21] in the con-
text of the fight against malaria, the work of A. Abdelrazec et al., [1], S. Hossain et al., [15], in the fight against
dengue fever, etc. One of the greatest advances in the models proposed is the fact of taking into account the
growth dynamics of the vector, and in particular that of the immature stages. Indeed, the importance of the
immature stages is no longer to be demonstrated, due to the resistance of the eggs. In addition, the conditions
favoring the development of these eggs are numerous and very varied. This step is essential in the transmis-
sion of the disease because it constitutes the manufacturing plant of mosquitoes. Taking these immature
stages into account in mathematical models of vector-borne diseases is therefore an excellent asset for the
control of these diseases. In addition, one of the innovations is the inclusion of climatic factors in the trans-
mission dynamics of vector-borne diseases caused by mosquitoes. Indeed, the transmission cycle of these
diseases is closely linked to climatic variations. Typically, the female mosquito digests blood faster and feeds
more often in warmer weather, thereby, accelerating transmission. During this time, the parasite completes
its life cycle faster and thereby, increases its replication. It is then in view of the importance of these factors
in the evolution of these vector-borne diseases that many researchers have taken them into account in the
development of their models, [2, 12].

One of the recent contributions is that of A. M. Lutambi et al. [23] who took into account the constituent
stages of the gonotrophic cycle in the life cycle of mosquitoes and showed the major importance of these
stages in the life cycle of the vector. In this work, we are starting from thismajor innovation in order to deepen
themathematical study on their proposed vectormodel and to couple it to amodel of transmission of SIR-type
vector diseases. The aim is to mathematically study the impact of immature stages and the gonotrophic cycle
on the transmission dynamics of vector-borne diseases transmitted by mosquitoes. Indeed, mosquito eggs
are very resistant and therefore represent a reliable source of mosquito proliferation and consequently dis-
ease persistence. In addition, the immature stages as a whole constitute the generating phase of mosquitoes,
so, it is important to take an interest in them in order to know their real impact in the process of transmis-
sion of these infectious diseases. As for the gonotrophic cycle, it is essential because it brings together the
different classes of mosquitoes that promote the transmission and disease progression. Thus, it has a con-
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siderable impact on the dynamics of transmission and a knowledge of this impact could inspire targeted
control methods adapted to each class of mosquitoes in this cycle. Finally, taking into consideration these
two phases (aquatic and aerial) makes the model more realistic and could therefore make it possible to make
good predictions about disease spreading.

After this introductory section in whichwe present the general context, the interest and the goal pursued
by our work, section 2 is about the presentation of the vector model of A. M. Lutambi et al. [23], the math-
ematical study already done on this model and our contribution concerning this model. In this section, we
highlight the impact of the gonotrophic cycle materialized by the parameter rg, on the threshold parameter
RV , governing the evolution of the vector density. Then, in section 3,wepresent ourmodel of the transmission
dynamics of vector-borne diseases of the SIR type transmitted bymosquitoes, fromwhich we do amathemat-
ical study. In this section, we highlight the impact of the parameterRV on the parameterR0 that predicts the
course of the disease. In section 4, we present our numerical simulations results in order to corroborate the
obtained theoretical results. We conclude in section 5.

2 Baseline model of vector population dynamics: description and
main results

In this section, we briefly recall some significant results of the baseline model due to Lutambi et al. [19, 21,
23, 26, 37], that describe mosquito population dynamics.

2.1 Mathematical model description

A mosquito life cycle begins with eggs (E), which hatch into larvae (L) when conditions are favorable. The
larvae then mutate into pupae (P), from which adult mosquitoes emerge. After mating, female mosquitoes
disperse in search of hosts to bite ;Wedenote thesemosquitoes byAh. By gorging themselveswith blood, they
recover the proteins essential for the maturation of their eggs. Once engorged with blood, the female takes
refuge in a shelter until complete development of the eggs ; we denote these ones by Ar. Then it searches
for a favorable place to lay eggs ; we denote the mosquitoes that lay eggs by A0. After the laying, it leaves
again to feed and the cycle resumes. This feeding cycle is called the gonotrophic cycle, and repeats until the
female dies. We distinguish all of these stages because interventions may be applied to any one of them. This
information on our state variables is summarized in Table 1, [32, 33, 36].

Table 1: Definition of the state variables of the female mosquitoes model.

Variables Description
E density of eggs
L density of larvae
P density of pupae
Ah density of mosquitoes searching for hosts
Ar density of resting mosquitoes
A0 density of mosquitoes searching for oviposition sites

Initial conditions are : E(0), L(0), P(0), Ah(0), Ar(0), A0(0). The six subgroups have different mortality
and progression rates. Each subgroup is affected by three processes: increase due to recruitment, decrease
due tomortality, and development or progression of survivors into the next subgroups. Ourmodel parameters
are summarized in Table 2.
The compartmental representation of the life cycle of female mosquitoes is given in Figure 1.



208 | Abou Bakari Diabaté, Boureima Sangaré, and Ousmane Koutou

Table 2: Description of mosquito model parameters.

Variables Biological description
b number of female eggs laid per oviposition
ρE egg hatching rate into larvae
ρL rate at which larvae develop into pupae
ρp rate at which pupae develop into adult (emergence rate)
µE natural egg mortality rate
µL1 natural larvae mortality rate
µL2 density-dependent larvae mortality rate
µp natural pupae mortality rate
ρAh rate at which host seeking mosquitoes enter the resting state
ρAr rate at which resting mosquitoes enter oviposition site searching state
ρA0 oviposition rate
µAh natural mortality rate of mosquitoes of searching for hosts
µAr natural mortality rate of resting mosquitoes
µA0 natural mortality rate of mosquitoes searching for oviposition sites

Aquatic phase

Aerial phase

E L P

AhArA0

ρE ρL

ρp

ρAhρAr

bρ
A 0

ρA0

µE µL1 + µL2L µP

µAhµArµA0

Figure 1: Compartmental representation of the different stages of growth of female mosquitoes.
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We thus obtain the following model of the complete life cycle of female mosquitoes:

dE
dt = bρA0A0 − (µE + ρE)E,

dL
dt = ρEE − (µL1 + µL2L + ρL)L,

dP
dt = ρLL − (µP + ρP)P,

dAh
dt = ρpP + ρA0A0 − (µAh + ρAh )Ah ,

dAr
dt = ρAhAh − (µAr + ρAr )Ar ,

dA0
dt = ρArAr − (µA0 + ρA0 )A0.

(1)

We move now to the mathematical analysis of this model. In the following, we denote the boundary of D by
∂D.

2.2 Mathematical analysis

2.2.1 Existence, boundedness and uniqueness of the solutions

Let

X(t) =



E
L
P
Ah
Ar

A0


and f (X) =



f1(X)

f2(X)

f3(X)

f4(X)

f5(X)

f6(X)



=



bρA0A0 − (µE + ρE)E

ρEE − (µL1 + µL2L + ρL)L

ρLL − (µP + ρP)P

ρpP + ρA0A0 − (µAh + ρAh )Ah

ρAhAh − (µAr + ρAr )Ar

ρArAr − (µA0 + ρA0 )A0



,

then when the initial conditions are (t0, X0) ∈ R+ ×R6
+, system (1) can be written as follows:

dX(t)
dt = f (X(t)),

(t0, X0) ∈ R+ ×R6
+.

(2)

Theorem 2.1. (Existence and positivity of solutions ) The Cauchy problem (2) admits a unique maximal so-
lution ([0, T] , X) and when X0 > 0, then this solution is positive (X > 0, ∀ t ∈ [0, T]).

Proof. Indeed:
– Function f is of classC∞ so it is of classC 1, therefore it is locally Lipschitzian onR6. We deduce the existence

and the uniqueness of a maximal solution ([0, T] , X) to the Cauchy problem (2). In addition, as f is C∞ then
this solution is also C∞.

– We show by using the absurd method that X > 0 when X0 > 0.
Let us M (t) = min

{
E(t), L(t), P(t), Ah(t), Ar(t), A0(t)

}
and assume that there exists t1 ∈ ]0, T[ such as :

M (t1) = 0 and M (t) > 0, ∀ t ∈ [0, t1[ .
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IfM (t) = E(t), so ∀ t ∈ [0, t1[ , E(t) > 0 and A0(t) > 0. Consequently, according to the first equation of system
(1), we have :

dE
dt > −(µE + ρE)E,

which gives by integration between 0 and t1,

E(t1) > E(0)e−(µE+ρE)t1 .

So
0 = E(t1) > E(0)e−(µE+ρE)t1 > 0,

which is absurd. So there is no t1 ∈ ]0, T[ such as M (t1) = 0.
We obtain the same contradictions whenM (t) = L(t),M (t) = P(t),M (t) = Ah(t),M (t) = Ar(t),M (t) = A0(t).
Thus, when X0 > 0, the solution X is strictly positive (X > 0, ∀ t ∈ [0, T]).

For the rest, we state the following hypothesis, [32, 33, 36] :
(H1) :It is assumed that the number of female mosquitoes that lay eggs (A0) does not exceed a number noted

C, i.e

∀ t ≥ 0, A0(t) ≤ C. (3)

Let now :

M = E + L + P + Ah + Ar + A0, K = bρA0C and m = min
{
µE , µL1 , µP , µAh , µAr , µA0

}
.

Proposition 2.1. Under hypothesis (H1), the unique solution of system (1) is bounded. Moreover the domain
DV containing it, defined by :

DV =





E
L
P
Ah
Ar

A0


∈ R6

∣∣∣∣0 ≤ E + L + P + Ah + Ar + A0 ≤
K
m


is positively invariant and attracts all positive orbits in R+.

Proof. By taking the sum of the six equations of system (1), we obtain :

M′(t) = bρA0A0 −
(
µEE +

(
µL1 + µL2L

)
L + µPP + µAhAh + µArAr + µA0A0

)
.

So
M′(t) ≤ bρA0A0 −

(
µEE + µL1L + µPP + µAhAh + µArAr + µA0A0

)
.

We then have
M′(t) ≤ bρA0C − min

{
µE , µL1 , µP , µAh , µAr , µA0

}
M(t).

Consider
K = bρA0C and m = min

{
µE , µL1 , µP , µAh , µAr , µA0

}
,

so
M′(t) ≤ K − m M(t).

First, let’s solve the equation
N ′
1(t) = K − m N1(t).
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Moreover, by applying the constant variation formula between t and t0, a particular solution is given as fol-
lows:

N1(t) =
K
m +

(
N1(0) −

K
m

)
e−m(t−t0)

Therefore, N1 −→ K
m as t −→ +∞ and we obtain N1(t) ≤

K
m . By applying the principle of comparison, we

obtain :
lim
t→+∞

supM(t) ≤ K
m .

Therefore, 0 ≤ M(t) ≤ K
m , then M is bounded and T = +∞.

Suppose now that
M(t) > K

m ,

we then have
M′(t) < K − m × K

m ,

i.e
M′(t) < 0.

In this case themosquito population is decreasing andas thedomain is compact, thus all the solutions remain
there.

2.2.2 Existence and stability of equilibrium points

Proposition 2.2. Model (1) has exactly one equilibrium point on ∂DV given by X*0 = (0, 0, 0, 0, 0, 0). We label
X*0 the mosquito-free equilibrium point.

Proof. Setting the right side of system (1) to zero, it is clear that X*0 = (0, 0, 0, 0, 0, 0) is solution, therefore a
point of equilibrium.

In the following, we will calculate the vector reproduction number Rv. This is the average number of female
mosquitoes produced by a single female mosquito during its lifespan without any influence of density. We
will use the next-generation matrix for computing this rate.
Let x1 = E, x2 = L, x3 = P, x4 = Ah , x5 = Ar et x6 = A0 be the respective densities of mosquitoes in
compartments 1, 2, 3, 4, 5 and6, thenX = (x1, x2, ..., x6)T . ConsiderFi(X) the rate of new recruitment (egg
laying), V+

i (X) the transfer rate of mosquitoes into a compartment i and V−
i (X) the transfer rate of mosquitoes

out of the compartment i and let Vi(X) = V−
i (X) − V+

i (X). System (1) can be written :

dxi
dt = Fi(X) − Vi(X), i = 1, 2, ..., 6.

F and V are then given by :

F =



bρA0

0

0

0

0

0


and V =



(µE + ρE)E

(µL1 + µL2L + ρL)L − ρEE

(µP + ρP)P − ρLL

(µAh + ρAh )Ah − ρpP − ρA0A0

(µAr + ρAr )Ar − ρAhAh

(µA0 + ρA0 )A0 − ρArAr


.
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We calculate Fij =
∂Fi
∂xj

∣∣∣∣
X*
0

and Vij =
∂Vi
∂xj

∣∣∣∣
X*
0

to obtain :

F =



0 0 0 0 0 bρA0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


andV =



µE + ρE 0 0 0 0 0

−ρE µL1 + ρL 0 0 0 0

0 −ρL µP + ρP 0 0 0

0 0 −ρP µAh + ρAh 0 −ρA0

0 0 0 −ρAh µAr + ρAr 0

0 0 0 0 −ρAr µA0 + ρA0


The next-generation matrix FV−1 is given by :

FV−1 =



κ1 κ2 κ3 κ4 κ5 κ6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

with:

κ1 =

b
∏
j

( ρj
µj + ρj

)
1 −
∏
Ai

(
ρAi

µAi + ρAj

) , where j = E, L, P, Ah , Ar , A0 and i = h, r, 0 ;

κ2 = −

b
∏
j

( ρj
µj + ρj

)
1 −
∏
Ai

(
ρAi

µAi + ρAj

) , where j = L, P, Ah , Ar , A0 and i = h, r, 0 ;

κ3 =

b
∏
j

( ρj
µj + ρj

)
1 −
∏
Ai

(
ρAi

µAi + ρAj

) , where j = P, Ah , Ar , A0 and i = h, r, 0 ;

κ4 = −

b
∏
j

( ρj
µj + ρj

)
1 −
∏
Ai

(
ρAi

µAi + ρAj

) , where j = Ah , Ar , A0 and i = h, r, 0 ;

κ5 =

b
∏
j

( ρj
µj + ρj

)
1 −
∏
Ai

(
ρAi

µAi + ρAj

) , where j = Ar , A0 and i = h, r, 0 ;

κ6 = −

b
∏
j

( ρj
µj + ρj

)
1 −
∏
Ai

(
ρAi

µAi + ρAj

) , where j = A0 and i = h, r, 0.
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Thus :

Rv = ρ(FV−1) = κ1 =

b
∏
j

( ρj
µj + ρj

)
1 −
∏
i

(
ρAi

µAi + ρAj

) , where j = E, L, P, Ah , Ar , A0 and i = h, r, 0. (4)

Where ρ(FV−1) is the spectral radius of the next-generation matrix FV−1.

Remark 2.1.
– The probability that a mosquito in class j survives and move on to the next stage is

ρj
µj + ρj

.

– The value rg =
∏
i

(
ρAi

µAi + ρAi

)
∈ [0, 1] , i = h, r, 0, is the probability that amosquito survives the feeding

cycle.

– The value ra = b
∏
j

( ρj
µj + ρj

)
, j = E, L, P, is the probability that amosquito survives in the aquatic stage.

So

Rv =
rarg
1 − rg

(5)

Although the inter-specific competition (given by µL2L) of larvae affects the mosquito population, Rv does not
depend on this quantity.

Theorem 2.2. When Rv > 1, model (1) has a mosquito persistence equilibrium solution
X*1 = (E*, L*, P*, A*

h , A*
r , A*

0), whose components are given by :

E* = bρA0A*
0

µE + ρE
, L* = (µL1 + ρL)(Rv − 1)

µL2
, P* = ρLL*

µP + ρP
,

A*
h =

ρPP*Rv
(µAh + ρAh )B1

, A*
r =

ρAhA*
h

µAr + ρAr

and A*
0 =

ρArA*
r

µA0 + ρA0

,

where

B1 = b
∏
j

( ρj
µj + ρj

)
pour j = E, L, P, Ah , Ar , A0. (6)

Proof. When we set the right side of system (1) to zero, the resolution gives us the values of
E*, L*, P*, A*

h , A*
r and A*

0 given.

Theorem 2.3.
(i) The mosquito-free equilibrium X*0 is locally asymptotically stable when Rv < 1.
(ii) The mosquito persistence equilibrium X*1 is locally asymptotically stable when Rv > 1.

Proof. For the demonstration we proceed as follows :
(i) According to Varga’s theorem [38], the mosquito-free equilibrium X*0 is locally asymptotically stable when

Rv < 1.
(ii) For the study of local stability of the equilibrium point of persistence of mosquitoes X*1, we proceed in much

the same way as in [23, 27, 29, 30]. We determined the Jacobian matrix of system (1) about this point and its
characteristic polynomial. Then, by using the Routh-Hurwitz criterion [21, 23, 26, 27, 30], we show that the
eigenvalues of the Jacobian matrix have their real parts strictly negative.

For the rest, consider

a1 = µE + ρE , a2 = µL1 + ρL , a3 = µP + ρP , a4 = µAh + ρAh , a5 = µAr + ρE and a6 = µA0 + ρA0 .
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Theorem 2.4. The mosquito-free equilibrium X*0 is globally asymptotically stable when Rv < 1.

Proof. Let the following Lyapunov candidate :

V(E, L, P, Ah , Ar , A0) = β1E + β2L + β3P + β4Ah + β5Ar + β6A0,

with

β1 =
ρEρLρpρAhρAr

a1a2a3a4a5a6
, β2 =

ρLρpρAhρAr

a2a3a4a5a6
, β3 =

ρpρAhρAr

a3a4a5a6
, β4 =

ρAhρAr

a4a5a6
, β5 =

ρAr

a5a6
and β6 =

1
a6

.

Let’s pose X = (E, L, P, Ah , Ar , A0)T ∈ R6, we then have :

V(X*0) = 0, and ∀ X ∈ R6 \
{
X*0
}
, V(X) > 0.

On the other hand
dV
dt = β1

(
bρA0A0 − a1E

)
+ β2

(
ρEE − (a2 + µL2L)L

)
+ β3 (ρLL − a3P)

+β4
(
ρpP + ρA0A0 − a4Ah

)
+ β5

(
ρAhAh − a5Ar

)
+ β6

(
ρArAr − a6A0

)
By developing and reorganizing, we obtain :

dV
dt = (β2ρE − β1a1)E + (β3ρL1 − β2a2)L + (β4ρp − β3a3)P + (β5ρAh − β4a4)Ah

+(β6ρAr − β5a5)Ar + (bβ1ρA0 + β4ρA0 − β6a6)A0 − β2µL2L
2.

Then,

β2ρE − β1a1 = 0, β3ρL1 − β2a2 = 0, β4ρp − β3a3 = 0, β5ρAh − β4a4 = 0 and β6ρAr − β5a5 = 0.

Also, we have :

bβ1ρA0 + β4ρA0 − β6a6 = B1 +
ρAhρArρA0

(µAh + ρAh )(µAr + ρAr )(µA0 + ρA0 )
− 1

= B1 −
((µAh + ρAh )(µAr + ρAr )(µA0 + ρA0 ) − ρAhρArρA0

(µAh + ρAh )(µAr + ρAr )(µA0 + ρA0 )

= B1 −
B1
Rv

= B1
(
1 − 1

Rv

)
bβ1ρA0 + β4ρA0 − β6a6 = B1(Rv − 1)

Rv
.

So
dV
dt = B1(Rv − 1)

Rv
A0 − β2µL2L

2.

Thereby,
when Rv < 1, we then have

dV
dt < 0.

Therefore V is a strict Lyapunov function when Rv < 1.

Finally
dV
dt (X) = 0 ⇐⇒ X = X*0.

According to Lasalle’s invariance principle [20, 21, 30], X*0 is globally asymptotically stable whenRv < 1.

Theorem 2.5. The mosquito persistence equilibrium point X*1 is globally asymptotically stable when Rv > 1.
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Proof. Let X = (E, L, P, Ah , Ar , A0)T ∈ R6 and consider the following function :

U(X) = E − E* − E* ln E
E* + d1

(
L − L* − L* ln L

L*

)
+ d2

(
P − P* − P* ln P

P*

)

+d3

(
Ah − A*

h − A*
h ln

Ah
A*
h

)
+ d4

(
Ar − A*

r − A*
r ln

Ar
A*r

)
+ d4

(
A0 − A*

0 − A*
0 ln

A0
A*
0

)
,

with
d1 =

a1
ρE

, d2 =
a1a2
ρEρL

, d3 =
a1a2a3
ρEρLρP

, d4 =
d3a4
ρAh

and d5 =
d3a4a5
ρAhρA0

We then have :
U(X*1) = 0, and ∀ X ∈ R6 \

{
X*1
}
, U(X) > 0.

Moreover, we obtain :

dU
dt =

(
1 − E*

E

)(
bρA0A0 − a1E

)
+ d1

(
1 − L*

L

)
(ρEE − a2L) + d2

(
1 − P*

P

)
(ρLL − a3P)

+d3

(
1 − A*

h
Ah

)(
ρPP + ρA0A0 − a4Ah

)
+ d4

(
1 − A*

r
Ar

)(
ρAhAh − a5Ar

)
+ d5

(
1 − A*

0
A0

)(
ρArAr − a6A0

)
.

Taking into account that

bρA0A
*
0 = a1E*, ρEE* = a2L*, ρLL* = a3P*, ρpP* + ρA0A

*
0 = a4A*

h , ρAhA
*
h = a5A*

r and ρArA
*
r = a6A*

0,

we obtain

dU
dt = −bρA0A0

(
1 − 1

RV

)
+ a1E*

(
6 − EL*

LE* −
LP*
PL* −

PA*
h

AhP*
− AhA*

r
ArA*

h
− ArA*

0
A0A*r

− A0E*
EA*

0

)

+d3ρA0A
*
0

(
3 − AhA*

r
ArA*

h
− ArA*

0
A0A*r

− A0A*
h

AhA*
0

)
.

The first term is automatically negative when Rv > 1. Furthermore, since the arithmetic mean exceeds the
geometric mean, it follows that the second and third terms are also negative. Hence dU

dt < 0, so U is a strict
Lyapunov function when Rv > 1.

On the other hand
dU
dt (X) = 0 ⇐⇒ X = X*1.

According to Lasalle’s invariance principle [20, 21, 27, 29], X*1 is globally asymptotically stable when Rv >
1.

Remark 2.2. It emerges from this study that the asymptotic behavior of the model is linked to the threshold
parameterRv. Thus, if this threshold is less thanor equal to one, then themosquito population converges towards
a state of extinction, while if it is strictly greater than one, there is a proliferation of the vector population,
which demonstrates the importance of taking into account the complete life cycle of female mosquitoes in the
formulation of mathematical models of vector-borne diseases. It is then clear that Rv is a good vector density
control parameter.
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2.2.3 Impact of the gonotrophic cycle on the vector reproduction rateRv

We have obtained in (5) the relation Rv =
rarg
1 − rg

.
Let study the function Rv with respect to the unknown rg ∈ [0 ; 1[. We then have :

dRv
drg

= ra
1 − rg

≥ 0 so Rv is increasing from [0 ; 1[ to [0 ; +∞[.

Moreover
0 ≤ Rv ≤ 1 =⇒ 0 ≤ rg ≤

1
ra + 1

and Rv > 1 =⇒ 1
ra + 1

< rg < 1.

Theorem 2.6. We have the following results :
(i) If 0 ≤ rg ≤ 1

ra + 1
then 0 ≤ Rv < 1 and the mosquito-free equilibrium point X*0 is globally asymptotically

stable.
(ii) If 1

ra + 1
< rg < 1 thenRv > 1 and the mosquito persistence equilibrium point X*1 is globally asymptotically

stable.

Remark 2.3. This study allowed us to highlight the impact of the gonotrophic cycle materialized by the param-
eter rg on the vector reproduction rateRv. The gonotrophic cycle is then of major importance in the life of vector;
it is therefore essential to take it into account in the process of controlling the vector density and the fight against
diseases transmitted by mosquitoes.

3 About the transmission dynamics model

3.1 Mathematical formulation of the model

In this sectionwe build amodel of the dynamics of vector-borne diseases transmitted bymosquitoes.We took
into account the compartment eggs (E), larvae (L) and pupae (P) of aquatic stage. Then, the compartments of
healthymosquitoes searching for hosts (Ahs), of resting healthymosquitoes (Ars), and of healthymosquitoes
seeking to lay eggs (A0s), of healthy mosquitoes gonotrophic cycle. Otherwise, the compartments of infec-
tiousmosquitoes searching for hosts (IV ), of resting infectiousmosquitoes (Ari), and of infectiousmosquitoes
seeking to lay eggs (A0i), of infectious mosquitoes gonotrophic cycle. Finally, the compartments (SH) of sus-
ceptible humans, (IH) of infectious humans and (RH) of recovered humans, representing humans. Due to
their short lifespan, we do not consider the class of recovered mosquitoes in the construction of our model.
This information about our state variables is summarized in Table 3. The initial conditions of the model are :

E(0), L(0), P(0), Ahs(0), Ars(0), A0s(0), Ari(0), A0i(0), IV (0), SH(0), IH(0), RH(0).

We also have the following definitions :
– the population of mosquitoes searching for hosts to take a blood meal for egg maturation noted Ah is

defined by : Ah = Ahs + IV ,
– the population of resting mosquitoes noted Ar is defined by : Ar = Ars + Ari
– the population of mosquitoes seeking to lay eggs noted A0 is defined by : A0 = A0s + A0i .
The total population of adult mosquitoes denoted NV is defined by :

NV = Ahs + Ars + A0s + Ari + A0i + IV = Ah + Ar + A0.

The total population of humans denoted NH is defined by :

NH = SH + IH + RH .

We now give the following definitions :
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Table 3: Definition of the state variables of the transmission model.

Variables Biological description
E density of eggs
L density of larvae
P density of pupae
Ahs density of healthy mosquitoes searching for hosts
Ars density of resting healthy mosquitoes
A0s density of healthy mosquitoes seeking to lay eggs
Ari density of resting infectious mosquitoes
A0i density of infectious mosquitoes seeking to lay eggs
IV density of infectious mosquitoes searching for hosts
SH density of susceptible humans
IH density of infectious humans
RH density of recovered humans

– βV is the rate of mosquito bites on human hosts per unit time,
– βH is the rate at which a human is bitten by mosquitoes per unit time,
– αVH is the probability that contacts with a human is infectious for a mosquito,
– αHV is the probability that contacts with a mosquito is infectious for a human.
The rate of transmission of the disease from mosquitoes to humans that we note βVH is defined by βVH =
βVαVH and that of transmission of the disease from humans to mosquitoes that we note βHV is defined by
βHV = βHαHV .
Thus, the force of infection for mosquitoes Ahs that we note λV is defined by :

λV (IH , IV ) = βVH
IH
NH

= βVαVH IH
NH

.

We recall that ρAh is the rate of female mosquitoes that rest after taking a blood meal.
The rate of uninfected mosquitoes after a blood meal that we note λ′V is then defined by :

λ′V (IH , IV ) = ρAh − λV (IH , IV ).

The force of infection for humans induced by infectious mosquitoes that we note λH is defined by :

λH(IH , IV ) = βHV
IV
NH

= βHαHV IV
NH

.

In addition to the parameters listed in Table 2, we use the parameters from Table 4. When a mosquito in the

Table 4: Description of transmission model parameters.

Variables Description
ΛH constant recruitment of susceptible humans
µH natural death rate of humans
γH rate of infected humans

Ahs compartment bites a human, it has a probability αVH to be infected. Two scenarios can then arise :
– if not infected, it follows the cycle Ahs , Ars , A0s , Ahs of healthy adult mosquitoes. Indeed, it passes to

class Ars of healthy mosquitoes which rest, then class A0s of healthy mosquitoes which lay and finally it
returns to class Ahs of healthy mosquitoes searching hosts and so on,

– if it is infected, it integrates the cycle Ari , A0i , IV , Ari of infected adult mosquitoes. In fact, it passes into
compartment Ari of infected mosquitoes which rest for the maturation of eggs, then compartment A0i
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of infected mosquitoes which lay eggs and finally it integrates compartment IV of infectious mosquitoes
searching for hosts and the cycle resumes.

When a susceptible human is bitten by an infectious mosquito, it may be infected with a probability αHV .
Once a human is infected, it passes after a certain time to class IH of infectious humans and is in turn capable
of infecting mosquitoes and so, the disease spreads. Some infected humans acquire immunity to the disease
after a certain time, they then pass to class RH of recovered humans of the disease. The interactions between
humans andmosquitoes are summarized in the compartmental representation given in Figure 2, [32, 33, 36].

E

L

P

Ahs

IV

Ars

Ari

A0s

A0i

SH

IH

RH

ρ
E

ρ
Lρ P

λ ′V

λ V

ρA r

ρAr

ρA0

ρA0

bρA0

bρA0

ρAh

λ H
γ
H

Λ H

µE

µ L
1
+
µ L

2
L

µP

µAh

µAh

µAr

µAr

µA0

µA0

µH

µH

µH

Figure 2: Compartmental representation of the interaction between humans and mosquitoes.

The solids arrows linking the compartments show the passage from one compartment to another, the dotted
arrows between the compartments of humans and those of mosquitoes indicate the direction of infections,
the arrow of ΛH indicates recruitment at the human level and the other arrows represent natural mortalities.
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From this diagram we obtain the following disease transmission model :

dE
dt = bρA0 (A0s + A0i) − (µE + ρE)E,

dL
dt = ρEE − (µL1 + µL2L + ρL)L,

dP
dt = ρLL − (µP + ρP)P

dAhs
dt = ρPP + ρA0A0s −

(
µAh + λV (IH , IV ) + λ

′
V (IH , IV )

)
Ahs ,

dArs
dt = λ′V (IH , IV )Ahs − (µAr + ρAr )Ars ,

dA0s
dt = ρArArs − (µA0 + ρA0 )A0s ,

dAri
dt = λV (IH , IV )Ahs + ρAh IV − (µAr + ρAr )Ari ,

dA0i
dt = ρArAri − (µA0 + ρA0 )A0i ,

dIV
dt = ρA0A0i − (µAh + ρAh )IV ,

dSH
dt = ΛH − λH(IH , IV )SH − µHSH ,

dIH
dt = λH(IH , IV )SH − (γH + µH)IH ,

dRH
dt = γH IH − µHRH .

(7)

3.2 Mathematical analysis of transmission model

3.2.1 Existence, boundedness and uniqueness of the solutions

For the rest, the initial conditions being (t0, X0) ∈ R+ ×R12
+ , we write system (7) as follows : X′(t) = h(X(t)),

(t0, X0) ∈ R+ ×R12
+ .

(8)

With :
X(t) = (E, L, P, Ahs , Ars , A0s , Ari , A0i , IV , SH , IH , RH)

Theorem 3.1. (Existence and positivity of solutions ) The Cauchy problem (8) admits a unique maximal so-
lution ([0, T] , X) and when X0 > 0, then X > 0, ∀ t ∈ [0, T].

Proof. Indeed,
– As h is of class C∞ so it is of class C 1, therefore locally Lipschitzian onR12, we deduce from it, the existence

and uniqueness of a maximal solution of the Cauchy problem associated with system (7) and relative to the
initial condition (t0, X0) ∈ R×R12. Moreover h being of class C∞, we deduce that this solution is also of class
C∞.
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– The proof of the positivity of X ≥ 0 when X0 ≥ 0 is done in a similar way to that of Theorem 2.1.

Consider

N = E + L + P + Ahs + Ars + A0s + Ari + A0i + IV = E + L + P + Ah + Ar + A0, K = bρA0C

and
n = min

{
µE , µL1 , µP , µAh , µAr , µA0

}
.

C being the constant defined in (3) under the assumption (H1).

Proposition 3.1. System (7) admits a unique solution and this solution is bounded. Moreover the set

DVH =





E
L
P
Ahs
Ars

A0s
Ari
A0i
IV
SH
IH
RH



∈ R12
+

∣∣∣∣∣∣∣
0 ≤ E + L + P + Ahs + Ars + A0s + Ari + A0i + IV ≤ K

n ,

0 ≤ SH + IH + RH ≤ ΛH
µH


is positively invariant and attracts all the positive orbits in R+.

Proof. By taking the sum of the nine (9) first equations of system (7), we obtain :

N ′(t) = bρA0A0 −
(
µEE +

(
µL1 + µL2L

)
L + µPP + µAhAh + µArAr + µA0A0

)
.

So
N ′(t) ≤ bρA0A0 −

(
µEE + µL1L + µPP + µAhAh + µArAr + µA0A0

)
.

We then have
N ′(t) ≤ bρA0C − min

{
µE , µL1 , µP , µAh , µAr , µA0

}
N .

As
K = bρA0C and n = min

{
µE , µL1 , µP , µAh , µAr , µA0

}
,

then
N ′(t) ≤ K − nN .

Let us solve the equation
N ′
2(t) = K − nN2.

Thanks to the constant variation formula between t and t0, a particular solution is given as follows :

N2(t) =
K
n +

(
N2(t0) −

K
n

)
e−n(t−t0)

Therefore, N2 −→ K
n when t −→ +∞ and we obtain N2(t) ≤

K
n .

By applying the principle of comparison, we obtain :

lim
t→+∞

supN(t) ≤ K
n .
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We therefore conclude that
0 ≤ N(t) ≤ K

n ,

so, N is bounded and T = +∞.

Suppose now that
N(t) > K

n ,

we then have
N ′(t) < K − n × K

n ,

i.e
N ′(t) < 0.

In this case the mosquito population is decreasing and as the domain DVH is compact, we conclude that all
the solutions remain there.

On the other hand, by taking the sum of the last three equations of system (7) and by simplifying, we
obtain the differential equation

N ′
H = ΛH − µHNH .

Using the constant variation formula between t and t0, a particular solution is given as follows :

NH(t) =
ΛH
µH

+
(
NH(t0) −

ΛH
µH

)
e−µH (t−t0).

Therefore, NH −→ ΛH
µH

when t −→ +∞ and we have :

0 ≤ NH(t) ≤
ΛH
µH

.

So NH is bounded and T = +∞.
Then DVH is bounded and we therefore deduce the global existence of the solutions in [0, +∞[.
On the other hand, if we assume that NH(t) >

ΛH
µH

, we have N ′
H(t) < ΛH − µH × ΛH

µH
i.e N ′

H(t) < 0.
In this case human population would be decreasing and as the domain is compact, thus all the solutions
remain there.

3.2.2 Existence and stability of equilibrium points

Theorem 3.2.
(i) When Rv ≤ 1 then system (7) admits in domain DVH a disease-free equilibrium point without mosquitoes

X*0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, S*H , 0, 0), with S*H = ΛH
µH

.

(ii) When Rv > 1 then system (7) admits in domain DVH a disease-free equilibrium point with mosquitoes
X*1 = (E*, L*, P*, A*

hs , A*
rs , A*

0s , 0, 0, 0, S*H , 0, 0),

where
E* = bρA0A*

0
µE + ρE

, L* = (µL1 + ρL)(Rv − 1)
µL2

, P* = ρLL*
µP + ρP

, A*
hs =

ρPP*Rv
(µAh + ρAh )B1

,

A*
rs =

ρAhA*
h

µAr + ρAr

, A*
0s =

ρArA*
r

µA0 + ρA0

and S*H = ΛH
µH

,

Proof. Since there is no disease then λV (IH , IV ) = λH(IH , IV ) = 0 and λ′V (IH , IV ) = ρAh .
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(i) Let pose h(X*0) = 0, we then obtain a unique equation ΛH − µHS*H = 0. We then have S*H = ΛH
µH

(ii) Setting the right side of system (7) to zero and solving this equation gives us the values of E*, L*, P*,
A*
hs , A*

rs , A*
0s and S*H .

Remark 3.1. The disease-free equilibrium point X*0 represents the case where there is no disease and the area is
completely devoid of mosquitoes. This case is difficult to obtain in most areas where malaria is intensive due to
the difficulties in completely eradicating the mosquito population. The disease-free equilibrium X*1 represents
the case where the mosquito population exists but there is no disease. Therefore, in this paper, we focus our
study on the X*1 equilibrium point because it is more biologically realistic [20, 32, 33, 36].

In the following part of the section, we determine the basic reproduction number. This number noted R0 is
defined "heuristically" as the average number of new cases of infection, generated by an average individual
(during his period of infectivity), in a population entirely made up of susceptible. Mathematically R0 is de-
fined as the spectral radius of next-generation matrix [37]. Consider the compartments carrying the disease
Ari , A0i , IV and IH , and adopt the notation x = (Ari , A0i , IV , IH). We have the following vector functions

F(x) =



βVH
IHAhs
NH

0

0

βHV
IVSH
NH


et V(x) =



ρAh IV − (µAr + ρAr )Ari

ρArAri − (µA0 + ρA0 )A0i

ρA0A0i − (µAh + ρAh )IV

−(γH + µH)IH

 .

The next-generation matrix is −JacF(X*1)(JacV(X*1))−1 where

JacF(X*1) =



0 0 0 BVHA*
h

S*H

0 0 0 0

0 0 0 0

0 0 βHV 0


and

JacV(X*1) =



−(µAr + ρAr ) 0 ρAh 0

ρAr −(µA0 + ρA0 ) 0 0

0 ρA0 −(µAh + ρAh ) 0

0 0 0 −(γH + µH)


.

We then have

−JacF(X*1)(JacV(X*1))−1 =



0 0 0 βVHA*
h

K1S*H

0 0 0 0

0 0 0 0

M1 M2 M3 0


.
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With
M1 =

ρArρA0RvβHV
a4a5a6B1

, M2 =
ρA0a5RvβHV
a4a5a6B1

, M3 =
a5a6RvβHV
a4a5a6B1

and K1 = γH + µH .

We recall that we previously posed :
a1 = µE + ρE , a2 = µL1 + ρL , a3 = µP + ρP , a4 = µAh + ρAh , a5 = µAr + ρAr , a6 = µA0 + ρA0 .

The eigenvalues of −JacF(X*1)(JacV(X*1))−1 are 0 and

√
βVHM1A*

h
K1S*H

.

The basic reproduction number is given by :

R0 = ρ(−JacF(X*1)(JacV(X*1))−1) =

√
βVHM1A*

h
K1S*H

.

By successively replacing M1, A*
h, P*, L* and S*H by their expressions, we obtain :

R0 =

√
a1a22µHβVHβHVR2

v (Rv − 1)
bρEρAhµL2a4B1K1ΛH

Whether
κ = a1a22µHβVHβHVR2

v
bρEρAhµL2a4B1K1ΛH

,

We then have :
R0 =

√
κ(Rv − 1).

We find that this number R0 is closely related to the vector reproduction rate Rv.

Theorem 3.3. When Rv > 1, system (7) admits in DVH an endemic equilibrium X*2 defined by :

X*2 = (E**, L**, P**, A**
hs , A**

rs , A**
0s , A**

ri , A**
0i , I**V , S**H , I**H , R**H )

where :
E** = bρA0 (A**

0s + A**
0i)

a1
, L** = a2(Rv − 1)

µL2
, P** = ρLL**

a3
,

A**
hs =

a5a6ΛHRvρpP**

a4a5a6B1ΛH + ρArρA0µHβVHRv I**H
, A**

rs =
ρAhA**

hsΛH − µHβVH I**H A**
hs

a5ΛH
, A**

0s =
ρArA**

rs
a6

,

A**
ri =

ρAh I**V ΛH + µHβVH I**H A**
hs

a5ΛH
, A**

0i =
ρArA**

ri
a6

, I**V = ρArρA0µHβVHRv I**H A**
h

a4a5a6B1ΛH
,

S**H = ΛH − K1I**H
µH

, I**H = a4a5a6B1ΛH(R2
0 − 1)

a4a5a6B1K1R2
0 + ρArρA0µHβVHRv

and R**H = γH I**H
µH

.

Proof. When we set the right side of system (7) to zero, the resolution gives the values of
E**, L**, P**, A**

hs , A**
rs , A**

0s , A**
ri , A**

0i , I**V , S**H , I**H and R**H given.

Theorem 3.4. The disease-free equilibrium point with mosquitoes X*1 is locally asymptotically stable when
R0 < 1 and unstable when R0 > 1.

Proof. Indeed, from Varga’s theorem in [38], the disease-free equilibrium X*1 is locally asymptotically stable
when R0 = ρ(−JacF(X*1)(JacV(X*1))−1) < 1.

For the study of the global stability of our transmission model, we state the following fundamental theorem
[8, 32, 33, 36, 39].
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Theorem 3.5. Consider the following ordinary differential equation :
X′ = f (X); X ∈ Rn ,

Y ′ = g(X, Y); Y ∈ Rm .
(9)

Let (X*, Y*) be an equilibrium point for system (9) i.e.,

f (X*) = 0 and g(X*, Y*) = 0.

If system (9) satisfies the following assumptions :
– X* is globally asymptotically stable for the subsystem X′ = f (X),
– Y* is globally asymptotically stable for the subsystem Y ′ = g(X*, Y),

then (X*, Y*) is locally asymptotically stable for system (9).
Moreover, if there exists a positively invariant compact Ω ⊂ Rn × Rm containing (X*, Y*) in its interior, then
(X*, Y*) is a globally asymptotically stable equilibrium for the restriction from system (9) to Ω.

For the application of Theorem 3.5, to our transmission model (7), we rewrite it in two subsystems as follows:



dE
dt = bρA0 (A0s + A0i) − (µE + ρE)E,

dL
dt = ρEE − (µL1 + µL2L + ρL)L,

dP
dt = ρLL − (µP + ρP)P

dAhs
dt = ρPP + ρA0A0s −

(
µAh + λV (IH , IV ) + λ

′
V (IH , IV )

)
Ahs , (S1)

dArs
dt = λ′V (IH , IV )Ahs − (µAr + ρAr )Ars ,

dA0s
dt = ρArArs − (µA0 + ρA0 )A0s ,

dAri
dt = λV (IH , IV )Ahs + ρAh IV − (µAr + ρAr )Ari ,

dA0i
dt = ρArAri − (µA0 + ρA0 )A0i ,

dIV
dt = ρA0A0i − (µAh + ρAh )IV ,



dSH
dt = ΛH − λH(IH , IV )SH − µHSH ,

dIH
dt = λH(IH , IV )SH − (γH + µH)IH , (S2)

dRH
dt = γH IH − µHRH .

By adding the compartments Ahs and IV , Ars and Ari, A0s and A0i, then taking into account the fact that
Ahs + IV = Ah , Ars + Ari = Ar , A0s + A0i = A0 and λV (IH , IV ) + λ′V (IH , IV ) = ρAh , this model becomes the
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equivalent model (10):



dE
dt = bρA0A0 − (µE + ρE)E,

dL
dt = ρEE − (µL1 + µL2L + ρL)L,

dP
dt = ρLL − (µP + ρP)P

dAh
dt = ρPP + ρA0A0 −

(
µAh + ρAh

)
Ah , (S1)

dAr
dt = ρAhAh − (µAr + ρAr )Ar ,

dA0
dt = ρArAr − (µA0 + ρA0 )A0,



dSH
dt = ΛH − λH(IH , IV )SH − µHSH ,

dIH
dt = λH(IH , IV )SH − (γH + µH)IH , (S2)

dRH
dt = γH IH − µHRH .

(10)

If we replace λH(IH , IV ) by its expression in subsystem (S2), it becomes :

dSH
dt = ΛH − βHV IVSH

NH
− µHSH ,

dIH
dt = βHV IVSH

NH
− (γH + µH)IH , (S2)

dRH
dt = γH IH − µHRH .

Subsystem (S1) is the same as system (1) which we wrote previously in the following way :

X′ = f (X).

On the other hand, by posing :

Y =

 SH
IH
RH

 and g(X, Y) =


g1(X, Y)

g2(X, Y)

g3(X, Y)

 =



ΛH − βHV IVSH
NH

− µHSH ,

βHV IVSH
NH

− (γH + µH)IH ,

γH IH − µHRH


,

subsystem (S2) can be rewritten as :

Y ′ = g(X, Y).

Thus, system (10) can be rewritten: 
X′ = f (X),

Y ′ = g(X, Y).
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Consider

DH =


 SH

IH
RH

 ∈ R3
+
∣∣ 0 ≤ SH + IH + RH ≤ ΛH

µH

 .

Let :
DVH = DV ×DH ,

then
X*3 = (X*, Y*) ∈ DVH , with X* = (E*, L*, P*, A*

h , A*
r , A*

0) and Y* = (S*H , 0, 0)

is a disease-free equilibrium with mosquitoes of system (10). By Theorem 2.5, X* is globally asymptotically
stable for (S1) in DV when Rv > 1.
We obtain from subsystem (S2), the following limit system Y ′ = g(X*, Y) :

dSH
dt = ΛH − βHV I*VSH

NH
− µHSH ,

dIH
dt = βHV I*VSH

NH
− (γH + µH)IH , (S3)

dRH
dt = γH IH − µHRH .

Thus, according to Theorem 3.5, to show that X*3 is globally asymptotically stable for system (10) inDVH when
Rv > 1 and R0 < 1, just show that Y* is globally asymptotically stable for (S3) in DH when R0 < 1.

Theorem 3.6. The equilibrium point Y* is globally asymptotically stable for system (S3) in DH when R0 < 1.

Proof. Consider the following function :

V(Y) =
(
SH − S*H − S*H ln

SH
S*H

)
+ IH + RH with Y = (SH , IH , RH)T ∈ R3.

So, we have :
V(Y*) = 0 and ∀ Y ∈ R3 \

{
Y*
}
, V(X) > 0.

On the other hand
dV
dt =

(
1 − S*H

SH

)
dSH
dt + dIH

dt + dRH
dt .

We replace dSH
dt , dIH

dt and dRH
dt by their expressions to get

dV
dt =

(
1 − S*H

SH

)(
ΛH − βHV I*VSH

NH
− µHSH

)
+ βHV I*VSH

NH
− (γH + µH)IH + γH IH − µHRH .

As I*V = 0 therefore
dV
dt =

(
1 − S*H

SH

)
(ΛH − µHSH) − µH IH − µHRH .

Taking into account that
ΛH = µHS*H ,

we obtain :
dV
dt =

(
1 − S*H

SH

)(
µHS*H − µHSH

)
− µH IH − µHRH .

By rearranging, we obtain :
dV
dt = −µH

(SH − S*H)2
SH

− µH IH − µHRH .



Mathematical modeling | 227

From where
∀ Y ∈ R3 \

{
Y*
}
, dV

dt (Y) < 0.

So, V is a strict Lyapunov function when R0 ≤ 1.
Finally

dV
dt (Y) = 0 ⇐⇒ Y = Y*

1.

According to Lasalle’s invariance principle [20, 21, 27, 29], we deduce that Y* is globally asymptotically stable
for system (S3) in DH when R0 < 1.

We have just shown that X*3 is globally asymptotically stable for system (10), which allows us to do the fol-
lowing conclusion:

Theorem 3.7. The disease-free equilibrium with mosquitoes X*1 is globally asymptotically stable for system (7)
in DVH when R0 < 1.

We can write the endemic equilibrium point of system (10) as follows :

X*4 = (X*, Y**), with X* = (E*, L*, P*, A*
h , A*

r , A*
0) and Y** = (S**H , I**H , R**H ).

By Theorem 2.5, X* is globally asymptotically stable for (S1) in DV when Rv > 1.
We obtain from subsystem (S2), the following limit system Y ′ = g(X*, Y) :

dSH
dt = ΛH − βHV I**V SH

NH
− µHSH ,

dIH
dt = βHV I**V SH

NH
− K1IH , (S4)

dRH
dt = γH IH − µHRH .

So, to show that X*4 is globally asymptotically stable for system (7) in DVH when R0 > 1, just show that Y** is
globally asymptotically stable for system (S4) in DH when R0 > 1.

Theorem 3.8. The equilibrium point Y** is globally asymptotically stable for system (S4) in DH when R0 > 1.

Proof. Consider the following function :

V(Y) = NH − N**
H − N**

H ln NH
N**
H
, with Y = (SH , IH , RH)T ∈ R3,

so we have
V(Y**) = 0 and ∀ Y ∈ R3 \

{
Y**
}
, V(Y) > 0.

On the other hand
dV
dt =

(
1 − N**

H
NH

)
dNH
dt ,

which gives :
dV
dt (Y) =

NH − N**
H

NH
(ΛH − µHNH) because dNH

dt = ΛH − µHNH .

We have
ΛH = µHN**

H ,

which allows us to obtain :
dV
dt (Y) = −µH

(
NH − N**

H
)2

NH
.
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From where
∀ Y ∈ R3 \

{
Y**
}
, dV

dt (Y) < 0.

Then, V is a strict Lyapunov function when R0 > 1.
Finally

dV
dt (Y) = 0 ⇐⇒ Y = Y**.

According to Lasalle’s invariance principle [20, 21, 27, 29],we deduce that Y** is globally asymptotically stable
for system (S4) in DH when R0 > 1.

Wehave shown that X*4 is globally asymptotically stable for system (10),which allowsus to draw the following
conclusion:

Theorem 3.9. The endemic equilibrium point X*2 is globally asymptotically stable for model (7) in DVH when
R0 > 1.

4 Numerical simulations
The objective of this section is to corroborate by numerical results the mathematical theoretical results es-
tablished during the study of our models. The MATLAB technical computing software with the fourth-order
Runge-Kutta method is used to perform our numerical simulations.

4.1 Numerical simulations of vector model

In this part, we present some results of numerical simulations to predict the evolution of mosquitoes in the
case of persistence and extinction. Our initial conditions are as follows: E(0) = 150, L(0) = 25, P(0) =
10, Ah(0) = 55, Ar(0) = 19 and A0(0) = 12. The numerical values of the parameters used are summarized
in Table 5.

Table 5: Numerical values of the mosquito model parameters.

Symbols Values for persistence Values for extinction Range Sources Units
b 100 50 50–300 [23, 31] –
ρE 0.50 0.33 0.33–1.0 [14, 31] /day
ρL 0.16 0.08 0.08–0.17 [14, 31] /day
ρp 0.50 0.33 0.33–1.0 [14, 31] /day
µE 0.56 0.80 0.32–0.80 [23, 25] /day
µL1 0.44 0.58 0.30–0.58 [23, 25] /day
µL2 0.05 0.05 0.0–1.0 [21, 23] /day/mosq
µp 0.37 0.52 0.22–0.52 [23, 25] /day
ρAh 0.46 0.322 0.322–0.598 [6, 23] /day
ρAr 0.43 0.30 0.30–0.56 [6, 23] /day
ρA0 3 3 3.0–4.0 [6, 23] /day
µAh 0.18 0.233 0.125–0.233 [6, 23] /day
µAr 0.0043 0.01 0.0034–0.01 [6, 23] /day
µA0 0.41 0.56 0.41–0.56 [6, 23] /day
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4.1.1 Dynamics of vector model forRv > 1

For the case of the persistence of mosquitoes, we obtain the curves of Figures 3, 4 and 5.

Figure 3: Distribution of population of eggs, larvae and pupae when ra ≃ 7.2291, rg ≃ 0.6261 >
1

ra + 1
and Rv ≃ 12.1037 >

1.

Figure 4: Distribution of Ah, Ar and A0 mosquito population when ra ≃ 7.2291, rg ≃ 0.6261 >
1

ra + 1
and Rv ≃ 12.1037 > 1.

Figure 5: Combined curves of different populations for ra ≃ 7.2291, rg ≃ 0.6261 >
1

ra + 1
and Rv ≃ 12.1037 > 1.

These curves describe the evolution of the different classes of the female mosquito population for ra ≃
7.2291, rg ≃ 0.6261 > 1

ra + 1
and Rv ≃ 12.1037 > 1. We observe a persistence of the population of the

different classes and the solution X = (E, L, P, Ah , Ar , A0) of system (1) converges towards the equilibrium
point of persistence of mosquitoes X*1 = (1981, 133, 24, 50, 53, 7), which is globally asymptotically stable,
which confirms the result obtained in Theorem 2.5.
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4.1.2 Dynamics of vector model forRv < 1

By using the initial conditions given previously and the values of parameters for the case of extinction stated
in Table 5, we obtained the curves of Figures 6, 7 and 8.

Figure 6: Distribution of population of eggs, larvae and pupae when ra ≃ 0.6871, rg ≃ 0.4731 <
1

ra + 1
and Rv ≃ 0.6171 <

1.

Figure 7: Distribution of Ah, Ar and A0 mosquito population when ra ≃ 0.6871, rg ≃ 0.4731 <
1

ra + 1
and Rv ≃ 0.6171 < 1.

Figure 8: Combined curves of different populations for ra ≃ 0.6871, rg ≃ 0.4731 <
1

ra + 1
and Rv ≃ 0.6171 < 1.

The curves obtainedheredescribe the evolutionof thedifferent classes of the femalemosquitopopulation
for ra ≃ 0.6871, rg ≃ 0.4731 < 1

ra + 1
andRv ≃ 0.6171 < 1.We observe an extinction of the different popu-

lations of each class from a certain time. In addition, we note that the equilibrium point X*0 = (0, 0, 0, 0, 0, 0)
is globally asymptotically stable, which confirms the result obtained in Theorem 2.4.
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Remark 4.1. We note that the threshold Rv has a considerable influence on the evolution of the mosquito pop-
ulation and this, at each stage of their evolution. In fact, the more this threshold increases, the more the number
of eggs, larvae and pupae increases, which leads to the growth of adult mosquito populations Ah , Ar and A0.
Moreover, if this parameter is less than or equal to one, then the mosquito population converges towards a state
of extinction, while if it is strictly greater than one, there is a proliferation of the vector population. So, it is a
good control parameter of vector density. It will then be a question of finding suitable control methods which
will minimize this threshold as much as possible in order to reduce the population of adult mosquitoes or to
eradicate them. Some of these methods would then aim at reducing the parameter rg, which would lead at the
same time to reduce the threshold parameter Rv.

4.2 Numerical simulations of the transmission dynamics model

Here we are interested in the numerical simulation of our transmission model under the influence of the
mosquitomodel through the thresholdRv. In otherwords, our objective is to obtain the curves of the evolution
of the disease in the human population in the case of persistence of the female mosquito populations.

4.2.1 Dynamics of the transmission model forRv > 1 andR0 < 1

The numerical values of the parameters that we use in this part are those of persistence in Table 5, except µL2
which we replace by 0.0005 and those of the following Table 6 :

Table 6: Numerical values of other parameters in the case of extinction of the disease.

Parameters Values Sources Units
βVH 0.27 [20, 21] /day
βHV 0.15 [20, 35] /day
ΛH 900 [20, 21] humans/day
µH 0.025 [20, 34] /day
γH 0.42 [20, 21] /day

The initial conditions are : E(0) = 150, L(0) = 25, P(0) = 10, Ahs(0) = 55, Ars(0) = 19, A0s(0) = 12,
Ari(0) = 20, A0i(0) = 10, Iv(0) = 15, SH(0) = 50, IH(0) = 10 and RH(0) = 45.
We thus obtain the curves of the following figures : Figures 9, 10, 11 and 12.

Figure 9: Distribution of population of eggs, larvae and pupae when Rv ≃ 12.1037 > 1 and R0 ≃ 0.2170 < 1.

In these figures, we observe a growth until stabilization of the population of eggs, larvae, pupae,
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Figure 10: Distribution of Ahs, Ars and A0s mosquito population when Rv ≃ 12.1037 > 1 and R0 ≃ 0.2170 < 1.

Figure 11: Distribution of Ari, A0i and IV mosquito population when Rv ≃ 12.1037 > 1 and R0 ≃ 0.2170 < 1.

Figure 12: Distribution of the population of susceptible humans, infectious humans and recovered humans when Rv ≃
12.1037 > 1 and R0 ≃ 0.2170 < 1.

Ahs , Ars and A0s mosquitoes and susceptible humans SH while that of Ari , A0i and IV mosquitoes, in-
fectious humans IH and recovered humans RH decreases until canceled. The disease therefore disap-
pears after a certain time. The parameters used allow us to obtain Rv ≃ 12.1037 > 1 and R0 ≃
0.2170 < 1 and the solution of transmission model (7) converges towards the disease-free equilibrium
X*1 = (2091509, 14404, 2649, 5534, 5861, 739, 0, 0, 0, 36000, 0, 0) which is globally asymptotically sta-
ble. This result clearly illustrates our theoretical result obtained in Theorem 3.7.

4.2.2 Dynamics of the transmission model forRv > 1 andR0 > 1

The initial conditions in this part are : E(0) = 150, L(0) = 25, P(0) = 10,Ahs(0) = 55,Ars(0) = 19,A0s(0) = 12,
Ari(0) = 40, A0i(0) = 10, Iv(0) = 25, SH(0) = 25, IH(0) = 10, RH(0) = 55.
The numerical values of the parameters that we use in this part are those of persistence in Table 5, except µL2
which we replace by 0.000011 and those of the following table : Table 7.
Thus, we obtain the curves of Figures 13, 14, 15 and 16. On these figures obtained for Rv =
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Table 7: Numerical values of other parameters of the model in the case of disease persistence.

Parameters Value Sources Unity
βVH 0.37 [20, 21] /day
βHV 0.25 [20, 35] /day
ΛH 900 [20, 21] humans/day
µH 0.025 [20, 34] /day
γH 0.42 [20, 21] /day

Figure 13: Distribution of population of eggs, larvae and pupae when Rv ≃ 12.1037 > 1 and R0 ≃ 2.2115 > 1.

Figure 14: Distribution of Ahs, Ars and A0s mosquito population when Rv ≃ 12.1037 > 1 and R0 ≃ 2.2115 > 1.

Figure 15: Distribution of Ari, A0i and IV mosquito population when Rv ≃ 12.1037 > 1 and R0 ≃ 2.2115 > 1.

12.1037 > 1 and R0 ≃ 2, 2115 > 1, we observe a growth until complete stabiliza-
tion of the populations of different classes of our transmission model (7). We are indeed notic-
ing a persistence of mosquito and human populations with persistence of the disease. The solution
(E, L, P, Ahs , Ars , A0s , Ari , A0i , IV , SH , IH , RH) of this transmission model (7) converges globally towards en-
demic equilibrium X*2 = (87175472, 600184, 110379, 217745, 222488
, 28056, 21773, 2746, 12870, 7876, 1580, 26544), which illustrates the result obtained in Theorem 3.9.
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Figure 16: Distribution of the population of susceptible humans, infectious humans and recovered humans when Rv ≃
12.1037 > 1 and R0 ≃ 2.2115 > 1.

Remark 4.2. We retain from these results that the behavior of the disease in the different populations is gov-
erned by the threshold parameter R0. Indeed, when this is less than or equal to one, the disease disappears
and when it is strictly greater than one, there is persistence of the disease.Thus, the control methods against
vector-borne diseases due to mosquitoes must aim at influencing the parameters related to this rate in order to
minimize it. One of the approaches must then consist in reducing to the maximum by suitable methods of con-
trol the rate of passage of the gonotrophic cycle rg in order to reduce at the same time the rate Rv, then the rate
R0. We can therefore affirm that the gonotrophic cycle has a great influence on the transmission mechanism of
vector-borne diseases and it is therefore very important to give an interest to it in the context of the fight against
these epidemics.

5 Conclusion
In this work, we were interested in the modeling and the mathematical analysis of the dynamics of vector-
borne diseases transmitted by mosquitoes, which are endemic diseases that plague the world’s poverty belt,
particularly in Africa. We started with the presentation of a model describing the evolution of the mosquito
population, in particular the aquatic phase and the gonotrophic cycle due to A. M. Lutambi et al. [23]. After
this step, we presented the mathematical results they obtained and our mathematical contribution to this
model. Indeed, this mathematical analysis revealed the existence of a threshold parameter Rv which makes
it possible to predict the evolution of the vector density in the area. Indeed, the extinction of the mosquito
population is governed by the condition Rv < 1 while mosquitoes invade the area when Rv > 1. This first
study highlighted the need to take into account the immature stages and the gonotrophic cycle in strategies
to fight against these diseases because they constitute the manufacturing plant of anopheles and therefore
one of the sources of the problem.

Then, in order to know the impact of the stages constitutive of the mosquito’s life on the transmission
dynamics of the vectorial disease, we developed a mathematical model of the transmission dynamics of the
disease by coupling the two models previously studied. The mathematical study of this model revealed the
existence of another threshold parameterR0 which, when it is greater than one (R0 > 1), the disease persists
giving an endemic equilibrium point with mosquitoes which is generally stable and when it is less than one
(R0 < 1), the disease disappears giving a disease-free equilibrium point with an overall stable mosquitoes
population. We were also able to establish a relationship between Rv and R0 which shows that the spread
of the disease is governed by these two threshold parameters. The fundamental result of this study is the
following: the vector density regulation threshold is a very important parameter that can intervene in control
strategies for vector-borne diseases transmitted by mosquitoes because it influences considerably the basic re-
production rate. These results therefore demonstrate the great need to consider the stages that make up the
aquatic stage and the gonotrophic cycle of mosquitoes in plans for the eradication of vector-borne diseases.
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The last stage of our work consisted in presenting some results of numerical simulations, in order to
illustrate our theoretical results. The observations are that these results are in conformity with our previously
established theoretical results.

In our future work, we would like to take into account control strategies in these two studied models in
order to highlight the most suitable control strategy to the fight against mosquitoes borne diseases, taking
into account the different classes of adult mosquitoes.
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