Startseite Mathematik Cluster sets and topology
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cluster sets and topology

  • Jacek Jędrzejewski EMAIL logo und Stanisław Kowalczyk
Veröffentlicht/Copyright: 20. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Limit numbers (cluster sets) of a real function of a real variable were discussed in the literature by many authors. Generalizations of cluster sets were considered by distinctions of some classes of sets which generated some kind of limit. In general they were close to some topology on the set of real numbers. However not all such classes allowed to define a topology on ℝ in a simple way.

We consider some topologies in ℝ generated by those classes of sets. We investigate a connection between limit numbers generated by those classes and limit numbers defined by a topology generated by a class 𝔅.

MSC 2010: Primary 54C30
  1. (Communicated by Ján Borsík)

References

[1] Belowska, L.: Résolution d’un probléme de M. Z. Zahorski sur les limites approximatives, Fund. Math. 48 (1960), 277–286.10.4064/fm-48-3-277-286Suche in Google Scholar

[2] Jędrzejewski, J. M.: On limit numbers of real functions, Fund. Math. 83(3) (1973/74), 269–281.10.4064/fm-83-3-269-281Suche in Google Scholar

[3] Jędrzejewski, J. M.: The generalized limit and generalized continuity, Zeszyty Nauk. Uniw. Łódzkiego 52 (1973), 19–38.Suche in Google Scholar

[4] Jędrzejewski, J. M.—Wilczyński, W.: On the family of sets of limit numbers, Bull. Acad. Pol. Sci. 18 (1970), 453–460.Suche in Google Scholar

[5] Jędrzejewski, J. M.—Wilczyński W.: On the family of sets of 𝔅-limit numbers, Zeszyty Nauk. Uniw. Łódzkiego 52 (1973), 39–43.Suche in Google Scholar

[6] Kulbacka, M.: Sur l’ensemble des points de l’asymmétrie approximative, Acta Sci. Math. (Szeged) 21 (1960), 90–95.Suche in Google Scholar

[7] Sierpiński, W.: Wstęp do Teorii Funkcji Rzeczywistych, Warszawa, 1928 (in Polish).Suche in Google Scholar

[8] Świątkowski T.: On some generalization of the notion of asymmetry of functions, Colloq. Math. 17 (1967), 77–91.10.4064/cm-17-1-77-91Suche in Google Scholar

[9] Thomson, B. S.: Real Functions. Lecture Notes in Math. 1170, Springer Verlag, 1985.10.1007/BFb0074380Suche in Google Scholar

[10] Wilczyński, W.: On the family of sets of approximate limit numbers, Fund. Math. 75 (1972), 169–174.10.4064/fm-75-2-169-174Suche in Google Scholar

[11] Wilczyński, W.: On the family of sets of qualitative limit numbers, Rev. Roumaine Math. Pures Appl. XVIII(8) (1973), 184–191.Suche in Google Scholar

[12] Young, W. H. La symétrie de structure des fonctions des variables réelles, Bull. Sci. Math. 52(2) (1928), 265–280.Suche in Google Scholar

Received: 2017-06-28
Accepted: 2017-11-18
Published Online: 2018-11-20
Published in Print: 2018-12-19

© 2018 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0195/pdf
Button zum nach oben scrollen