Startseite Mathematik Localization of k × j-rough Heyting algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Localization of k × j-rough Heyting algebras

  • Federico Almiñana und Gustavo Pelaitay EMAIL logo
Veröffentlicht/Copyright: 28. März 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

k-rough Heyting algebras were introduced by Eric San Juan in 2008 as an algebraic formalism for reasoning on finite increasing sequences over Boolean algebras in general and on generalizations of rough set concepts in particular. In 2020, we defined and studied the variety of k × j-rough Heyting algebras. These algebras constitute an extension of Heyting algebras and in the case j = 2 they coincide with k-rough Heyting algebras. In this note, we introduce the notion of k × j-ideal on k × j-rough Heyting algebras which allows us to consider a topology of them. Besides, we define the concept of 𝓕-multiplier, where 𝓕 is a topology on a k × j-rough Heyting algebra A, which is used to construct the localization k × j-rough Heyting algebras A𝓕. Furthermore, we prove that the k × j-rough Heyting algebras of fractions AS associated with a ∧ -closed subset S of A is a k × j-rough Heyting algebra of localization. Finally, in the finite case we prove that AS is isomorphic to a special subalgebra of A. Since 3-valued Łukasiewicz –Moisil algebras are a particular case of k × j-rough Heyting algebras, all these results generalize those obtained in 2005 by Chirtes and Busneag.


Federico Almiñana thanks the institutional support of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).


  1. Communicated by Roberto Giuntini

Acknowledgement

The authors acknowledge many helpful comments from the anonymous referee, which considerably improved the presentation of this paper.

References

[1] Almiñana, F.—Pelaitay, G.: A topological duality for k × j-rough Heyting algebras, J. Mult.-Valued Log. Soft Comput. 35(3–4) (2020), 325–346.Suche in Google Scholar

[2] Boicescu, V.—Filipoiu, A—Georgescu, G,.—Rudeanu, S.: Łukasiewicz–Moisil Algebras, North-Holland, Amsterdam, 1991.Suche in Google Scholar

[3] Brezuleanu, A.—Diaconescu, R.: Sur la duale de la catégorie des treillis, Rev. Roum. Math. Pures et Appl. XIV(3) (1963), 311–323.Suche in Google Scholar

[4] Busneag, D.—Chirtes, F.: LMn-algebra of fractions and maximal LMn-algebra of fractions, Discrete Math. 296(2–3) (2005), 143–165.10.1016/j.disc.2005.02.012Suche in Google Scholar

[5] Chirtes, F.: Localization of LMn-algebras, Cent. Eur. J. Math. 3(1) (2005), 105–124.10.2478/BF02475659Suche in Google Scholar

[6] Cornish, W.: The multiplier extension of a distributive lattice, J. Algebra 32 (1974), 339–355.10.1016/0021-8693(74)90143-4Suche in Google Scholar

[7] Dan, C.: 𝓕-multipliers and the localization of Heyting algebras, An. Univ. Criaova Ser. Mat. Inform. 24 (1997), 98–109.Suche in Google Scholar

[8] Figallo, A. V.—Pelaitay, G.: Localization of tetravalent modal algebras, Asian-Eur. J. Math. 11(5) (2018), Art. ID 1850067.10.1142/S1793557118500675Suche in Google Scholar

[9] Shokoofeh, G.: Localization of hoop-algebras, J. Adv. Res. Pure Math. 5(3) (2013), 1–13.10.5373/jarpm.1378.032812Suche in Google Scholar

[10] Gallardo, C.—Sanza, C.—Ziliani, A.: 𝓕-multipliers and the localization of LMn×m-algebras, An. Stiint. Univ. ``Ovidius'' Constanta Ser. Mat. 21(1) (2013), 285–304.10.2478/auom-2013-0019Suche in Google Scholar

[11] Gallardo, C.—c, A.: Localization of m-generalized Łukasiewicz algebras of order n, J. Mult.-Valued Log. Soft Comput. 27(1) (2016), 21–45.Suche in Google Scholar

[12] Georgescu, G.: 𝓕-multipliers and the localization of distributive lattices, Algebra Universalis 21 (1985), 181–197.10.1007/BF01188055Suche in Google Scholar

[13] Green, J.—Horne, N.—ORŁOWSKA, E.: A rough set model information retrieval, Fund. Inform. 28 (1996), 273–296.10.3233/FI-1996-283405Suche in Google Scholar

[14] PawŁak, Z.: Rough sets, Internat. J. Comput. Inform. Sci. 11(5) (1982), 341–356.10.1007/BF01001956Suche in Google Scholar

[15] Popescu, N.: Abelian Categories with Applications to Rings and Modules, Academic Press, 1973.Suche in Google Scholar

[16] Rudeanu, S.: Localizations and fractions in algebra of logic, J. Mult.-Valued Log. Soft Comput. 16 (2010), 467–504.Suche in Google Scholar

[17] San Juan, E.: Heyting algebras with Boolean operators for rough sets and information retrieval applications, Discrete Appl. Math. 156 (2008), 967–983.10.1016/j.dam.2007.08.050Suche in Google Scholar

[18] Sanza, C.: n×m-valued Łukasiewicz algebras with negation, Rep. Math. Logic 40 (2006), 83–106.Suche in Google Scholar

[19] Stenstrom, B.: Rings of Quotients, Springer-Verlag, 1995.Suche in Google Scholar

Received: 2020-09-08
Accepted: 2021-04-19
Published Online: 2022-03-28
Published in Print: 2022-04-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0021/pdf
Button zum nach oben scrollen