Startseite Mathematik On the proximity of multiplicative functions to the number of distinct prime factors function
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the proximity of multiplicative functions to the number of distinct prime factors function

  • Jean-Marie De Koninck EMAIL logo , Nicolas Doyon und François Laniel
Veröffentlicht/Copyright: 18. Mai 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Given an additive function f and a multiplicative function g, let E(f, g;x) = #{nx: f(n) = g(n)}. We study the size of E(ω,g;x) and E(Ω,g;x), where ω(n) stands for the number of distinct prime factors of n and Ω(n) stands for the number of prime factors of n counting multiplicity. In particular, we show that E(ω,g;x) and E(Ω,g;x) are Oxloglogx for any integer valued multiplicative function g. This improves an earlier result of De Koninck, Doyon and Letendre.


The work of the first author was supported by a grant from NSERC.



Communicated by Federico Pellarin


References

[1] Balazard, M.: Unimodalité de la distribution du nombre de diviseurs premiers ďun entier, Ann. Inst. Fourier 40 (1990), 255–270.10.5802/aif.1213Suche in Google Scholar

[2] Ben SaϊD, F.—Nicolas, J. L.: Sur une application de la formule de Selberg-Delange, Colloq. Math. 98 (2003), 223–247.10.4064/cm98-2-8Suche in Google Scholar

[3] De Koninck, J. M.—Doyon, N.—Letendre, P.: On the proximity of additive and multiplicative functions, Funct. Approx. Comment. Math. 201 (2015), 1–18.10.7169/facm/2015.52.2.10Suche in Google Scholar

[4] De Koninck, J. M.—Luca, F.: Analytic Number Theory: Exploring the Anatomy of Integers. Grad. Stud. Math. 134, American Mathematical Society, Providence, Rhode Island, 2012.10.1090/gsm/134Suche in Google Scholar

[5] Hardy, G. H.—Ramanujan, S.: The normal number of prime factors of a number n, Q. J. Math. 48 (1917), 76–92.Suche in Google Scholar

[6] Spearman, B. K.—Williams, K. S.: On integers with prime factors restricted to certain congruence classes, Far East J. Math. 24 (2007), 153–161.Suche in Google Scholar

[7] Tenenbaum, G.: Introduction à la Théorie Analytique des Nombres. Collection SMF, Société Mathématique de France, 1995.Suche in Google Scholar

Received: 2016-5-20
Accepted: 2016-10-3
Published Online: 2018-5-18
Published in Print: 2018-6-26

© 2017 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0121/pdf
Button zum nach oben scrollen