Startseite Mathematik On the oscillatory behavior of third order differential equations with a sublinear neutral term
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the oscillatory behavior of third order differential equations with a sublinear neutral term

  • E. Thandapani , M. M. A. El-Sheikh , R. Sallam und S. Salem
Veröffentlicht/Copyright: 13. Januar 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A class of third order differential equations with a sublinear neutral term of the type

a ( t ) b ( t ) x ( t ) + p ( t ) x α ( τ ( t ) ) + q ( t ) x γ ( σ ( t ) ) = 0

is considered. Some oscillation criteria are presented to improve and complement those in the literature. Several examples are established to illustrate the main results.

MSC 2010: Primary 34C10; 34K11
  1. (Communicated by Jozef Džurina

Acknowledgement

The authors are grateful to the editors and the referees for the careful reading and helpful suggestions which led to an improvement of our original manuscript.

References

[1] Agarwal, R. P.—Bohner, M.—Li, T.—Zhang, C.: Oscillation of third-order nonlinear delay differential equations, Taiwanese J. Math. 17 (2013), 545–558.10.11650/tjm.17.2013.2095Suche in Google Scholar

[2] Agarwal, R. P.—Bohner, M.—Li, T.—Zhang, C.: Oscillation of second-order differential equations with a sublinear neutral term, Carpathian J. Math. 30 (2014), 1–6.10.37193/CJM.2014.01.01Suche in Google Scholar

[3] Baculíková, B.—Džurina, J.: Oscillation of third-order neutral differential equations, Math. Comput. Modelling 52 (2010), 215–226.10.1016/j.mcm.2010.02.011Suche in Google Scholar

[4] Baculíková, B.—Džurina, J.: On the asymptotic behavior of a class of third order nonlinear neutral differential equations, Cent. Eur. J. Math. 8 (2010), 1091–1103.10.2478/s11533-010-0072-xSuche in Google Scholar

[5] Baculíková, B.—Džurina, J.: Oscillation of third-order nonlinear differential equations, Appl. Math. Lett. 24 (2011), 466–470.10.1016/j.aml.2010.10.043Suche in Google Scholar

[6] candan, T.—Dahiya, R. S.: Oscillation of third order functional differential equations with delay, Electron. J. Differ. Equ. Conf. 10 (2003), 79–88.Suche in Google Scholar

[7] Cloud, M. J.—Drachman, B. C.: Inequalities with Applications to Engineering, Springer-Verlag, NewYork, Inc. 1998.Suche in Google Scholar

[8] Džurina, J.—Jadlovská, I.: Oscillation of third-order differential equations with noncanonical operators, Appl. Math. Comput. 336 (2018), 394–402.10.1016/j.amc.2018.04.043Suche in Google Scholar

[9] Erbe, L.: Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations, Pacific J. Math. 64 (1976), 369–385.10.2140/pjm.1976.64.369Suche in Google Scholar

[10] Ganesan, V.—Kumar, M. S.: Oscillation theorems for third-order retarded differential equations with a sublinear neutral term, Int. J. Pure Appl. Math. 114 (2017), 63–70.Suche in Google Scholar

[11] Grace, S. R.—Agarwal, R. P.—Pavani, R.—Thandapani, E.: On the oscillation of certain third order nonlinear functional differential equations, Appl. Math. Comput. 202 (2008), 102–112.10.1016/j.amc.2008.01.025Suche in Google Scholar

[12] Hale, J. K.: Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.10.1007/978-1-4612-9892-2Suche in Google Scholar

[13] Hanan, M.: Oscillation criteria for third order differential equations, Pacific J. Math. 11 (1961), 919–944.10.2140/pjm.1961.11.919Suche in Google Scholar

[14] Hartman, P.—Wintner, A.: Linear differential and difference equations with monotone solutions, Amer. J. Math. 75 (1953), 731–743.10.2307/2372548Suche in Google Scholar

[15] Jiang, Y.—Li, T.: Asymptotic behavior of a third-order nonlinear neutral delay differential equation, J. Inequal. Appl. 2014 (2014), 7 pages.10.1186/1029-242X-2014-512Suche in Google Scholar

[16] Li, T.—Thandapani, E.—Graef, J. R.: Oscillation of third-order neutral retarded differential equations, Int. J. Pure Appl. Math. 75 (2012), 511–520.Suche in Google Scholar

[17] Li, T.—Zhang, C.—Xing, G.: Oscillation of third-order neutral delay differential equations, Abstr. Appl. Anal. 2012 (2012), 11 pages.10.1155/2012/569201Suche in Google Scholar

[18] Lin, X.—Tang, X.: Oscillation of solutions of neutral differential equations with a superlinear neutral term, Appl. Math. Lett. 20 (2007), 1016–1022.10.1016/j.aml.2006.11.006Suche in Google Scholar

[19] Saker, S. H.: Oscillation criteria of third-order nonlinear delay differential equations, Math. Slovaca 56 (2006), 433–450.Suche in Google Scholar

[20] Saker, S. H.—Džurina, J.: On the oscillation of certain class of third-order nonlinear delay differential equations, Math. Bohem. 135 (2010), 225–237.10.21136/MB.2010.140700Suche in Google Scholar

[21] Tamilvanan, S.—Thandapani, E.—Džurina, J.: Oscillation of second order nonlinear differential equation with sub-linear neutral term, Differ. Equ. Appl. 9 (2017), 29–35.10.7153/dea-09-03Suche in Google Scholar

[22] Thandapani, E.—Li, T.: On the oscillation of third-order quasi-linear neutral functional differential equations, Arch. Math. (Brno) 47 (2011), 181–199.Suche in Google Scholar

Received: 2019-02-12
Accepted: 2019-06-30
Published Online: 2020-01-13
Published in Print: 2020-02-25

© 2020 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0335/pdf
Button zum nach oben scrollen