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ABSTRACT. Kathryn F. Porter wrote a nice paper about several definitions of local homogeneity

[Local homogeneity, JP Journal of Geometry and Topology 9 (2009), 129–136]. In this paper, she

mentions that G. S. Ungar defined a uniformly locally homogeneous space [Local homogeneity, Duke

Math. J. 34 (1967), 693–700]. We realized that this notion is very similar to what we call the

uniform property of Effros [On Jones’ set function T and the property of Kelley for Hausdorff continua,

Topology Appl. 226 (2017), 51–65]. Here, we compare the uniform property of Effros with the uniform

local homogeneity. We also consider other definitions of local homogeneity given in Porter’s paper and

compare them with the uniform property of Effros. We show that in the presence of compactness,

the uniform property of Effros is equivalent to uniform local homogeneity and the local homogeneity

according to Ho. With this result, we can change the hypothesis of the uniform property of Effros

in Jones’ and Prajs’ decomposition theorems to uniform local homogeneity and local homogeneity

according to Ho. We add to these two results the fact that the corresponding quotient space also has

the uniform property of Effros.
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1. Introduction

Kathryn F. Porter [11] wrote a nice paper about several definitions of local homogeneity. In
particular, she mentions the uniform local homogeneity defined by Gerald S. Ungar [13]. We
realized that this notion is very similar to the uniform property of Effros that we gave to present
a nonmetric version of Jones’ Aposyndetic Decomposition Theorem [7]. It is known that a metric
continuum X is homogeneous if and only if X has the property of Effros [9: Theorems 4.2.31 and
4.2.38]. We were interested in proving a nonmetric version of Jones’ Aposyndetic Decomposition
Theorem [9: Theorem 5.1.18] and of Prajs’ Mutual Aposyndetic Decomposition Theorem [12:
Theorem 3.1]. We did that in [8: Theorem 4.3] and [8: Theorem 5.9], respectively.

In the present paper, we consider several definitions of local homogeneity given in Porter’s paper
and compare them with the uniform property of Effros. We show that in the presence of compact-
ness, the uniform property of Effros is equivalent to the uniform local homogeneity and the local
homogeneity according to Ho (Theorem 3.8). Using this theorem, we can change the hypothesis
of the uniform property of Effros in Jones’ [10: Theorem 3.3.8] and Prajs’ [10: Theorem 3.4.9] de-
composition theorems to uniform local homogeneity and local homogeneity according to Ho and,
in both cases, we added here the fact that the corresponding quotient space also has the uniform
property of Effros (Theorem 4.5 and Theorem 4.6, respectively).
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2. Preliminaries

Let Z be a Hausdorff space. If A is a subset of Z, then IntZ(A) denotes the interior of A
in Z. A map is a continuous function. If Z is a Hausdorff space, 1Z denotes the identity map
on Z. A compactum is a compact Hausdorff space, and a continuum is a connected compactum.
A topological space Z is homogeneous provided that for each pair z1 and z2 of its points, there
exists a homeomorphism h : Z →→ Z such that h(z1) = z2.

Let Z be a Hausdorff space. If V and U are subsets of Z × Z, then

−V = {(z′, z) | (z, z′) ∈ V }
and

V + U = {(z, z′′) | there exists z′ ∈ Z such that (z, z′) ∈ V and (z′, z′′) ∈ U}.
We write 1V = V and for each positive integer n, (n+ 1)V = nV + 1V .

The diagonal of Z is the set ∆Z = {(z, z) | z ∈ Z}. An entourage of the diagonal of Z is a
subset V of Z ×Z such that ∆Z ⊂ V and V = −V . The family of entourages of the diagonal of Z
is denoted by DZ . If V ∈ DZ and (z, z′) ∈ V , then we write ρZ(z, z′) < V . If V ∈ DZ and z ∈ Z,
then B(z, V ) = {z′ ∈ Z | ρZ(z, z′) < V }. We also have that if z, z′ and z′′ are points of Z, and V
and U belong to DZ , then the following hold [3: p. 426]:

(i) ρZ(z, z) < V .

(ii) ρZ(z, z′) < V if and only if ρZ(z′, z) < V .

(iii) If ρZ(z, z′) < V and ρZ(z′, z′′) < U , then ρZ(z, z′′) < V + U .

Let Z be a nonempty set. A uniformity on Z is a subfamily U of DZ \ {∆Z} such that:

(1) if V ∈ U, U ∈ DZ and V ⊂ U , then U ∈ U;

(2) if V and U belong to U, then V ∩ U ∈ U;

(3) for every V ∈ U, there exists U ∈ U such that 2U ⊂ V ;

(4)
⋂
{V | V ∈ U} = ∆Z .

A uniform space is a pair (Z,U) consisting of a nonempty set Z and a uniformity on the set Z.
For any uniformity U on a set Z, the family G = {G ⊂ Z | for every z ∈ G, there exists V ∈ U
such that B(z, V ) ⊂ G} is a topology on the set Z [3: 8.1.1]. The topology G is called the topology
induced by the uniformity U. It is well known that a topology is induced by a uniformity if and
only if it is Tychonoff [3: 8.1.20]. Note that, if the topology of Z is induced by a uniformity U and
V ∈ U, then, by [3: 8.1.3], IntZ(B(z, V )) is an open neighbourhood of z.

Remark 2.1. Let Z be a Tychonoff space and let U be a uniformity of Z that induces its topology.
If V ∈ U, then we define the cover of Z, C(V ) = {B(z, V ) | z ∈ Z}.

Remark 2.2. Note that by [3: 8.3.13], for every compactum Z, there exists a unique uniformity
UZ on Z that induces the original topology of Z.

We need the following result [3: 8.3.G]:

Theorem 2.3. Let Z be a compactum and let UZ (Remark 2.2) be the unique uniformity of Z
that induces its topology. Then for every open cover W of Z, there exists V ∈ UZ such that C(V )
refines W.

To know more about uniformities see [3: Chapter 8].

Let Z be a topological space and let g : Z → Z be a map. Then the graph of g is the set
Γ(g) = {(z, g(z)) | z ∈ Z}.
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Remark 2.4. Let Z be a Tychonoff space, let U be a uniformity that induces the topology of Z,
let U ∈ U and let g : Z → Z be a map. Then the fact that Γ(g) ⊂ U is equivalent to the fact that
ρZ(z, g(z)) < U for all points z of Z.

Notation 2.5. Let Z be a continuum and letH(Z) be its group of homeomorphisms with compact-
open topology. If z is an element of Z, then define γz : H(Z)→ Z by γz(h) = h(z).

A homogeneous continuum Z is said to be an Effros continuum if γz is an open map for all
points z of Z (Notation 2.5).

Let Z be a Tychonoff space and let U be a uniformity that induces the topology of Z. Then Z
has the uniform property of Effros with respect to U, provided that for each U ∈ U, there exists
V ∈ U such that if z1 and z2 are two points of Z with ρZ(z1, z2) < V , there exists a homeomorphism
h : Z →→ Z such that h(z1) = z2 and ρZ(z, h(z)) < U for all elements z of Z. Note that this last
statement is equivalent to the fact that Γ(h) ⊂ U (Remark 2.4). The entourage V is called an
Effros entourage for U . A homeomorphism h : Z →→ Z satisfying ρZ(z, h(z)) < U , for all points z
of Z, is called a U -homeomorphism [10: Definition 1.4.58].

The next theorem is [10: Theorem 1.4.59].

Theorem 2.6. Let Z be a connected Tychonoff space and let U be a uniformity that induces the
topology of Z. If Z has the uniform property of Effros with respect to U, then Z is a homogeneous
space.

Throughout the paper, all the spaces are Tychonoff spaces.

3. The uniform property of Effros vs. local homogeneity

We compare the uniform property of Effros with various types of local homogeneity. We begin
with the following technical lemma which is useful for the proof of several results.

Lemma 3.1. Let Z be a compactum. For each element z of Z, let Wz be an open subset of Z
containing z. Suppose that U belongs to UZ ( Remark 2.2) and satisfies that given z′ ∈ Wz, for
some z in Z, there exists a U -homeomorphism h : Z →→ Z such that h(z) = z′. If V ∈ UZ and
C(V ) refines the open cover W = {Wz | z ∈ Z}, then the following is true:

(?) If z1 and z2 belong to Z and ρZ(z1, z2) < V , then there exists a homeomorphism h : Z →→ Z
such that h(z1) = z2 and ρZ(z, h(z)) < 2U , for all points z in Z.

P r o o f. Since Z is a compactum, by Theorem 2.3, there exists V ∈ UZ (Remark 2.2) such that
C(V ) refines W. Let z1 and z2 be two elements of Z such that ρZ(z1, z2) < V . Since C(V ) refines
W, there exists an element z0 of Z such that {z1, z2} ⊂ Wz0 . By our assumption, there exist two
U -homeomorphisms h2, h1 : Z →→ Z such that h1(z0) = z1, h2(z0) = z2. Let h = h2 ◦ h−11 . Then
h : Z →→ Z is a homeomorphism and h(z1) = z2. Let z be an element of Z. Since ρZ(z, h(z)) =
ρZ(z, h2 ◦ h−11 (z)), ρZ(z, h−11 (z)) = ρZ(h1 ◦ h−11 (z), h−11 (z)) < U and ρZ(h−11 (z), h2 ◦ h−11 (z)) < U ,
we have that ρZ(z, h(z)) < 2U . �

We start with the definition of the uniform local homogeneity given by Ungar [13]. A Tychonoff
space Z is uniformly locally homogeneous with respect to U (a uniformity that induces the topology
of Z), provided that for each element z of Z and every U ∈ U, there exists an open subset OU,z

with z ∈ OU,z such that if z′ ∈ OU,z, there exists a homeomorphism h : Z →→ Z such that h(z) = z′

and Γ(h) ⊂ U .

1015



SERGIO MAĆIAS

Theorem 3.2. Let Z be a Tychonoff space and let U be a uniformity that induces the topology of Z.
If Z has the uniform property of Effros with respect to U, then Z is uniformly locally homogeneous
with respect to U.

P r o o f. Let z be a point of Z and let U ∈ U. Since Z has the uniform property of Effros
with respect to U, there exists an Effros entourage V for U . Note that IntZ(B(z, V )) is an open
subset of Z containing z. Let z′ ∈ IntZ(B(z, V )). Then ρZ(z, z′) < V . Thus, there exists a
U -homeomorphism h : Z →→ Z such that h(z) = z′. Since h is a U -homeomorphism, we have that
Γ(h) ⊂ U (Remark 2.4). Therefore, Z is uniformly locally homogeneous with respect to U. �

The next result shows that, for compacta, the converse implication of Theorem 3.2 is true.

Theorem 3.3. Let Z be a compactum. If Z is uniformly locally homogeneous, then Z has the
uniform property of Effros.

P r o o f. Let U and U ′ be elements of UZ (Remark 2.2) such that 2U ′ ⊂ U . Since Z is uniformly
locally homogeneous, for each z in Z, there exists an open subset OU ′,z of Z such that if z′ ∈ OU ′,z,
then there exists a homeomorphism h : Z →→ Z such that h(z) = z′ and Γ(h) ⊂ U ′. Observe that
O = {OU ′,z | z ∈ Z} is an open cover of Z. Since Z is a compactum, by Theorem 2.3, there exists
V ∈ UZ such that C(V ) refines O. Let z1 and z2 be two elements of Z such that ρZ(z1, z2) < V .
By Lemma 3.1 and Remark 2.4, there exists a homeomorphism h : Z →→ Z such that h(z1) = z2
and ρZ(z, h(z)) < 2U ′ for all elements z of Z. Since 2U ′ ⊂ U , we obtain that ρZ(z, h(z)) < U , for
every point z in Z. Therefore, V is an Effros entourage for U and Z has the uniform property of
Effros. �

Question 3.4. Is Theorem 3.3 true if Z is not a compactum?

A topological space Z is locally homogeneousH , according to Ho [6], provided that for each
element z in Z and every open subset W of Z containing z, there exists an open subset W ′ of Z
satisfying that z ∈ W ′ ⊂ W and that for each element z′ of W ′, there exists a homeomorphism
h : Z →→ Z such that h(W ′) ⊂W and h(z) = z′.

Theorem 3.5. Let Z be a Tychonoff space and let U be a uniformity that induces the topology of
Z. If Z has the uniform property of Effros with respect to U, then Z is locally homogeneousH .

P r o o f. Let z be a point of Z and let W be an open subset of Z containing z. Then there exists
U ∈ U such that B(z, U) ⊂ W . Let U ′ ∈ U be such that 2U ′ ⊂ U . Since Z has the uniform
property of Effros with respect to U, there exists an Effros entourage V for U ′. Without loss of
generality, we assume that V ⊂ U ′. Let z′ ∈ IntZ(B(z, V )). Then ρZ(z, z′) < V . Hence, there
exists a U ′-homeomorphism h : Z →→ Z such that h(z) = z′. Since h is a U ′-homeomorphism,
for each z′′ ∈ IntZ(B(z, V )), we have that ρZ(z′′, h(z′′)) < U ′. Also, since ρZ(z, z′′) < V and
V ⊂ U ′, we obtain that ρZ(z, h(z′′)) < 2U ′. Since 2U ′ ⊂ U , we have that ρZ(z, h(z′′)) < U .
Hence, h(IntZ(Bz, V )) ⊂ B(z, U) ⊂W . Therefore, Z is locally homogeneousH . �

In the following theorem, we show that the converse implication of Theorem 3.5 is true for
compacta.

Theorem 3.6. Let Z be a compactum. If Z is locally homogeneousH , then Z has the uniform
property of Effros.

P r o o f. Let U and U ′ be elements of UZ (Remark 2.2) such that 2U ′ ⊂ U . For each point z of
Z, we consider the open subset IntZ(B(z, U ′)) of Z. Since Z is locally homogeneousH , for each
point z of Z, there exists an open subset Oz such that z ∈ Oz ⊂ IntZ(B(z, U ′)) and that for each
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element z′ of Oz, there exists a homeomorphism h : Z →→ Z such that h(Oz) ⊂ IntZ(B(z, U ′))
and h(z) = z′. Note that O = {Oz | z ∈ Z} is an open cover of Z. By Theorem 2.3, there exists
V ∈ UZ such that C(V ) refines O. Let z1 and z2 be two elements of Z such that ρZ(z1, z2) < V . By
Lemma 3.1, there exists a homeomorphism h : Z →→ Z such that h(z1) = z2 and ρZ(z, h(z)) < 2U ′

for all elements z of Z. Since 2U ′ ⊂ U , we obtain that ρZ(z, h(z)) < U , for every point z in Z.
Therefore, V is an Effros entourage for U and Z has the uniform property of Effros. �

Example 3.7. Let X be the set of integers, Z, with the cofinite topology. By [11: p. 133], X is
homogeneousH but not uniformly locally homogenous. Thus, by Theorem 3.2, X does not have the
uniform property of Effros. Hence, the converse of Theorem 3.6 is not true if Z is not a compactum.

From Theorems 3.2, 3.3, 3.5, and 3.6, we obtain:

Theorem 3.8. Let Z be a compactum. Then the following are equivalent:

(1) Z has the uniform property of Effros.

(2) Z is uniformly locally homogeneous.

(3) Z is locally homogeneousH .

A topological space Z is locally homogeneousF , according to Fora [4], provided that for each
point z of Z, there exists an open subset W of Z containing z such that for every element z′ of
W , there exists a homeomorphism h : Z →→ Z such that h(z) = z′.

Theorem 3.9. Let Z be a Tychonoff space and let U be a uniformity that induces the topology of
Z. If Z has the uniform property of Effros with respect to U, then Z is locally homogeneousF .

P r o o f. Suppose Z has the uniform property of Effros with respect to U. By Theorem 3.5, we have
that Z is locally homogeneousH . By [11: Theorem 4], we obtain that Z is locally homogeneousF .

�

Remark 3.10. The converse of Theorem 3.9 is false. By [11: p. 132], we have that local homo-
geneityH does not follow from local homogeneityF . Thus, by Theorem 3.5, the uniform property
of Effros does not follow from the local homogeneityF .

The next theorem gives us properties of Effros continua.

Theorem 3.11. Let Z be an Effros continuum. Then:

(1) Z has the uniform property of Effros.

(2) Z uniformly locally homogeneous.

(3) Z is locally homogeneousH .

(4) Z is locally homogeneousF .

P r o o f. Suppose Z is an Effros continuum. By [10: Theorem 1.4.60], Z has the uniform property
of Effros. Now, the theorem follows from Theorems 3.2, 3.5 and 3.9. �

A topological space Z is strongly locally homogeneous, according to Ford [5], provided that for
any element z of Z and any open subset W of Z containing z, there exists an open subset OW,z of
Z with z ∈ OW,z ⊂ W such that if z′ is an element of OW,z, then there exists a homeomorphism
h : Z →→ Z such that h(z) = z′ and h|Z\OW,z

= 1Z\OW,z
.

Theorem 3.12. Let Z be a compactum. If Z is strongly locally homogeneous, then Z has the
uniform property of Effros.
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P r o o f. Let U and U ′ be elements of UZ (Remark 2.2) such that 4U ′ ⊂ U . For each point z of Z, we
consider the open subset IntZ(B(z, U ′)) of Z. Since Z is strongly locally homogeneous, for each z
in Z, there exists an open subset OU ′,z of Z such that z ∈ OU ′,z ⊂ IntZ(B(z, U ′)) and if z′ ∈ OU,z,
then there exists a homeomorphism h : Z →→ Z such that h(z) = z′ and h|Z\OU′,z

= 1Z\OU′,z
.

Observe that O = {OU ′,z | z ∈ Z} is an open cover of Z. Since Z is a compactum, by Theorem 2.3,
there exists V ∈ UZ such that C(V ) refines O. Let z1 and z2 be two elements of Z such that
ρZ(z1, z2) < V . Since C(V ) refines O, there exists an element z0 of Z such that {z1, z2} ⊂ OU ′,z0 .
By our assumption, there exist two homeomorphisms h2, h1 : Z →→ Z such that h1(z0) = z1,
h2(z0) = z2,

h1|Z\OU′,z0
= 1Z\OU′,z0

and h2|Z\OU′,z0
= 1Z\OU′,z0

.

Let h = h2 ◦ h−11 . Then h : Z →→ Z is a homeomorphism and h(z1) = z2. Let z be an element of
OU ′,z0 . Since {z, h−11 (z)} = {h1 ◦ h−11 (z), h−11 (z)} ⊂ OU ′,z0 ⊂ IntZ(B(z0, U

′)) and {h−11 (z), h2 ◦
h−11 (z)} ⊂ OU ′,z0 ⊂ IntZ(B(z0, U

′)), we have that ρZ(z, h−11 (z)) = ρZ(h1 ◦ h−11 (z), h−11 (z)) <

2U ′, ρZ(h−11 (z), h2 ◦ h−11 (z)) < 2U ′ and ρZ(z, h(z)) < 4U ′. Since 4U ′ ⊂ U , we obtain that
ρZ(z, h(z))<U . If z ∈ Z \OU ′,z0 , then z = h(z) and, in particular, ρZ(z, h(z)) < U . Therefore, V
is an Effros entourage for U and Z has the uniform property of Effros. �

As a consequence of Theorems 2.6 and 3.12, we obtain:

Corollary 3.13. If Z is a strongly locally homogeneous continuum, then Z is a homogenous
continuum.

A topological space Z is closed-homogeneous, according to Fora [4], provided that for each pair of
points z and z′ of Z and a closed subset K of Z, with K ⊂ Z\{z, z′}, there exists a homeomorphism
h : Z →→ Z such that h(z) = z′ and h|K = 1K .

Theorem 3.14. Let Z be a compactum. If Z is closed-homogeneous, then Z has the uniform
property of Effros.

P r o o f. Suppose Z is closed-homogeneous compactum, by [11: Theorem 10], Z is strongly locally
homogeneous. Hence, by Theorem 3.12, Z has the uniform property of Effros. �

Remark 3.15. Note that, by [11: Theorem 9], each closed-homogeneous space is homogeneous.

A continuum Z is almost connected im kleinen at a point z of Z, provided that for each open
subset W of Z containing z, there exists a subcontinuum K of Z such that IntZ(K) 6= ∅ and
K ⊂W . The continuum Z is connected im kleinen at a point z of Z if for each open subset W of
Z containing z, there exists a subcontinuum K of Z such that z ∈ IntZ(K) ⊂ K ⊂W .

Theorem 3.16. If Z is a continuum that is either uniformly locally homogeneous, locally homo-
geneousH , strongly locally homogeneous or closed-homogeneous, then the following are equivalent:

(1) Z is locally connected.

(2) Z is locally connected at some point.

(3) Z is connected im kleinen at some point.

(4) Z is almost connected im kleinen at every point.

(5) Z is almost connected im kleinen at some point.

P r o o f. If Z is uniformly locally homogeneous or locally homogeneousH , by Theorem 3.8, Z has
the uniform property of Effros. If Z is strongly locally homogeneous, by Theorem 3.12, Z has
the uniform property of Effros. If Z is closed-homogenoeus, by Theorem 3.14, Z has the uniform
property of Effros. Now, the theorem follows from [10: Theorem 1.4.61]. �
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We end this section with a summary of relationships between the types of spaces we have
considered. Let us agree with the following notation.

UPE means: Uniform property of Effros.
ULH means: Uniformly locally homogeneous.
LHH means: Locally homogeneousH .
LHF means: Locally homogeneousF .
SLH means: Strongly locally homogeneous.
C-H means: Closed-homogeneous.

Yes∗ means that the implication is true for compacta.

We include the number of the result where the implication has been proved in the paper. The
rest of the implications are taken from the table on [11: p. 136].

Summary of Relationships

=⇒ UPE ULH LHH LHF SLH C-H

UPE ? Yes (3.2) Yes (3.4) Yes (3.7) ? ?

ULH Yes∗ (3.3) ? Yes Yes No No

LHH Yes∗ (3.5) No ? Yes No No

LHF No (3.8) No No ? No No

SLH Yes∗ (3.10) Yes Yes Yes ? No

C-H Yes∗ (3.12) No Yes Yes Yes ?

4. Uniform property of Effros

We start by saying that all the undefined terms in this section can be found in [10]. As we
mention earlier, a metric continuum X is homogeneous if and only if X has the property of Effros
[9: Theorems 4.2.31 and 4.2.38]. Hence, we might take this property for granted when dealing with
homogeneous continua. It turns out that there exist homogeneous continua without the property
of Kelley; hence, without the uniform property of Effros [2] (this follows from the fact that a contin-
uum with the uniform property of Effros has the property of Kelley [10: Theorem 1.6.22]). In fact,
there exist homogeneous continua that are not Effros continua either [1]. Thus, we decided to ex-
tend Jones’ Aposyndetic Decomposition Theorem and Prajs’ Mutual Aposyndetic Decomposition
Theorem by showing that the corresponding quotient space has the uniform property of Effros (The-
orem 4.2 and Theorem 4.4, respectively). We use the results of the previous section to substitute
the hypothesis of uniform property of Effros in Jones’ and Prajs’ decomposition theorems by uni-
form local homogeneity, locally homogeneityH , strong local homogeneity and closed-homogeneity
(Theorems 4.5 and 4.6, respectively).

We need the following:

Notation 4.1. Given a continuum Z, we define Jones’ set function T as follows: if A is a subset
of Z, then

T (A) =Z \ {z ∈ Z | there exists a subcontinuum K of Z

such that z ∈ IntZ(K) ⊂ K ⊂ Z \A}.

A thorough study of Jones’ set function T is given in [10].
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The following theorem is Jones’ Aposyndetic Decomposition Theorem [10: Theorem 3.3.8], with
the addition that the quotient space also has the uniform property of Effros.

Theorem 4.2. Let Z be a decomposable continuum with the uniform property of Effros. If G =
{T ({z}) | z ∈ Z}, then the following hold:

(1) G is a continuous, monotone and terminal decomposition of Z.

(2) The elements of G are cell-like, acyclic, homogeneous and mutually homeomorphic continua.

(3) The quotient map q : Z →→ Z/G is uniformly completely regular and atomic.

(4) The quotient space Z/G is an aposyndetic homogeneous continuum with the uniform property
of Effros and it does not contain nondegenerate proper terminal subcontinua.

P r o o f. We show that Z/G has the uniform property of Effros. Let U ∈ UZ/G . Since the quotient

map, q, is continuous, we have that (q×q)−1(U) ∈ UZ . Since Z has the uniform property of Effros,
there exists an Effros entourage V for (q× q)−1(U). Since q is an open map [10: Corollary 1.1.24],
we have that (q×q)(V ) ∈ UZ/G . We prove that (q×q)(V ) is an Effros entourage for U . Let χ1 and
χ2 be two elements of Z/G such that ρZ/G(χ1, χ2) < (q× q)(V ). Then there exist two elements z1
and z2 in Z such that q(z1) = χ1, q(z2) = χ2 and ρZ(z1, z2) < V . Since V is an Effros entourage
for (q × q)−1(U), there exists a (q × q)−1(U)-homeomorphism h : Z →→ Z such that h(z1) = z2.
As in the proof of [10: Theorem 3.3.6], it can be seen that the map ζ : Z/G →→ Z/G given by
ζ(χ) = q◦h(q−1(χ)) is a homeomorphism and ζ(χ1) = χ2. We prove that ζ is a U-homeomorphism.
Let χ be a point of Z/G and let z ∈ q−1(χ). Since h is a (q × q)−1(U)-homeomorphism, we have
that ρZ(z, h(z)) < (q × q)−1(U); i.e., (z, h(z)) ∈ (q × q)−1(U). Hence, (q × q)(z, h(z)) ∈ U . Thus,
since q(z) = χ, we obtain that ρZ/G(χ, ζ(χ)) < U . Therefore, ζ is U-homeomorphism. Hence,
(q × q)(V ) is an Effros entourage for U and Z/G has the uniform property of Effros. The theorem
now follows from [10: Theorem 3.3.8]. �

We also need the following:

Notation 4.3. Let Z be a continuum and let z be an element of Z. Then

Qz = {z′ ∈ Z | if Kz and Kz′ are two subcontinua of Z such that

z ∈ IntZ(Kz) and z′ ∈ IntZ(Kz′) then we have that Kz ∩Kz′ 6= ∅}.

The following theorem is Prajs’ Mutual Aposyndetic Decomposition Theorem [10: Theorem
3.4.9], with the addition that the quotient space also has the uniform property of Effros. The proof
of the part that the quotient space has the uniform property of Effros is similar to the one given
for Theorem 4.2.

Theorem 4.4. Let Z be a decomposable continuum with the uniform property of Effros. If Q =
{Qz | z ∈ Z}, then the following hold:

(1) Q is a continuous decomposition of Z.

(2) The elements of Q are homogeneous mutually homeomorphic closed subsets of Z.

(3) The quotient map q : Z →→ Z/Q is uniformly completely regular.

(4) The quotient space Z/Q is a mutually aposyndetic homogeneous continuum with the uniform
property of Effros.

Regarding Jones’ Aposyndetic Decomposition Theorem, we have:

Theorem 4.5. Let Z be a continuum and let G = {T ({z}) | z ∈ Z}. If Z is either uniformly
locally homogeneous, locally homogeneousH , strongly locally homogeneous or closed-homogeneous,
then the following hold:
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(1) G is a continuous, monotone and terminal decomposition of Z.

(2) The elements of G are cell-like, acyclic, homogeneous and mutually homeomorphic continua.

(3) The quotient map q : Z →→ Z/G is uniformly completely regular and atomic.

(4) The quotient space Z/G is an aposyndetic homogeneous continuum with the uniform property
of Effros and it does not contain nondegenerate proper terminal subcontinua.

P r o o f. The proof of the fact that in each case Z has the uniform property of Effros is done in
Theorem 3.16. Now the theorem follows from Theorem 4.2. �

Regarding Prajs’ Mutual Aposyndetic Decomposition Theorem, we have:

Theorem 4.6. Let Z be a continuum and let Q = {Qz | z ∈ Z}. If Z is either uniformly locally
homogeneous, locally homogeneousH , strongly locally homogeneous or closed-homogeneous, then the
following hold:

(1) Q is a continuous decomposition of Z.

(2) The elements of Q are homogeneous mutually homeomorphic closed subsets of Z.

(3) The quotient map q : Z →→ Z/Q is uniformly completely regular.

(4) The quotient space Z/Q is a mutually aposyndetic homogeneous continuum with the uniform
property of Effros.

The proof of Theorem 4.6 is similar to the one given for Theorem 4.5 except that we use
Theorem 4.4 instead of Theorem 4.2.

Acknowledgement. We thank the referee for the valuable suggestions made that improve the
paper.
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[7] MACÍAS, S.: On Jones’ set function T and the property of Kelley for Hausdorff continua, Topology Appl.

226 (2017), 51–65.

[8] MACÍAS, S.: Hausdorff continua and uniform property of Effros, Topology Appl. 230 (2017), 338–352.
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