DE GRUYTER OPEN Nonauton. Dyn. Syst. 2015; 2:1-11

Research Article Open Access

Mark O. Gluzman, Nataliia V. Gorban, and Pavlo O. Kasyanov*

Lyapunov Functions for Weak Solutions of
Reaction-Diffusion Equations with
Discontinuous Interaction Functions and its
Applications

Abstract: In this paper we investigate additional regularity properties for global and trajectory attractors of
all globally defined weak solutions of semi-linear parabolic differential reaction-diffusion equations with
discontinuous nonlinearities, when initial data u; € L*>(Q). The main contributions in this paper are: (i) suf-
ficient conditions for the existence of a Lyapunov function for all weak solutions of autonomous differential
reaction-diffusion equations with discontinuous and multivalued interaction functions; (ii) convergence re-
sults for all weak solutions in the strongest topologies; (iii) new structure and regularity properties for global
and trajectory attractors. The obtained results allow investigating the long-time behavior of state functions
for the following problems: (a) a model of combustion in porous media; (b) a model of conduction of electrical
impulses in nerve axons; (c) a climate energy balance model; (d) a parabolic feedback control problem.
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1 Introduction

Let Q ¢ RN, N > 1, be a bounded and open subset with a smooth boundary 0Q, g : @ xR — Rbea
measurable function, f1, f> : Q x R — R are some real measurable functions such that f;(x, -) is convex for
a.e.x € Q,i =1, 2. We denote by of;(x, u) the subdifferential of a function f;(x, -) at a point u for a.e. x € Q,
foreachu € R, i = 1, 2. Note that u” € 9f;(x, u) if and only if u" (v - u) < fi(x, v) - fi(x, u) Vv € R.

We consider the semilinear reaction-diffusion equation with discontinuous/multivaluated nonlinearity:

us - Au+ofi(x, u) - ofa(x,u) 3 glx, ) in @ x (1, T), (-00<T<T < +o0), (1.1

with Dirichlet (or Neumann) boundary condition

u}aQ=O (org—;bg:o). (1.2)

In many applications in the climatology and Earth sciences (a climate energy balance model; see, for ex-
ample, Diaz et al. [11-13]), biology and medicine (a model of conduction of electrical impulses in nerve axons;
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see, for example, Terman [40, 41]), evolution models of mechanics (a model of combustion in porous media;
see, for example, Feireisl and Norbury [15]) etc, if the exterior force g satisfies the following stabilization like
assumption: there exists g : Q — R such that all the integrals in the following formula exist and

t+1

//\g(x, t)—gm(x)|2dxdt—>0, t — +oo, (1.3)
t 0

then the long-time behaviour of solutions of problem (1.1)-(1.2) is described by the respective autonomous
problem with the exterior force g-; see Remark 1.5 below and Diaz et al [12] (see also Ball [4, Section 6]). Of
course even if all solutions on the non-autonomous problem converge to the same attracting set of the respec-
tive autonomous problem, the dynamical properties in the non-autonomous setting are inherently different
from the autonomous one (such as for example the concept of invariance). Therefore, we focus our efforts
in the direction of problem (1.1)—(1.2) with the exterior force g-. Since the interaction functions of; and of>
depend on x, further, to simplify the conclusions, we assume that g.. = 0.

The main purpose of this paper are : (i) to prove the existence of a Lyapunov type function and justify
energy equalities for all weak solutions of problem (1.1)—(1.2) in the autonomous case (see Theorem 2.2); and
(ii) to investigate the long-time behavior of all weak solutions of problem (1.1)-(1.2), as time ¢t — +oo, in
strongest topologies (see Theorem 3.5).

We note that a large class of important models for distributed parameters control problems are also in-
cluded in the formulation (1.1)-(1.2). In this sense, the set of (x, u) - of>(x, u) can be considered as an admis-
sible control set. The obtained results are applied to the following problems: (i) stabilization of a parabolic
feedback control problem; (ii) a model of combustion in porous media; (iii) a model of conduction of electrical
impulses in nerve axons; and (iv) a climate energy balance model; see Section 5.

We shall use the following standard notations: H = L?(Q), V = H}(Q) for homogeneous Dirichlet bound-
ary conditions (V = H'(Q) for homogeneous Neumann boundary conditions), V' is the dual space of V.

Suppose that the following assumptions hold:

Assumption 1.1. (Growth condition) there exist co € L'(Q), co(x) = O for a.e. x € Q, and ¢, = 0 such that
lu;|? < co(x) + c1|ul? for a.e. x € Q, foreachu € R, and u; € dfi(x,u),i=1,2;

Assumption 1.2. (Sign condition) there exists A < Ay, where A is the first eigenvalue of A in H}(Q), and
¢y € LY(Q), c2(x) = 0 for a.e. x € Q, such that (u] — u5)u = -Au? - c,(x) for a.e. x € Q, for each u € R, and
u; € ofi(x,u),i=1,2.

Definition 1.3. Let —o0 < T < T < +oo. The function u(-) € L*(t, T; V) is called a weak solution of problem
(1.1)-(1.2) on [, T], if there exists a measurable function d : Q x (1, T) — R such that

dx, t) € ofi(x, ulx, t)) - ofr(x, ulx, t)) fora.e.(x,t) € Qx(t,T); (1.4)

and
T

_/<u’§>dt+,/TQ/(W’W)dXdHT/TQ/(d’ {)dxdt=T/T!(g, &), (1.5)

T

forall ¢ € C5°(Q x (1, T)), where (-, -) denotes the pairing in space V.

Remark 1.4. Let Assumptions 1.1 and 1.2 hold. Let —oo < T < T < +oo. Then for each weak solution u(-) of
problem (1.1)-(1.2) on [, T] there exist measurable functions d;,d> : Q x (t, T) — R such that d;(x, t) ¢
ofi(x, u(x, t)) fora.e. (x,t) € Qx(1,T),i=1,2;and d(x, t) = di(x, t) - d,(x, t) for a.e. (x,t) € Q x (1, T).
Indeed, according to Definition 1.3 there exists a measurable function d : Q x (1, T) — R satisfying (1.4) and
(1.5). Assumption 1.1 implies that d(-) € L?(z, T; H). Moreover, d(-) € oJ1(u(-)) - 0J,(u(-)), where J;(v(-)) =
fTT Jo file, v(x, t)dxdt, v(-) € L*(t,T;H), i = 1,2, because oJ;(u()) = {p(-) € L?(r,T;H) : p(x,t) €
ofi(x, u(x, t)) fora.e. (x, t) € Qx (1, T)}, i = 1, 2; see, for example, Aubin-Clarke Theorem [10, Theorem 2.7.5,
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p. 83] (see also Clarke [10, Proposition 2.3.6, p. 40]). Thus, there exist measurable functions di,d, : Q x
(t, T) — Rsuchthat d;(x, t) € ofi(x, u(x, t)) fora.e. (x,t) € Qx(tr,T),i=1,2;and d(x, t) = d1(x, t) - d,(x, t)
fora.e. (x,t) € Q x (1, T).

Remark 1.5. Let oo < T < T < +oo and g € L%(1, T; H). We note that each weak solution of problem
(1.1)-(1.2) on [1, T] is regular, that is, if u(-) is a weak solution of problem (1.1)—(1.2) on [z, T], then u(-) €
C(r+e, T; V)NL2(t +¢, T; H(Q) N V) and us(+) € L2(t + ¢, T; H), for each & € (0, T - 7); cf. Kasyanov et al.
[28, Theorem 1]. Moreover, each weak solution of problem (1.1)—(1.2) can be extended to a global one defined
on [0, +o0); see Zgurovsky et al. [46, p. 62].

Sufficient conditions for the existence of a Lyapunov function for autonomous evolution inclusions of hyper-
bolic type were considered by Kasyanov et al. [31, 45, 48]. Arrieta et al. [1] constructed a Lyapunov function
for the equation u; — uxx = wu + H(u), where O < w < 1%, H is a Heaviside function: H(0) = [-1, 1], H(s) = 1
for s > 0, H(s) = -1 for s < 0. We remark that the existence of a Lyapunov function for a class of parabolic
feedback control problems and its applications were already announced in Gluzman et al. [17].
The global attractors for such kind of systems were at first proved in Valero [42]. Kalita and Eukaszewicz [23,
24] also imply the existence of the global attractor for the problems under consideration. Regularity properties
of global and trajectory attractors were provided by Gorban et al. [19-21, 26, 28].

In this article we also provide a Lyapunov function and the strongest convergence results for quasilinear
parabolic PDEs with discontinuous and/or multivalued nonlinearities in a general setting.

2 AlLyapunov Function of All Weak Solutions and its Application to
the Convergence

Let g = 0. Let us consider the family X of all weak solutions of problem (1.1)—(1.2) defined on the semi-
infinite interval [0, +o0). We note that K is translation invariant , that is u(- + h) € X, for each u(:) € K, and
foreach h > 0.

Let us consider problem (1.1)—(1.2) on the entire time axis. A function u € L*(R; H) is called a complete
trajectory of problem (1.1)-(1.2), if IT,u,(-) € K. for each h € R, where II. is the restriction operator to the
interval [0, +o0) and uy(s) = u(s + h), s 2 0.

Let X be the family of all complete trajectories of problem (1.1)-(1.2). According to Remark 1.5 and
Theorem 2.3 below, each complete trajectory u(-) of problem (1.1)-(1.2) satisfies the following: IT; ru(-) €
Cioc(l, TI; V) N L*(1, T; HX(Q) N V) and IT; ru,(+) € L*(t, T; H) for each —co < T < T < +oo, where II, 1 is the
restriction operator to the interval [, T]; Chepyzhov and Vishik [7, p. 18]. Moreover, there exists C > 0 such
that for each u(-) € X the following estimate holds:

[u(®lly < C(1 + |ju(t - )||) for each t € R.

Therefore, in particular, each bounded (in H) complete trajectory is bounded in V.
A complete trajectory u(-) € X is stationary if there is z € H2(Q) N V such that u(t) = z forall t € R. Each
such z is called a rest point. We denote the set of all rest points by Z.

Definition 2.1. E : V — R is a Lyapunov function for X, if the following conditions hold: (a) E is continuous
on V; (b) E(u(t)) < E(u(s)) wheneveru ¢ X, and t > s > 0; (c) if E(u(-)) = const, for some u ¢ X, then u is
stationary.

Let us set 1
EG) = / VuC)Pdx + J1) - o), uev, 1)
0]

where J;(u) = [, filx,u())dx,u e H,i=1,2.
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Assumption 1.1implies that there exist c; € L'(Q), c3(x) = Ofora.e. x € Q, and ¢, = O such that IfiCx, u)| <
c3(x) + c4|ul? for a.e. x € Q, and for each u € R, i = 1, 2. Therefore, the functions J;(u) = fgfi(x, u(x))dx,
uecH,i=1,2,are correctly defined.

Theorem 2.2. Let g = 0. Let Assumptions 1.1-1.2 hold. Then, the function E : V — R, defined in (2.1), is a
Lyapunov function for X.. Moreover, foreachu € X, and alltand T, 0 < T < T < oo, the energy equality holds

T
E(u(T)) - E(u(r)) = _/Hut(S)HIZ-IdS- 2.2)

Proof. By the definition the function E is continuous on V, that is statement (a) of Definition 2.1 holds.

Let us prove statement (b) of Definition 2.1. Let u(-) € X, be arbitrary and fixed andlet 0 < 7 < T < oo, We
denote the restriction of u(-) on [t, T] by the same symbol u(-). Note that u(-) € C([r, T]; V)N L?(z, T; H*(Q)N
V)and u(-) € L*(r, T; H), because T > 0; cf. Kasyanov et al. [28, Theorem 1]. Then the mapping ¢ — ||u(f)||§ =
/, o IVulx, t)|?dx is absolutely continuous on [, T] and for a.e. t € (1, T) the equality holds:

%Hu(t)\l%/ =-2 / au(a);, t)Au(x, tdx; (2.3)
Q

Gajewski et al. [16, Chapter IV].

Letd : Qx (1, T) — R be the function from (1.4)-(1.5) and d;, d> € L*(r, T; H) be the functions from
Remark 1.4. Barbu [6, Lemma 2.1, p. 189] yields that the function J;(u(-)) is absolutely continuous on [, T]
and for a.e. t € (1, T) the following equality holds:

0 = [ e, 0245 D, (4)
0

for all measurable h;, h;(-, t) € 0Ji(s)|s-y( forae. t € (r,T),i=1, 2.

Thus, the function E(u(-)) is absolutely continuous on [7, T] as the linear combination of absolutely con-
tinuous on [, T] functions. According to formulae (2.3) and (2.4), %E(u(t)) = —|lug(8)||4 fora.e. t € (r, T). The
last statement implies (2.2). In particular, E(u(t)) < E(u(s)) whenever T > t > s > 7 > 0. Since u(-) € X+ and
0 < 7 < T < oo are arbitrary, statement (b) of Definition 2.1 and the energy equality (2.2) hold.

To finish the proof we note that if E(u(-)) = const, for some u ¢ X, then, according to energy equality
(2.2), u is stationary. O

Zgurovsky et al. [46, p. 56] and Kasyanov et al. [28, p.274] proved that for 7 < T and for each weak solution
u(-) of problem (1.1)-(1.2) on [, T] the following inequality holds:

U@l < |uls)|Ze 2 ) + % Vrsss<t<T, (2.5)

where &” = A; -Aand a = [, c2(x)dx.

Further on V N H2(Q) we define the equivalent norm v — || Av||z; Temam [39, Chapter III].

Before the proof of convergence results for all weak solutions in the strongest topologies, we need to
provide some additional estimates for weak solutions of problem (1.1)—(1.2).

Theorem 2.3. Let g = 0. Let Assumptions 1.1-1.2 hold. Then, there exists C > O such that for any T < T and for
each weak solution u(-) of problem (1.1)-(1.2) on [1, T] the inequality holds

t
(t-)|u®|y + /(s - T)||u(s)||§p(9)mvds < C(L+ |lu(®)|Z+(t-1)%) vte(r,T).

Remark 2.4. The proof of Theorem 2.3 is similar to the proof of Theorem 2 from Kasyanov et al. [28], however
it was proved under another assumptions on the interaction function.
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Proof. Let T < T and u(-) be an arbitrary weak solution of problem (1.1)-(1.2) on [1, T]. We fix e € (0, T - 7).
Since u(-) € C([t + &, TI; V)N L*(t + &, T; H*(Q) N V) and u; € L*(t + &, T; H), then ||u(-)||% and ||u(-)||% are
absolutely continuous on [7 + ¢, T] and the following equalities hold: % lu(®|Z = -2 Jo %Au(x, t)dx and
%Hu(t)”%{ =2/, %u(){, t)dx, for a.e. s € (t + &, T); Gajewski et al. [16, Chapter IV]. Let ¢* = Jo cox)dx
and Cmax = 2 max{c*, c1}, where co(x) and c; are parameters from Assumption 1.1.

Assumptions 1.1, 1.2 imply that the following inequalities hold

|- O+ S|+ == O e

IN

u(s)||% <2c1 + % +4ci(s—-T- e)) +(2c" +4c’(s-1-¢)
(2.6)

IN

1
Cmax + 5 + 2emax(s =7 =€) ) ([u(s)[ + 1)

< | Cmax + % +2Cmax(s =T - €) (Hu(T)H%Ie‘zg(s‘T) + g + 1) ,

fora.e.s € (t+¢, T), where the last inequality follows from (2.5). The inequality (2.6) and Kasyanov et al. [28,
p. 275] yield

t
Hu(t)uzv(t-m/(s-r)||u(s)||},2(mmvdssC((t-r)2+||u(r)||§+1), vt e (r, T]

T
where C > 0 is a constant that does not depend on 7, T, &, and u(-). O
For any ur € H we set
Der(ur) = {u(-) € L*(1, T; V)| u(-) is a weak solution of problem (1.1)-(1.2) and u(r) = ur}.

The main convergence result for all weak solutions of problem (1.1)-(1.2) in the strongest topologies has
the following formulation (see also Example 4.1).

Theorem 2.5. Let g = 0. Let Assumptions 1.1-1.2 hold, T < T, ur,n — ur weakly in H, un(-) € Dy r(uz,n) for
each n = 1. Then there exists an increasing sequence {ny }y»; of natural numbers and u(-) € D r(ur) such that

sup [Jun, () - u(t)||y — O, .7
te[r+e,T)

T
/ g e(6) ~ (B[t — 0, 2.8)

T+E

ask — +oo, foralle € (0, T - 7).
Proof. Theorem 2.3, Kasyanov et al. [28, Theorem 3], Banach-Alaoglu theorem, and Cantor diagonal argu-
ments yield that there exist an increasing sequence {n; }; of natural numbers and u(-) € D r(ur) such that
the following statements hold: a) the restrictions of uy, (-) and u(-) on [t + €, T] belong to C([t + &, T]; V) N
L*(t + &, T; HX(Q) N V) and uy, ¢(-), u¢(-) € L*(t + &, T; H); b) the following convergence hold:

Un, () — u(-) weakly in L*(t+¢&, T; HX(Q)N V),

Un, (+) — u(-) strongly in C([t + ¢, T]; V), (2.9)

Un,,:(-) = us(-) weakly in L*(t +¢&, T; H),

as k — oo, for each € € (0, T - 1), that imply statement (2.7). Let us prove (2.8). Theorem 2.2 yields the
following energy equalities

T
/ lue(OlI3dt = Eu(r +¢)) - E@(T), (2.10)

T+E
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T
/ g (O3t = Eun, (¢ + £)) ~ E(un (T)), 2.11)

k=1, e¢c (0, T-1). The continuity of E on V and (2.7) imply
E(un, (1 + €)) = E(un, (T)) — E(u(t + €)) - E(u(T)), m — oo. (2.12)

Therefore, formulae (2.10)-(2.12) yield

T T
/ (O3t / luc O, 2.13)
T+E T+E

as k — oo, foreach € € (0, T - 7). Since, L2(t + €; T) is a Hilbert space, (2.9) and (2.13) imply (2.8).
O

Define real Banach space W(My, M>) = {u(-) € C([M1, M;}; V) : u.(-) € L>(My, M>; H)} with the norm
IO lwt, ) = MO eqan, vy + 1eOl L2, 0530 U() € WMy, M3), —o0 < My < M < +o0. Note that the
existence of a Lyapunov type function allowed us to obtain the strongest convergence results in the space
W(t+¢, T) for all weak solutions of problem (1.1)-(1.2) on [7, T], where —co < T < T < +oo (see also Example 4.1
below).

3 Structure Properties and Regularity of Global and Trajectory
Attractors

In this section we prove the existence of trajectory and global attractors for all weak solutions of problem
(1.1)-(1.2) and investigate their structure and regularity properties.
We denote the set of all nonempty (nonempty bounded) subsets of H by P(H) (B(H)).

Definition 3.1. The multivalued map G : R. x H — P(H) is called a strict multivalued semiflow (strict m-
semiflow) if:

a) G(0, -) = Id (the identity map);

b) G(t +s, x) = G(t, G(s,x)) vx € H, t,s € R..

Define the multivalued map G : R x H — P(H) in the following way:

G(t, uo) = {u(®) | u(-) € X+, u(0) = uo}. (€AY
Theorem 3.2. Let g = 0. Let Assumptions 1.1-1.2 hold. Then, the multivalued map G : R. x H — P(H) is a
strict m-semiflow.
Proof. The proofrepeats several lines from Zgurovsky et al. [46, Lemma 2.7, p. 55] (see also Morillas and Valero
[35, Lemma 7]). O
Let distx(C, D) = sup }ng |lc - d||x denote the Hausdorff semidistance between nonempty subsets C and D of

ceC d&

a Banach space X.
Definition 3.3. Theset A C H is called an invariant global attractor of G if the following three conditions hold:

1) A is invariant, that is A = G(t, A) foreach t = 0;
2) A be an attracting set, that is for each nonempty bounded subset B C H,

disty(G(t,B), A) = 0, t — +oo; (3.2)
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3) for any closed set Y C H satisfying (3.2), we have A C Y (minimality).

Let {T(h)} =0 be the translation semigroup acting on X, that is T(h)u(-) = u(- + h), h = 0, u(:) € K+. On X,
we consider the topology induced from the Fréchet space C;,.(R+; H). Note that fu(-) — f(-) in C;,(R+; H) if
and only if VM > 0 ITy pfn(:) — Ho mf(+) in C([0, M]; H).

Definition 3.4. A set U C XK. is called a trajectory attractor in the trajectory space X. with respect to the
topology of Cic(R+; H), if U C K. is a global attractor for the translation semigroup {T(h)} .o acting on K.;
Kasyanov et al. [28, Section 3].

The following theorem yields new structure and regularity properties for global and trajectory attractors for
all weak solutions of problem (1.1)—(1.2).

Theorem 3.5. Let g = 0. Let Assumptions 1.1-1.2 hold. Then the following statements hold:
(i) the strict m-semiflow G : R, x H — P(H) has the invariant global attractor A;

(ii) there exists the trajectory attractor U C X in the space K.;

(iii) the following equalities hold:

U=TILXK = {u(-) € X+ |u(t) € AVt € R} = {u() € K+ | u(0) € A}; (3.3)

(iv) A is a compact subset of V;

(v) foreach B € B(H) disty(G(t, B), A) — 0, t — oo;

(vi) Uis a bounded subset of L>°*(R+; V) and Iy U is compact in W(0, M) for each M > 0;

(vii)for any bounded in L= (R+; H) set B C K. and any M = 0 the following relation holds:
diStW(O’M)(HO,MT(t)B, HO,MU) — 0, t— +oo;

(viii)X is a bounded subset of L=°(R; V) and Il U is compact in W(0, M) for each M > 0;

(ix) for each u € X the limit sets

a(u) = {z € V| u(t;) — zin V for some sequence t; — —oo},

w(u) = {z € V| u(tj) — zin V for some sequence t; — +oo}

are connected subsets of Z on which E is constant. If Z is totally disconnected (in particular, if Z is countable)
the limitsin V
z-= lim u(t), z+= lim u(t)
t——oo t—+oo

exist and z-, z. are rest points; furthermore, u(t) tends in V to a rest point as t — +oo for every u € X..

Proof. Statements (i)—(iii) follow from Kasyanov et al. [28, Theorems 4-6] (see also references therein). Ac-
cording to Theorem 2.3 and the third equality from formula (3.3), since T(h)X = X for each h € R, then X C
Cioc(R; V) is a bounded subset of L°(R; V). Therefore, the first equality from (3.3) yields that U C C;,(R+; V)
is a bounded subset of L*°(R.+; V) and A is a bounded subset of V.

Let us fix a positive constant M and a bounded in L=(R+; H) set B C X.. If t, — +oo be arbitrary, then
for each n = 1 there exists zn(-) € Iy, T(tn)B such that

. . 1
dIStW(O,M)(HO,M T(tn)B, HO,MU) )I%f U ||Zn() - y(')HW(O,M) + E (34)

<
y()EIIom
On the other hand, for each n = 1 there exists yx(-) € IIp »U such that

1
Zn()=yn(*) g < inf zZn() = y() g + =
lzn(-)=yn HC([O,M],H) y(-)eHO,MuH n y HC([O,M],H) n 53)
< dist o,y (o, m T(0)B, g p W) + % —0, n-—oo,
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because of statement (ii). Since the subsets U and B of X+ C C;,.(R+; H) are bounded in L*°(R.+; H), then the
sequence {yn(0), zn(0)} n»1 is bounded in H. Therefore, Theorem 2.5 yields that the set {zn(-) = yn(:) : n = 1}
is precompact in W(0, M). According to (3.5) the following convergence holds: [zn(-) = yn(-)lw(, m) — O as
n — oo. Thus, inequality (3.4) imply statement (vii).

Statement (v) follows from statements (iii), (vii), and the definition of G (see formula (3.1)). Statements
(iv), (vi), and (viii) follow from Theorem 2.5 and the boundedness of Ain V C H, UWin L=(R+; V) C L= (R+; H),
and X in L=(R; V) c L*(R; H) respectively. Finally, statement (ix) follows from Theorem 2.2 and Ball [5,
Theorem 2.7]. O

4 Counterexample

In the following example we provide that the family Z of the rest points of problem (1.1)-(1.2) is not a pre-
compact subset in H2(Q) N H}(Q). Therefore, since Z ¢ H?*(Q) N H(Q) is a bounded subset, then (i) the
global attractor A from Theorem 3.5 is not a compact subset of H2(Q) N H3(Q); (ii) the trajectory attractor
U from Theorem 3.5 is not a compact subset of LIZOC(R+; H%(Q) N HA(Q)); (iii) strong convergence results (see
Theorem 2.5) do not hold in L2 ((R+; H*(Q) N Hy(Q)).

Example 4.1. Let N=1, Q= (0, 1), fi(x,u) =0, fo(x,u) = f(u) = |u|, x € Q, u € R. Consider the problem:

Au+0f(u)20inQ, uf 0. (4.1)

x=0,1 _

Let us set
1, ifxeA,
0, otherwise,

I{x € A} :={

A C R, x € R. Problem (4.1) has a countable number of solutions:

n-1 _ky2 _k
Mo =0, (=23 (-1 (-(" o) +(X2n")>l{x6 el

k=0

x € Q,n=1,2,...; cf. Diaz and Tello [14]. Therefore, the subsequence {udi}k=1,2,... C {Untn=1,2,.. is or-
thonormal in H2(Q) N H}(Q). Thus, the set Z of solutions of problem (4.1) is not precompact in H>(Q) N H3(Q).

5 Applications

Let us concentrate on the following four types of applications: (i) a parabolic feedback control problem; (ii) a
model of combustion in porous media; (iii) a model of conduction of electrical impulses in nerve axons; and
(iv) a climate energy balance model.

Example 5.1. (A parabolic feedback control problem). In a subset Q of R?, we consider the nonstationary
heat conduction equation
oy

St - Ay =g(x, t) in Q x (0, +o0)

with initial conditions and suitable boundary ones. Here y = y(x, t) represents the temperature at the point
x € Qand time t > 0. It is supposed that g = g1 + g, where g, € H is given and g; is a known function of the
temperature of the form

-g1(x, t) € of1(x, y(x, 1)) — of2(x, y(x, ) a.e. (x,t) € Q x (0, +o0).

In a physicist’s language it means that the law is characterized by the generalized gradient of a nonsmooth
potential j = f1 - f5.
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If Assumptions 1.1 and 1.2 hold, then all statements of Theorems 2.2 and 3.5 hold. Statement (ix) of The-
orem 3.5 provides sufficient conditions for stabilization of the considered feedback control problem.

Example 5.2. (A model of combustion in porous media). We consider the following problem:

{ U _ 2 _ f(u) e AH(u - 1), (¢, %) € Ry x (0, 1), 61

u(0,t) =u(m, t)=0, tekR,,

where f : R — R is a continuous and nondecreasing function satisfying growth and sign assumptions, A > 0,
and H(0) = [0, 1], H(s) = I{s > 0}, s # 0; Feireisl and Norbury [15]. Then all statements of Theorems 2.2 and
3.5 hold.

Example 5.3. (A model of conduction of electrical impulses in nerve axons). Consider the problem:

{ u_ Uy e AH(u-a), (t,x) € (0, T)x(0,n), 52)

u(O, t)=u(ﬂ, t)=03 t€R+’
where a € (0, 3); Terman [40, 41]. All statements of Theorems 2.2 and 3.5 hold for problem (5.2).

Example 5.4. (A climate energy balance model). Formulate the problem:

(5.3)

9u _ U Bue QS()BW) +h(x, ), (t,x) € Ry x(-1,1),
ux(—l, t)= ux(l, t)=0, t€R+,

where B, Q > 0 are constants, S € L=(-1,1), h € L=((-1,1) x R.), up € L?*(-1, 1) and B is a maximal
monotone graph in R?. Assume that: (a) there exist m, M € R such that Vs € R, Vz € (s) m < z < M; (b)
fora.e.x € (-1,1) 0 < Sy < S(x) < S1. This energy balance climate model was proposed in Budyko [3] and
researched also in Diaz et al. [11-13]. The unknown u(t, x) represents the average temperature of the Earth’s
surface, Q is a solar constant, S(x) is an insolation function, given the distribution of solar radiation falling
on upper atmosphere, f represents the ratio between absorbed and incident solar energy at the point x of the
Earth’s surface (so-called co-albedo function). If h = 0, then all the statements of Theorems 2.2 and 3.5 hold
for problem (5.3).

6 Conclusions

Recent developments in the long-time dynamics (as time t — +o0) of solutions for various nonlinear evolution
autonomous problems are based on the global and trajectory attractors theory for multivalued (in the gen-
eral situations) semi-groups in the natural phase and extended phase spaces. An important class of problems
under investigation is the so-called reaction-diffusion equation with discontinuous and multi-valued inter-
action functions.

This class includes feedback control problems for diffusion processes, the evolution models of mechanics
(amodel of combustion in porous media), biology and medicine (a model of conduction of electrical impulses
in nerve axons), climatology and Earth sciences (a climate energy balance model) etc. There are many pub-
lications, where authors investigate the regularity properties and long-time behavior of solutions (as time
t — +oo) for such mathematical models ( see the Introduction and references). J.M. Ball’s additional assump-
tion (see, for example, [4, 5]) on the existence of a Lyapunov type function for all weak solutions partially
allows providing a solution to the problem stated in papers of J. Diaz et al. (see [11-14]) on the connection
between the w-limit set of each trajectory for evolution problem under consideration and the set of “rest
points” (stationary solutions). In the paper the authors clarify these questions. In particular: (i) they give
sufficient conditions for the existence of a Lyapunov function for all weak solutions of autonomous differen-
tial reaction-diffusion equations with discontinuous and multivalued interaction functions; (ii) they prove
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convergence results for all weak solutions in the strongest topologies; (iii) they obtain new structure and reg-
ularity properties for global and trajectory attractors. The results allow investigating the long-time behavior
of state functions for the following problems: (a) a model of combustion in porous media; (b) a model of con-
duction of electrical impulses in nerve axons; (c) a climate energy balance model; (d) a parabolic feedback
control problem.

Acknowledgement: Authors thank reviewers for useful recommendations. The research was partially sup-
ported by the grant from the National Academy of Sciences of Ukraine for young scientists (2273/14 “Long-time
behaviour of state functions and regularity of their limit cycles of the diffusion type controlled processes”).
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