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ABSTRACT. Let 0 6= D ∈ Z and let QD be the set of all monic quartic polynomials x4 + ax3 + bx2 +
cx + d ∈ Z[x] with the discriminant equal to D. In this paper we will devise a method for determining

the set QD. Our method is strongly related to the theory of integral points on elliptic curves. The

well-known Mordell’s equation plays an important role as well in our considerations. Finally, some new
conjectures will be included inspired by extensive calculations on a computer.
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1. Introduction

Let 0 6= D ∈ Z and let

QD = {f(x) = x4 + ax3 + bx2 + cx+ d ∈ Z[x];Df = D} (1.1)

where
Df = a2b2c2 − 4a2b3d− 4a3c3 + 18a3bcd− 27a4d2 − 4b3c2

+ 16b4d+ 18abc3 − 80ab2cd− 6a2c2d+ 144a2bd2

− 27c4 + 144bc2d− 128b2d2 − 192acd2 + 256d3
(1.2)

is the discriminant of f(x). In this paper, the set QD will be studied in detail. Most of the focus
will be given to the problem of determining all polynomials in QD. Clearly, this is equivalent to
finding all integer solutions of the Diophantine equation Df = D. In proving the main results, the
following two known theorems will be needed.

Theorem 1.1 (Mordell, 1920). For any given 0 6= k ∈ Z, the equation

Y 2 = X3 + k (1.3)

has at most finitely many integer solutions.

Equation (1.3) is often called Mordell’s equation, in honour of the contribution Louis Joel
Mordell [17] has made to this subject. An extension to Theorem 1.1 was later made by Carl
Ludwig Siegel [18]. In its simplest form, Siegel’s result can be formulated as follows:

Theorem 1.2 (Siegel, 1929). Let α, β ∈ Z be such that 4α3 + 27β2 6= 0. Then the equation

η2 = ξ3 + αξ + β (1.4)

has at most finitely many integer solutions.

2020 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n: Primary 11D25, 11D45, 11Y50.
K e y w o r d s: Quartic polynomial, discriminant, Mordell’s equation, elliptic curve.

35



JIŘ́I KLAŠKA

There is a standard method for computing all integer solutions of (1.3) and (1.4) using David’s
bounds and lattice reduction. This method can be found, for example, in [19]. At present, this
method is implemented in several computer algebra packages, including Magma and Pari (Sage).

Remark 1.3. Mordell’s equation has had a long history. First discoveries concerning (1.3) were
given in Dickson [2: pp. 533–539] going back to the work of Bachet from 1621. Many interesting
historical notes to (1.3) can be found in [1,5,7,16]. Perhaps the most extensive historical comments
related to Mordell’s contribution to (1.3) can be found in the recent paper [6].

Throughout this paper, the following notation will be adopted. If A is a finite set, #A denotes
the number of elements of A.

2. Equivalence on the set QD

Let f(x) = x4 + ax3 + bx2 + cx+ d ∈ Z[x] and let Df be the discriminant of f(x).

Next, let r
f
(x) = f(x− a/4). Then

rf (x) = x4 +Ax2 +Bx+ C ∈ Q[x] (2.1)

where

A = b− 3a2

8
, B = c− ab

2
+
a3

8
, C = d− ac

4
+
a2b

16
− 3a4

256
. (2.2)

Moreover, we have

Drf = Df = 16A4C − 4A3B2 − 27B4 − 128A2C2 + 144AB2C + 256C3. (2.3)

From (2.2), it follows that there exist R,S, T ∈ Z such that

A =
R

8
, B =

S

8
, C =

T

256
, (2.4)

where

R = 8b− 3a2, S = 8c− 4ab+ a3, T = 256d− 64ac+ 16a2b− 3a4. (2.5)

Hence, we can write (2.1) in the form

rf (x) = x4 +
R

8
x2 +

S

8
x+

T

256
∈ Q[x] with R,S, T ∈ Z. (2.6)

We start with a more general theorem.

Theorem 2.1. Let n ∈ N, n ≥ 2, 0 6= D ∈ Z and let

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ Z[x]

be an arbitrary polynomial with the discriminant equal to D. Further, for any w ∈ Z, let

fw(x) =

n∑
k=0

f (k)(w)

k!
xk, (2.7)

where f (k)(w) denotes the k-th derivative of f(x) at w. Then fw(x) ∈ Z[x] and all polynomials in
{fw(x);w ∈ Z} have the same discriminant equal to D.
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P r o o f. First, by induction on k, it can be proved that k!|f (k)(w) for any k ∈ {0, 1, 2, . . . }. Hence,
fw(x) ∈ Z[x]. Further, Taylor’s theorem yields

f(x) =

n∑
k=0

f (k)(w)

k!
(x− w)k for any w ∈ Z. (2.8)

Let α1, . . . , αn be the roots of f(x) in the set of complex numbers C. Then

D =

n−1∏
i=1

n∏
j=i+1

(αj − αi)
2.

Next, by (2.8), for any α ∈ {α1, . . . , αn}, we have

f(α) =

n∑
k=0

f (k)(w)

k!
(α− w)k = 0. (2.9)

Combining (2.7) with (2.9), we get fw(α− w) = 0, and thus,

β1 = α1 − w, . . . , βn = αn − w (2.10)

are the roots of fw(x) in C. Using (2.10), we now get

Dfw =

n−1∏
i=1

n∏
j=i+1

(βj − βi)2 =

n−1∏
i=1

n∏
j=i+1

(αj − w − (αi − w))2 =

n−1∏
i=1

n∏
j=i+1

(αj − αi)
2 = D,

as desired. �

Remark 2.2. Observe that, in Theorem 2.1, f(x) = f0(x). Hence, f(x) ∈ {fw(x);w ∈ Z}.

Corollary 2.3. Let 0 6= D ∈ Z and let f(x) = x4 + ax3 + bx2 + cx+ d ∈ QD. Further, for any
w ∈ Z, let

fw(x) = x4 +
f ′′′(w)

3!
x3 +

f ′′(w)

2!
x2 +

f ′(w)

1!
x+ f(w). (2.11)

Then (i) and (ii) hold:

(i) QD is an infinite set and {fw(x);w ∈ Z} ⊆ QD.

(ii) For any w ∈ Z, we have rfw(x) = rf (x) = x4 +Ax2 +Bx+C ∈ Q[x], where A,B,C satisfy
(2.2).

P r o o f. Part (i) of Corollary 2.3 is a direct consequence of Theorem 2.1 for n = 4. Part (ii) can
be verified by direct calculation. �

Lemma 2.4. Let 0 6= D ∈ Z and let f(x), g(x) ∈ QD. Then (i), (ii) and (iii) are equivalent:

(i) There exists w ∈ Z satisfying g(x) = f(x+ w).

(ii) There exists w ∈ Z satisfying g(x) = fw(x).

(iii) rf (x) = rg(x).

P r o o f. Let f(x) = x4 + ax3 + bx2 + cx+ d, g(x) = x4 + ax3 + bx2 + cx+ d ∈ QD.

First we show that (i) is equivalent to (ii). Using Taylor’s theorem, we obtain

f(x) = (x− w)4 +
f ′′′(w)

3!
(x− w)3 +

f ′′(w)

2!
(x− w)2 +

f ′(w)

1!
(x− w) + f(w)

for any w ∈ Z. Therefore,

f(x+ w) = x4 +
f ′′′(w)

3!
x3 +

f ′′(w)

2!
x2 +

f ′(w)

1!
x+ f(w). (2.12)
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Combining (2.12) with (2.11), we get f(x+ w) = fw(x). Hence, (i) and (ii) are equivalent.

Further we prove that (i) is equivalent to (iii). Assume that g(x) = f(x + w) for some w ∈ Z.
Then (2.12) yields

g(x) = x4 + (4w+ a)x3 + (6w2 + 3aw+ b)x2 + (4w3 + 3aw2 + 2bw+ c)x+w4 + aw3 + bw2 + cw+ d.

Hence, rg(x) = g(x− (4w + a)/4) = g(x− w − a/4) = f(x− w − a/4 + w) = f(x− a/4) = rf (x).

Finally, let rf (x) = rg(x). Then f(x − a/4) = g(x − a/4). Hence, f(x − a/4 + a/4) = g(x −
a/4 + a/4) = g(x) and g(x) = f(x − (a − a)/4) follows. Put w = (a − a)/4. Clearly, if a ≡ a
(mod 4), then w ∈ Z. Suppose that a 6≡ a (mod 4). Using (2.5) we obtain R = 8b−3a2 = 8b−3a2,
S = 8c−4ab+a3 = 8c−4ab+a3, which implies a2 ≡ a2 (mod 8) and a3 ≡ a3 (mod 4). Therefore,
a2 ≡ a2 (mod 4), which yields, without loss of generality, that either a ≡ 0 (mod 4), a ≡ 2 (mod 4)
or a ≡ 1 (mod 4), a ≡ 3 (mod 4). If a ≡ 0 (mod 4), a ≡ 2 (mod 4), then a2 ≡ 0 (mod 8), a2 ≡ 4
(mod 8), which is in contradiction to a2 ≡ a2 (mod 8). Similarly, if a ≡ 1 (mod 4), a ≡ 3 (mod 4),
then a3 ≡ 1 (mod 4), a3 ≡ 3 (mod 4), which is in contradiction to a3 ≡ a3 (mod 4). �

Let 0 6= D ∈ Z and let QD 6= ∅. For f(x), g(x) ∈ QD put

f(x) ∼ g(x)⇐⇒ ∃ w ∈ Z : g(x) = f(x+ w) = fw(x)⇐⇒ rf (x) = rg(x).

It is evident that ∼ is an equivalence relation on the set QD. Moreover, QD/∼ has only finitely
many equivalence classes. In Section 4, this fact will be proved using the results of Mordell and
Siegel presented in Theorem 1.1 and Theorem 1.2. On the other hand, this claim also follows as
a consequence of a more general theorem that has been proved by Kálmán Györy [8: p. 419]. See
also [9: p. 475] or consult [3: p. 109].

3. Connection between Mordell’s equation Y 2 = X3 − 21633D
and the set QD

Theorem 3.1. Let 0 6= D ∈ Z. If Mordell’s equation

Y 2 = X3 + k with k = −1769472D = −21633D (3.1)

has no integer solution, then QD = ∅.

P r o o f. Let f(x) = x4 + ax3 + bx2 + cx + d ∈ QD and let rf (x) = x4 + Ax2 + Bx + C ∈ Q[x].
Direct calculation will verify that (2.3) can be written in the form

Drf =
4

27
(A2 + 12C)3 − 1

27
(2A3 − 72AC + 27B2)2. (3.2)

Substituting (2.4) into (3.2), after short calculation, we obtain

Drf =
1

1769472

(
(R2 + 3T )3 − (R3 − 9RT + 108S2)2

)
. (3.3)

Put

X = R2 + 3T and Y = R3 − 9RT + 108S2. (3.4)

Then X,Y ∈ Z and (3.3) yields

Y 2 = X3 + k where k = −1769472Drf = −21633Drf .

Since Drf = Df = D, the proof is complete. �
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Remark 3.2. If x4 +ax3 + bx2 + cx+d ∈ QD, then (2.2) yields A,B,C ∈ Z⇐⇒ 4|a. In this case,
we can write (3.2) in the form V 2 = 4U3−27Drf , where U = A2+12C and V = 2A3−72AC+27B2.
Hence, we have

(4V )2 = (4U)3 − 432Drf . (3.5)

Since Drf = D, the substitutions X = 4U , Y = 4V reduce (3.5) to

Y 2 = X3 − 432D. (3.6)

It is interesting that Mordell’s equation (3.6) plays a fundamental role also in the theory of cubic
polynomials with the same discriminant D. Consult [10: p. 313].

The following notation will be useful. For an arbitrary 0 6= D ∈ Z, let MD denote the set of all
[X0, Y0], where X0, Y0 ∈ Z and Y 2

0 = X3
0 − 21633D.

Lemma 3.3. Let 0 6= D ∈ Z and let [X0, Y0] ∈MD. Then (i), (ii), (iii) and (iv) hold:

(i) If 2|X0, then 4|X0, 8|Y0.

(ii) If 2|Y0, then 4|X0, 8|Y0.

(iii) If 3|X0, then 9|Y0.

(iv) If 3|Y0, then 3|X0, 9|Y0.

P r o o f. The conclusions (i)–(iv) immediately follow from Y 2
0 = X3

0 − 21633D. �

They will be used in Section 4 and Section 5.

4. Method for determining the set QD

The next lemma will be needed in the proof of Theorem 4.2.

Lemma 4.1. Let ξ0, η0, e ∈ Z be such that

ξ0 ≡ 36e2 (mod 96) and η0 ≡ 9eξ0 − 108e3 (mod 1728). (4.1)

Then we have:

(i) ξ0 ≡ 0 (mod 12) and η0 ≡ 0 (mod 216).

(ii) There exists exactly one e ∈ {0, 1, 2, 3} satisfying (4.1).

P r o o f. (i) Since the validity of the congruence ξ0 ≡ 0 (mod 12) is evident, we only prove that
η0 ≡ 0 (mod 216). First, observe that η0 ≡ 9eξ0− 108e3 (mod 216). Further, ξ0 ≡ 36e2 (mod 96)
is equivalent to 9ξ0 ≡ 324e2 (mod 864). Hence, 9ξ0 ≡ 108e2 (mod 216). This, together with
η0 ≡ 9eξ0 − 108e3 (mod 216), yields η0 ≡ 0 (mod 216).

(ii) Let ξ0, η0 ∈ Z satisfy (4.1) for some e ∈ {0, 1, 2, 3}. Suppose that e is not unique. Then it
follows from ξ0 ≡ 36e2 (mod 96) that e ∈ {1, 3} and that ξ0 ≡ 36 (mod 96). On the other hand,
using η0 ≡ 9eξ0− 108e3 (mod 1728), we obtain 9ξ0− 108 ≡ 27ξ0− 2916 (mod 1728), which yields
ξ0 ≡ 60 (mod 96), a contradiction. �

The following Theorem 4.2 provides the necessary and sufficient condition for QD 6= ∅. In
addition, Theorem 4.2 makes it possible to determine a particular polynomial in QD.
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Theorem 4.2. Let 0 6= D ∈ Z and let MD 6= ∅. Then QD 6= ∅ if and only if there exists an
[X0, Y0] ∈MD such that the elliptic equation

η2 = ξ3 − 108X0ξ + 432Y0 (4.2)

has at least one integer solution [ξ0, η0] satisfying conditions (4.3)–(4.5)

36e2 − ξ0 ≡ 0 (mod 96), (4.3)

108e3 − 9eξ0 + η0 ≡ 0 (mod 1728), (4.4)

432e4 − ξ20 − 72e2ξ0 + 16eη0 + 144X0 ≡ 0 (mod 110592). (4.5)

for some e ∈ {0, 1, 2, 3}. In this case,

g(x) = x4 +ex3 +
36e2 − ξ0

96
x2 +

108e3 − 9eξ0 + η0
1728

x+
432e4 − ξ20 − 72e2ξ0 + 16eη0 + 144X0

110592
∈ QD

and

rg(x) = x4 − ξ0
96
x2 +

η0
1728

x+
144X0 − ξ20

110592
.

P r o o f. First, assume that QD 6= ∅. Then there exists an f(x) = x4 + ax3 + bx2 + cx + d ∈ QD

such that rf (x) = x4+(R/8)x2+(S/8)x+T/256 ∈ Q[x] where R,S, T are integers satisfying (2.5).
Further, from Theorem 3.1 it follows that there exists a [X0, Y0] ∈ MD such that R2 + 3T = X0

and R3 − 9RT + 108S2 = Y0. Substituting 3T = X0 −R2 into R3 − 9RT + 108S2 = Y0, we obtain

4R3 − 3X0R+ 108S2 = Y0, (4.6)

and multiplying (4.6) by 432, we get

(216S)2 = (−12R)3 − 108X0(−12R) + 432Y0. (4.7)

Put ξ0 = −12R and η0 = 216S. Now, (4.7) implies immediately that [ξ0, η0] is an integer solution
of (4.2).

Finally, we have to prove that [ξ0, η0] satisfies (4.3)–(4.5) for some e ∈ {0, 1, 2, 3}. Since a ∈ Z,
there exist uniquely determined w ∈ Z and e ∈ {0, 1, 2, 3} such that a = 4w + e. Substituting
a = 4w + e into the first equation of (2.5), we obtain R ≡ −3e2 (mod 8) and −12R ≡ 36e2

(mod 96) follows. This together with ξ0 = −12R yields ξ0 ≡ 36e2 (mod 96). Hence, (4.3).

Further, from the second equation of (2.5), it follows

216S = 1728c− 864ab+ 216a3. (4.8)

Putting a = 4w + e, 8b = R+ 3a2, ξ0 = −12R and η0 = 216S into (4.8), we obtain

η0 = 1728(c− 4w3 − 3ew2) + 36w(ξ0 − 36e2) + 9eξ0 − 108e3. (4.9)

Reducing (4.9) by modulus 1728 and using ξ0 ≡ 36e2 (mod 96), we get (4.4).

Finally, the third equation of (2.5) implies

432T = 110592d− 27648ac+ 6912a2b− 1296a4. (4.10)

For the left-hand side of (4.10), we have 432T = 144(X0 − R2) = 144X0 − ξ20 and the right-hand
side of (4.10) can be rewritten, substituting a = 4w+e, 8b = R+3a2, 8c = S+4ab−a3, ξ0 = −12R
and η0 = 216S into

110592(d− w4 − ew3)− 64w(η0 − 9eξ0 + 108e3)− 1152w2(36e2 − ξ0)− 16eη0 + 72e2ξ0 − 432e4.

Since η0 ≡ 9eξ0 − 108e3 (mod 1728) and ξ0 ≡ 36e2 (mod 96), we get

144X0 − ξ20 ≡ −16eη0 + 72e2ξ0 − 432e4 (mod 110592).

Hence, (4.5).
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Conversely, assume that there exists a [X0, Y0] ∈ MD such that equation (4.2) has an integer
solution [ξ0, η0] satisfying (4.3)–(4.5) for some e ∈ {0, 1, 2, 3}. Put

R =
−ξ0
12

, S =
η0
216

, T =
144X0 − ξ20

432
. (4.11)

Then, by part (i) of Lemma 4.1, we have R,S ∈ Z. We now prove that T ∈ Z. From the first and
third equation in (4.11) we obtain T = (X0 −R2)/3. First we show that

X0 ≡ 0 (mod 3) ⇐⇒ R ≡ 0 (mod 3). (4.12)

Let 3|X0. Then, by part (iii) of Lemma 3.3, we have 9|Y0. Further, by (4.11), we have 3|ξ0 and
33|η0. Since η20 = ξ30 − 108X0ξ0 + 432Y0, we also have 0 ≡ η20 ≡ ξ30 (mod 35) and ξ0 ≡ 0 (mod 32)
follows. This together with ξ0 = −12R yields 3|R.

Let 3|R. Since ξ0 = −12R, we have 32|ξ0 and 36|ξ30 follows. Next, by (4.11), 36|η30 . Since
η20 = ξ30 − 108X0ξ0 + 432Y0, we have 432Y0 ≡ 0 (mod 35), and Y0 ≡ 0 (mod 32) follows. By part
(iv) of Lemma 3.3, we get 3|X0. This proves (4.12).

Further, suppose that X0 ≡ 2 (mod 3). Then from [X0, Y0] ∈ MD it follows that Y 2
0 ≡ 2

(mod 3), which is a contradiction. Combining this fact with (4.12), we get

X0 ≡ 1 (mod 3) ⇐⇒ R ≡ 1 (mod 3) or R ≡ 2 (mod 3)⇐⇒ R2 ≡ 1 (mod 3). (4.13)

Clearly, in both cases (4.12) and (4.13), we have X0 −R2 ≡ 0 (mod 3). Hence, T ∈ Z.

Consider now the polynomial

r(x) = x4 +
R

8
x2 +

S

8
x+

T

256
∈ Q[x].

We prove that the discriminant Dr of r(x) is equal to D. First, direct calculation verifies that

Dr =
(R2 + 3T )3 − (R3 − 9RT + 108S2)2

21633
.

On the other hand, substituting ξ0 = −12R, η0 = 216S into η20 = ξ30 − 108X0ξ0 + 432Y0, we obtain

(216S)2 = (−12R)3 − 108X0(−12R) + 432Y0.

Hence, we getR3−3R(X0−R2)+108S2 = Y0. Since, X0−R2 = 3T , we haveR3−9RT+108S2 = Y0.
This, together with Y 2

0 = X3
0 − 21633D yields

D =
(R2 + 3T )3 − (R3 − 9RT + 108S2)2

21633
.

Hence, Dr = D.

Finally, let e ∈ {0, 1, 2, 3} satisfy (4.3)–(4.5). Then, by part (ii) of Lemma 4.1, e is uniquely
determined. Put g(x) = r(x+ e/4). Then we obtain after some calculation that

g(x) = x4 + ex3 +
R+ 3e2

8
x2 +

eR+ 2S + e3

16
x+

2e2R+ 8eS + T + e4

256

= x4 + ex3 +
36e2 − ξ0

96
x2 +

108e3 − 9eξ0 + η0
1728

x+
432e4 − ξ20 − 72e2ξ0 + 16eη0 + 144X0

110592

and

rg(x) = r(x) = x4 − ξ0
96
x2 +

η0
1728

x+
144X0 − ξ20

110592
.

Since Dg = Drg = Dr = D, we have g(x) ∈ QD, as desired. The proof is complete. �
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Before proceeding, the following notations will be adopted. For any [X0, Y0] ∈ MD, let
ED(X0, Y0) denote the set of all [ξ0, η0] where ξ0, η0 ∈ Z and η20 = ξ30 − 108X0ξ0 + 432Y0. Next,
let ED denote the set of all [X0, Y0, ξ0, η0, e] where [X0, Y0] ∈ MD, [ξ0, η0] ∈ ED(X0, Y0) and
e ∈ {0, 1, 2, 3} satisfy (4.3)–(4.5).

Corollary 4.3. Let 0 6= D ∈ Z and let f(x) = x4 + ax3 + bx2 + cx+ d ∈ Z[x]. Then f(x) ∈ QD

if and only if there exists [X0, Y0, ξ0, η0, e] ∈ ED and w ∈ Z such that

a = 4w + e,

b = 6w2 + 3ew +
36e2 − ξ0

96
,

c = 4w3 + 3ew2 +
36e2 − ξ0

48
w +

108e3 − 9eξ0 + η0
1728

,

d = w4 + ew3 +
36e2 − ξ0

96
w2 +

108e3 − 9eξ0 + η0
1728

w +
432e4 − ξ20 − 72e2ξ0 + 16eη0 + 144X0

110592
.

Proposition 4.4. Let 0 6= D ∈ Z and let MD 6= ∅. Then (i), (ii) and (iii) hold:

(i) ED(X0, Y0) is a finite set for any [X0, Y0] ∈MD.

(ii) ED is a finite set.

(iii) QD/∼ has only finitely many equivalence classes for any QD 6= ∅.

P r o o f. (i) Put α=−108X0 and β=432Y0. Then 4α3+27β2 = 2839(−X3
0 + Y 2

0 ) = −224312D 6=0.
Conclusion (i) now follows from Theorem 1.2.

(ii) Conclusion (ii) is a direct consequence of Theorem 1.1 and part (i) of Proposition 4.4.

(iii) Let ϕ : ED → QD/∼ be the mapping defined by ϕ(X0, Y0, ξ0, η0, e)={fw(x);w∈Z}, where

f0(x) = x4 + ex3 +
36e2 − ξ0

96
x2 +

108e3 − 9eξ0 + η0
1728

x+
432e4 − ξ20 − 72e2ξ0 + 16eη0 + 144X0

110592
.

Then ϕ is bijective. Injectivity of ϕ is evident and surjectivity of ϕ immediately follows from
Corollary 4.3. Hence, #QD/∼= #ED. This proves (iii). �

Remark 4.5. Let [X0, Y0], [X∗0 , Y
∗
0 ] ∈ MD and let [X0, Y0] 6= [X∗0 , Y

∗
0 ]. By an example we

will prove that the set ED(X0, Y0) ∩ ED(X∗0 , Y
∗
0 ) can be nonempty. For D = −23, we have

[64, 6400], [−320,−2816] ∈M−23 and [96,±1728] ∈ E−23(64, 6400) ∩ E−23(−320,−2816).

Now we are ready to formulate the method for determining the set QD. It can be formally
divided into five steps as follows:

(i) Let 0 6= D ∈ Z. First we find the set MD of all integer solutions [X0, Y0] of Mordell’s equation
Y 2 = X3 − 21633D. By Theorem 1.1, MD is a finite set and Theorem 3.1 states that, if MD = ∅,
then QD = ∅.
(ii) Let MD 6= ∅. Next we find, for any [X0, Y0] ∈ MD, the set ED(X0, Y0) of all integer solutions
[ξ0, η0] of the elliptic equation η2 = ξ3−108X0ξ+432Y0. By part (i) of Proposition 4.4, ED(X0, Y0)
is a finite set for any [X0, Y0] ∈ MD and Theorem 4.2 says that, if ED(X0, Y0) = ∅ for any
[X0, Y0] ∈MD, then QD = ∅.
(iii) In step (iii), we establish the set ED. By part (ii) of Proposition 4.4, ED is a finite set and
Corollary 4.3 states that QD 6= ∅ if and only if ED 6= ∅.
(iv) Let ED 6= ∅ and let #ED = n. In this step, we assign to each [X0, Y0, ξ0, η0, e] ∈ ED the
polynomial

g(x) = x4 + ex3 +
36e2 − ξ0

96
x2 +

108e3 − 9eξ0 + η0
1728

x+
432e4 − ξ20 − 72e2ξ0 + 16eη0 + 144X0

110592
.
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In this way, we obtain the full system of representatives GD = {g1(x), . . . , gn(x)} of QD/∼. By
part (iii) of Proposition 4.4, QD/∼ is a finite set.

(v) Finally, applying Corollary 2.3 to each gi(x) ∈ GD, i ∈ {1, . . . , n}, we obtain the n sets
{fi,w(x);w ∈ Z} where

fi,w(x) = x4 +
g′′′i (w)

3!
x3 +

g′′i (w)

2!
x2 +

g′i(w)

1!
x+ gi(w).

Hence, we get

QD =

n⋃
i=1

{fi,w(x);w ∈ Z}.

The below example illustrates our method.

Example 4.6. Let D = −87. Then we have

M−87 = {[−320,±11008], [−92,±12376], [448,±15616]}.

Hence,

E−87(−320, 11008) = {[−80,±1216], [−48,±1728], [240,±5184], [384,±8640], [8592,±796608]},

E−87(−320,−11008) = ∅,

E−87(−92, 12376) = {[−156, 0]},

E−87(−92,−12376) = {[156, 0]},

E−87(448, 15616) = {[−156,±3240], [96,±1728]},

E−87(448,−15616) = ∅.

Further, we have

E−87 =
{

[−320, 11008, 240, 5184, 2], [−320, 11008, 240,−5184, 2],

[448, 15616,−156,−3240, 1], [448, 15616,−156, 3240, 3]
}
.

Hence, it follows that #E−87 = #Q−87/∼= 4 and that G−87 = {g1(x), g2(x), g3(x), g4(x)} where

g1(x) = x4 + 2x3 − x2 + x, g2(x) = x4 + 2x3 − x2 − 5x− 3,

g3(x) = x4 + x3 + 2x2 − x, g4(x) = x4 + 3x3 + 5x2 + 6x+ 3.

Finally,

f1,w(x) = x4 + (4w + 2)x3 + (6w2 + 6w − 1)x2 + (4w3 + 6w2 − 2w + 1)x+ w4 + 2w3 − w2 + w,

f2,w(x) = x4 + (4w + 2)x3 + (6w2 + 6w − 1)x2+(4w3 + 6w2 − 2w − 5)x+w4+2w3−w2−5w−3,

f3,w(x) = x4 + (4w + 1)x3 + (6w2 + 3w + 2)x2 + (4w3 + 3w2 + 4w − 1)x+ w4 + w3 + 2w2 − w,
f4,w(x) = x4 + (4w + 3)x3+(6w2 + 9w + 5)x2+(4w3+9w2+10w+6)x+w4+3w3+5w2+6w+3,

and

Q−87 =

4⋃
i=1

{fi,w(x);w ∈ Z}.

Applying the method, the validity of Theorem 4.7 can be verified.
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Theorem 4.7. Let 0 6= D ∈ Z and let 1 ≤ |D| ≤ 1000. Then we have:

(i) If 1 ≤ D ≤ 1000, then QD 6= ∅ if and only if

D ∈
{

5, 12, 20, 21, 32, 40, 45, 48, 49, 60, 77, 81, 85, 96, 104, 112, 117, 125, 140, 144, 148, 165,

169, 189, 192, 216, 221, 224, 229, 252, 256, 257, 260, 272, 285, 288, 320, 321, 333, 357,

361, 392, 400, 404, 432, 437, 468, 469, 473, 480, 488, 500, 512, 525, 528, 533, 544, 549,

564, 572, 580, 592, 605, 621, 629, 656, 672, 697, 725, 729, 733, 761, 768, 785, 788, 792,

816, 832, 837, 864, 892, 896, 900, 916, 957, 981, 985
}
.

(ii) If −1 ≥ D ≥ −1000, then QD 6= ∅ if and only if

D ∈
{
− 3,−16,−23,−27,−31,−44,−59,−76,−83,−87,−107,−108,−112,−135,−139,

− 140,−175,−176,−199,−211,−231,−236,−240,−247,−255,−256,−268,−275,

− 279,−283,−288,−304,−331,−332,−335,−351,−367,−400,−416,−428,−432,

− 448,−464,−475,−491,−500,−507,−527,−556,−560,−563,−575,−588,−608,

− 643,−671,−684,−688,−695,−731,−751,−783,−800,−816,−844,−848,−863,

− 864,−891,−931,−944,−959,−972,−976,−983
}
.

5. Structure of the set QD

In this section, we establish some results related to the structure of the set QD. For e ∈
{0, 1, 2, 3}, put QD(e) = {x4 + ax3 + bx2 + cx + d ∈ QD; a ≡ e (mod 4)}. Then QD(0), QD(1),
QD(2), QD(3) are pairwise disjoint sets, and

QD =

4⋃
e=0

QD(e).

Proposition 5.1 gives the important link between the sets QD(1) and QD(3).

Proposition 5.1. Let 0 6= D ∈ Z and let e ∈ {1, 3}. Then there exists a one-to-one correspon-
dence between the sets QD(1) and QD(3) given by the relation

[X0, Y0, ξ0, η0, 1] ∈ ED ⇐⇒ [X0, Y0, ξ0,−η0, 3] ∈ ED.

Consequently, QD(1) 6= ∅ if and only if QD(3) 6= ∅.

P r o o f. First observe that [ξ0, η0] ∈ ED(X0, Y0) if and only if [ξ0,−η0] ∈ ED(X0, Y0).

If e ∈ {1, 3}, then, by (4.3), ξ0 ≡ 36 (mod 96), which is equivalent to

18ξ0 ≡ 648 (mod 1728). (5.1)

Next, if e = 1, then, by (4.4), 9ξ0 − η0 − 108 ≡ 0 (mod 1728). Using (5.1), this congruence can be
written in the equivalent form

1719ξ0 + η0 + 108 ≡ 27ξ0 + 94 · 18ξ0 + η0 + 108 ≡ 27ξ0 + η0 + 540 ≡ 0 (mod 1728).

Hence, [ξ0, η0] satisfies (4.4) for e = 1 if and only if [ξ0,−η0] satisfies (4.4) for e = 3.

Furthermore, if e ∈ {1, 3}, then, by (4.3), ξ0 ≡ 36 (mod 96), which is equivalent to

1152ξ0 − 41472 ≡ 0 (mod 110592). (5.2)

Next, if e = 1 then, from (4.4), it follows that η0 ≡ 9ξ0 − 108 (mod 1728) if and only if

576ξ0 − 64η0 − 6912 ≡ 0 (mod 110592). (5.3)
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Subtracting (5.3) from (5.2), we now obtain

576ξ0 + 64η0 − 34560 ≡ 0 (mod 110592). (5.4)

Finally, if e = 1, then (4.5) yields

432− ξ20 − 72ξ0 + 16η0 + 144X0 ≡ 0 (mod 110592). (5.5)

Subtracting (5.4) from (5.5), we obtain

34992− ξ20 − 648ξ0 − 48η0 + 144X0 ≡ 0 (mod 110592).

This proves that [X0, Y0, ξ0, η0, 1] ∈ ED if and only if [X0, Y0, ξ0,−η0, 3] ∈ ED, which implies
QD(1) 6= ∅ if and only if QD(3) 6= ∅. �

For the remaining cases e ∈ {0, 2}, we can prove Proposition 5.2.

Proposition 5.2. Let 0 6= D ∈ Z and let e ∈ {0, 2}. Then we have:

(i) [X0, Y0, ξ0, η0, 0] ∈ ED ⇐⇒ [X0, Y0, ξ0,−η0, 0] ∈ ED.

(ii) [X0, Y0, ξ0, η0, 2] ∈ ED ⇐⇒ [X0, Y0, ξ0,−η0, 2] ∈ ED.

P r o o f. Since part (i) of Proposition 5.2 immediately follows from (4.3)–(4.5), we prove (ii).
Let [X0, Y0, ξ0, η0, 2] ∈ ED. Then (4.3)–(4.5) yields that ξ0 ≡ 48 (mod 96), η0 ≡ 18ξ0 − 864
(mod 1728), and

6912− ξ20 − 288ξ0 + 32η0 + 144X0 ≡ 0 (mod 110592). (5.6)

Since ξ0 ≡ 48 (mod 96) is equivalent to 18ξ0 ≡ 864 (mod 1728), we have −η0 ≡ −18ξ0 + 864 ≡
1710ξ0 − 864 = 18ξ0 − 864 + 94 · 18ξ0 ≡ 18ξ0 − 864 + 47 · 1728 ≡ 18ξ0 − 864 (mod 1728). Further,
ξ0 ≡ 48 (mod 96) is equivalent to 1152ξ0 ≡ 55296 (mod 110592) and η0 ≡ 18ξ0 − 864 (mod 1728)
is equivalent to 64η0 ≡ 1152ξ0 − 55296 (mod 110592). Hence, we obtain 64η0 ≡ 0 (mod 110592)
and 32η0 ≡ −32η0 (mod 110592) follows. Now we see that (5.6) is equivalent to 6912−ξ20−288ξ0−
32η0 + 144X0 ≡ 0 (mod 110592). This proves (ii). �

Remark 5.3. If QD 6= ∅, then any of the below seven cases can occur:

(i) QD(0) 6= ∅, QD(1) ∪QD(3) 6= ∅, QD(2) 6= ∅, D = −23,

(ii) QD(0) 6= ∅, QD(1) ∪QD(3) 6= ∅, QD(2) = ∅, D = 32,

(iii) QD(0) 6= ∅, QD(1) ∪QD(3) = ∅, QD(2) 6= ∅, D = 5,

(iv) QD(0) = ∅, QD(1) ∪QD(3) 6= ∅, QD(2) 6= ∅, D = −87,

(v) QD(0) 6= ∅, QD(1) ∪QD(3) = ∅, QD(2) = ∅, D = −27,

(vi) QD(0) = ∅, QD(1) ∪QD(3) 6= ∅, QD(2) = ∅, D = 12,

(vii) QD(0) = ∅, QD(1) ∪QD(3) = ∅, QD(2) 6= ∅, D = −3.

The above values of D are the least, in absolute value, for which the case occurs.

6. Even and odd solutions of Mordell’s equation Y 2 = X3 − 21633D

Some basic arithmetic properties of integer solutions [X0, Y0] of the Mordell’s equation Y 2 =
X3−21633D have already been presented in Lemma 3.3. Combining part (i) and (ii) of Lemma 3.3,
we immediately get X0 ≡ 0 (mod 2) ⇐⇒ Y0 ≡ 0 (mod 2). Hence, the following two definitions
are possible:

(i) A solution [X0, Y0] ∈MD is called even, if X0 and Y0 are even.

(ii) A solution [X0, Y0] ∈MD is called odd, if X0 and Y0 are odd.
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Next, for any 0 6= D ∈ Z, let

ED = {[X0, Y0] ∈MD : X0 ≡ Y0 ≡ 0 (mod 2)},
OD = {[X0, Y0] ∈MD : X0 ≡ Y0 ≡ 1 (mod 2)}.

Then ED ∩ OD = ∅ and ED ∪ OD = MD. Finally, for any positive integer n, put

εn =

n∑
D=1

#ED, ε−n =

−n∑
D=−1

#ED, on =

n∑
D=1

#OD, and o−n =

−n∑
D=−1

#OD.

Computer investigation of the values εn, ε−n, on and o−n for n≤1000 reveals a significant difference
between the numbers of even and odd solutions in the investigated range. We have found

ε−1000 = 1572, ε1000 = 1090, o−1000 = 100, and o1000 = 44.

Hence, it follows that there exist approximately 95% even and only 5% odd integer solutions of
Y 2 = X3 − 21633D for 0 6= |D| ≤ 1000. This surprising fact inspires the study of even solutions in
detail. As the main result of this section, we prove that, for any even solution [X0, Y0], equation
(4.2) can be replaced by another elliptic equation whose integer coefficients are substantially smaller
in the absolute value than in (4.2).

We begin by recalling the well-known proposition concerning the solubility of linear congruences.
See, for example, Hardy and Wright [4: p. 62, Theorem 57].

Proposition 6.1. Let a, b,m ∈ Z, m > 1 and let g = gcd(a,m). Then the congruence ax ≡ b
(mod m) is soluble if and only if g|b.

Using Proposition 6.1, we now prove Lemma 6.2.

Lemma 6.2. If X0, Y0 ∈ Z, then the congruence 3αX0 + Y0 − 4α3 ≡ 0 (mod 27) holds for at most
one α ∈ {0, 1, 2}.

P r o o f. The proof consists of three steps. (i) First, suppose that Y0 ≡ 0 (mod 27) and 3X0 +
Y0 − 4 ≡ 0 (mod 27). Then Y0 ≡ 4− 3X0 ≡ 0 (mod 27), which yields 3X0 ≡ 4 (mod 27). Hence,
gcd(3, 27) = 3 - 4, which is a contradiction.

(ii) Further, suppose that Y0 ≡ 0 (mod 27) and 6X0 + Y0 − 32 ≡ 0 (mod 27). Then Y0 ≡
5 − 6X0 ≡ 0 (mod 27), which yields 6X0 ≡ 5 (mod 27). Hence, gcd(6, 27) = 3 - 5, which is a
contradiction.

(iii) Finally, suppose that 3X0 + Y0 − 4 ≡ 0 (mod 27) and 6X0 + Y0 − 32 ≡ 0 (mod 27). Then
Y0 ≡ 4 − 3X0 ≡ 5 − 6X0 (mod 27), which yields 3X0 ≡ 1 (mod 27). Hence, gcd(3, 27) = 3 - 1,
which is a contradiction. Combining (i)–(iii) proves the lemma. �

We are now ready to prove the main result of this section.

Theorem 6.3. Let 0 6= D ∈ Z and let [X0, Y0] ∈ ED.

(i) If 3αX0 + Y0 − 4α3 ≡ 0 (mod 27) does not hold for any α ∈ {0, 1, 2}, then the system

R2 + 3T = X0 and R3 − 9RT + 108S2 = Y0 (6.1)

is not solvable in integers.

(ii) If 3αX0+Y0−4α3 ≡ 0 (mod 27) holds for some α ∈ {0, 1, 2}, then α is uniquely determined,
X0 − 4α2 ≡ 0 (mod 12), 3αX0 + Y0 − 4α3 ≡ 0 (mod 108) and the set K of all integer
solutions of (6.1) can be obtained from the set L of all integer solutions of the elliptic
equation

η2 = ξ3 − αξ2 − X0 − 4α2

12
ξ +

3αX0 + Y0 − 4α3

108
. (6.2)

Moreover, between K and L, there exists a one-to-one correspondence.
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P r o o f. (i) Let [R0, S0, T0] be an arbitrary integer solution of (6.1). Since R0 ∈ Z, there exits a
uniquely determined r ∈ Z and α ∈ {0, 1, 2} such that R0 = 3r + α.

First, we prove

X0 − 4α2

12
∈ Z ⇐⇒ 2|X0. (6.3)

Let 2|X0. Then, by part (i) of Lemma 3.3, 4|X0, and thus 4|X0 − 4α2. Next, the first equation
in (6.1) yields X0−R2

0 ≡ X0−α2 ≡ 0 (mod 3), and 3|X0−4α2 follows. Hence, 12|X0−4α2, which
means (X0−4α2)/12 ∈ Z. Because the validity of the converse implication is evident, we get (6.3).

Further, substituting 3T0 = X0 −R2
0 into R3

0 − 9R0T0 + 108S2
0 = Y0, we obtain

4R3
0 − 3X0R0 + 108S2

0 = Y0. (6.4)

Since R0 = 3r + α, (6.4) can be written in the equivalent form

108S2
0 = −108r3 − 108αr2 + 9(X0 − 4α2)r + 3αX0 + Y0 − 4α3. (6.5)

Reducing (6.5) by the modulus 108, using (6.3), we get 3αX0 + Y0 − 4α3 ≡ 0 (mod 108). This
proves (i).

(ii) Assume that there exists an α ∈ {0, 1, 2} such that 3αX0 + Y0 − 4α3 ≡ 0 (mod 27). Then
Lemma 6.2 states that α is uniquely determined. Since [X0, Y0] ∈ ED, by part (i) of Lemma 3.3,
4|X0 and 8|Y0, which yields 4|3αX0 + Y0 − 4α3 for any α ∈ {0, 1, 2}. Hence,

3αX0 + Y0 − 4α3 ≡ 0 (mod 27) ⇐⇒ 3αX0 + Y0 − 4α3 ≡ 0 (mod 108).

We now prove that

3αX0 + Y0 − 4α3 ≡ 0 (mod 27) =⇒ X0 − 4α2 ≡ 0 (mod 12). (6.6)

First, by part (i) of Lemma 3.3, X0 − 4α2 ≡ 0 (mod 4). Next, from the assumption 3αX0 +
Y0 − 4α3 ≡ 0 (mod 27), we get Y0 ≡ α3 ≡ α (mod 3). Hence, Y 2

0 ≡ α2 (mod 3). Furthermore, it
is clear from [X0, Y0] ∈ ED that Y 2

0 ≡ X3
0 (mod 3), which, together with X3

0 ≡ X0 (mod 3), yields
X0 ≡ α2 (mod 3). Hence, X0 − 4α2 ≡ 0 (mod 3), and (6.6) follows.

Let [R0, S0, T0] ∈ K. Then there exist a uniquely determined r ∈ Z and an α ∈ {0, 1, 2} such
that R0 = 3r + α. In much the same way as in the proof of part (i), we get (6.5). Hence,

S2
0 = −r3 − αr2 +

X0 − 4α2

12
r +

3αX0 + Y0 − 4α3

108
(6.7)

where (X0 − 4α2)/12 and (3αX0 + Y0 − 4α3)/108 are integers. Put [ξ0, η0] = [−r, S0]. Then it
follows from (6.7) that [ξ0, η0] ∈ L.

Conversely, let [ξ0, η0] ∈ L where α ∈ {0, 1, 2} satisfies 3αX0 + Y0 − 4α3 ≡ 0 (mod 27). Put
R0 = −3ξ0 + α and S0 = η0. Then R0, S0 ∈ Z, and substituting ξ0 = (α − R0)/3, η0 = S0 into
(6.2) some calculation will yield

R3
0 + 3R0(R2

0 −X0) + 108S2
0 = Y0. (6.8)

Next, put T0 = (X0 −R2
0)/3. Since R0 = −3ξ0 + α, we have T0 = 2αξ0 − 3ξ20 + (X0 − α2)/3, and

by (6.6), T0 ∈ Z. Substituting R2
0 −X0 = −3T0 into (6.8), we obtain R3

0 − 9R0T0 + 108S2
0 = Y0.

This proves that [R0, S0, T0] = [−3ξ0 + α, η0, 2αξ0 − 3ξ20 + (X0 − α2)/3] ∈ K.

Moreover, it is evident that the mapping ψ : L→ K defined by

ψ(ξ0, η0) = [−3ξ0 + α, η0, 2αξ0 − 3ξ20 + (X0 − α2)/3] (6.9)

is bijective. The proof is complete. �
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Example 6.4. Let D = −87. Then [X0, Y0] = [−320, 11008] ∈ E−87, and for α = 1, we
have 3αX0 + Y0 − 4α3 = 10044 ≡ 0 (mod 27). By Theorem 6.3, the set K of all integer so-
lutions of the system R2 + 3T = −320 and R3 − 9RT + 108S2 = 11008 can be obtained
using the set L of all integer solutions of the elliptic equation η2 = ξ3 − ξ2 + 27ξ + 93. Since
L = {[−1,±8], [7,±24], [11,±40], [239,±3688]}, (6.9) yields

K = {[4,±8,−112], [−20,±24,−240], [−32,±40,−448], [−716,±3688,−170992]}.

On the other hand, by Section 4, the set K can also be determined by means of the set
E−87(−320, 11008) = {[−80,±1216], [−48,±1728], [240,±5184], [384,±8640], [8592,±796608]}
of all integer solutions of the elliptic equation η2 = ξ3 + 34560ξ + 4755456.

Remark 6.5. If [X0, Y0] ∈ OD, then X0 − 4α2 6≡ 0 (mod 12) for any α ∈ {0, 1, 2}. On the other
hand, by examples, it can be proved that both cases (i) and (ii) can occur:

(i) 3αX0 + Y0 − 4α3 6≡ 0 (mod 108), (ii) 3αX0 + Y0 − 4α3 ≡ 0 (mod 108).

(i) If D = −23, then [X0, Y0] = [489, 12555] ∈ O−23, and for any α ∈ {0, 1, 2}, we have
3αX0 + Y0 − 4α3 6≡ 0 (mod 108).

(ii) If D = −107, then [X0, Y0] = [9241, 888445] ∈ O107, and for α = 1, we get 3αX0+Y0−4α3 =
916164 ≡ 0 (mod 108).

7. Some conjectures related to Mordell’s equation

Let 0 6= D ∈ Z and let

µ
D

=

{
0 if M

D
= ∅,

1 if M
D
6= ∅.

Next, for any positive integer n, put

σn =

n∑
D=1

µ
D

and σ−n =

−n∑
D=−1

µ
D
.

Computer investigation of the values σn and σ−n for n ≤ 1000 yields

σ1000
1000

=
280

1000
= 0.280,

σ−1000
1000

=
426

1000
= 0.426,

σ 1000

σ−1000
=

280

426
≈ 0.657.

Hence, the following conjectures can be made:

lim
n→∞

σn
n

=
2

7
≈ 0.286, lim

n→∞

σ−n
n

=
3

7
≈ 0.429, lim

n→∞

σn
σ−n

=
2

3
≈ 0.667. (7.1)

The conjectures (7.1) lead to another interesting question, namely, whether some similar hy-
potheses can also be stated for the case of general Mordell’s equation. It is clear that, to formulate
such hypotheses, much computation will be needed.

Thanks to the computations made by M. A. Bennett and A. Ghadermarzi [1], all integer solutions
of Y 2 = X3 +k are determined for any 0 6= |k| ≤ 107. Based on their results, some new conjectures
can be formulated. The following notations will be useful.

For 0 6= k ∈ Z, let M(k) denote the set of all integer solutions of Y 2 = X3 + k, and let

µ(k) =

{
0 if M(k) = ∅,
1 if M(k) 6= ∅.
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Next, for any positive integer n, put

σ(n) =

n∑
k=1

µ(k) and σ(−n) =

n∑
k=−1

µ(−k).

By inspecting Table 1 and Table 2 in [1: pp. 642–643], we get

σ(107)

107
=

1332934

107
≈ 0.133,

σ(−107)

107
=

834604

107
≈ 0.083,

σ(−107)

σ(107)
=

834604

1332934
≈ 0.626.

Hence, the following conjectures can be made:

lim
n→∞

σ(n)

n
=

2

15
= 0.13, lim

n→∞

σ(−n)

n
=

1

12
= 0.083, lim

n→∞

σ(−n)

σ(n)
=

5

8
= 0.625. (7.2)

Our surmises can be proposed to the reader as Problem 7.1.

Problem 7.1. Prove or disprove (7.1) and (7.2).

8. Conclusion

The results presented in this paper make it possible to determine the set QD of all monic quartic
polynomials x4 + ax3 + bx2 + cx + d ∈ Z[x] with a given discriminant 0 6= D ∈ Z. That provides
an opportunity to study the following problem: Establish a general method of deciding in a finite
number of steps whether, for a given 0 6= D ∈ Z, the following statement holds: Let p be an
arbitrary prime. Then all polynomials in QD have the same type of factorization over the Galois
field Fp. The validity of an analogous statement for the case of cubic polynomials has been recently
examined in [10]–[15] with relatively closed results obtained.

Acknowledgement. The author thanks the anonymous referee for carefully reading the manu-
script.
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[10] KLAŠKA, J.—SKULA, L.: Mordell’s equation and the Tribonacci family, Fibonacci Quart. 49(4) (2011),

310–319.
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[12] KLAŠKA, J.—SKULA, L.: Law of inertia for the factorization of cubic polynomials – the imaginary case,
Util. Math. 103 (2017), 99–109.

49
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[15] KLAŠKA, J.—SKULA, L.: On the factorizations of cubic polynomials with the same discriminant modulo a

prime, Math. Slovaca 68(5) (2018), 987–1000.
[16] LONDON, J.—FINKELSTEIN, M.: On Mordell’s Equation y2 − k = x3, Bowling Green, Ohio Bowling Green

State University, 1973.

[17] MORDELL, L. J.: A statement by Fermat, Proc. Lond. Math. Soc. (2) 18 (1920), pp. v–vi.
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