Startseite Mathematik Compactifications of partial frames via strongly regular ideals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Compactifications of partial frames via strongly regular ideals

  • John Frith EMAIL logo und Anneliese Schauerte
Veröffentlicht/Copyright: 31. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Partial frames provide a fertile context in which to do pointfree structured and unstructured topology, using a small collection of axioms of an elementary nature. Amongst other things they can be used to investigate similarities and differences between frames, σ-frames and κ-frames.

In this paper, the theory of strong inclusions for partial frames is used to describe compactifications of completely regular partial frames; the elements of these compactifications are given explicitly as strongly regular ideals. This is independent of and encompasses the theory of compactifications for frames. As an application, we revisit the Samuel compactification of a uniform partial frame.


Communicated by Aleš Pultr


References

[1] Adámek, J.—Herrlich H.—Strecker, G.: Abstract and Concrete Categories, John Wiley & Sons Inc., New York, 1990.Suche in Google Scholar

[2] Baboolal, D.—Ori, R. G.: Samuel Compactification and Uniform Coreflection of Nearness Frames, Proceedings Symposium on Categorical Topology (1994), University of Cape Town, 1999.Suche in Google Scholar

[3] Banaschewski, B.: Compactification of frames, Math. Nachr. 149 (1990), 105–116.10.1002/mana.19901490107Suche in Google Scholar

[4] Banaschewski, B.: σ-frames, unpublished manuscript, 1980. Available at http://mathcs.chapman.edu/CECAT/members/Banaschewski_publicationsSuche in Google Scholar

[5] Banaschewski, B.—Gilmour, C. R. A.: Stone-Čech compactification and dimension theory for regular σ-frames, J. London Math. Soc. 39 (1989), 1–8.10.1112/jlms/s2-39.1.1Suche in Google Scholar

[6] Banaschewski, B.—Gilmour, C. R. A.: Realcompactness and the cozero part of a frame, Appl. Categ. Struct. 9 (2001), 395–417.10.1023/A:1011225712426Suche in Google Scholar

[7] Banaschewski, B.—Pultr, A.: Samuel compactification and completion of uniform frames, Math. Proc. Camb. Phil. Soc. 108 (1990), 63–78.10.1017/S030500410006895XSuche in Google Scholar

[8] Ebrahimi, M. M.—Tabatabaee, M. V.: Compactification of κ-frames, Bull. Iranian Math. Soc. 29 (2003), 55–64.Suche in Google Scholar

[9] Frith, J.—Schauerte, A.: The Samuel compactification for quasi-uniform biframes, Topology Appl. 156 (2009), 2116–2122.10.1016/j.topol.2009.03.034Suche in Google Scholar

[10] Frith, J.—Schauerte, A.: Uniformities and covering properties for partial frames (I), Categ. General Alg. Struct. Appl. 2 (2014), 1–21.Suche in Google Scholar

[11] Frith, J.—Schauerte, A.: Uniformities and covering properties for partial frames (II), Categ. General Alg. Struct. Appl. 2 (2014), 23–35.Suche in Google Scholar

[12] Frith, J.—Schauerte, A.: The Stone-Čech compactification of a partial frame via ideals and cozero elements, Quaest. Math. 39 (2016), 115–134.10.2989/16073606.2015.1023866Suche in Google Scholar

[13] Frith, J.—Schauerte, A.: Completions of uniform partial frames, Acta Math. Hungar. 147 (2015), 116–134.10.1007/s10474-015-0514-9Suche in Google Scholar

[14] Frith, J.—Schauerte, A.: Coverages give free constructions for partial frames, Appl. Categ. Structures 25 (2017), 303–321.10.1007/s10485-015-9417-8Suche in Google Scholar

[15] Johnstone, P. T.: Stone Spaces, Cambridge University Press, Cambridge, 1982.Suche in Google Scholar

[16] Mac Lane, S.: Categories for the Working Mathematician, Springer-Verlag, Heidelberg, 1971.10.1007/978-1-4612-9839-7Suche in Google Scholar

[17] Madden, J. J.: κ-frames, J. Pure Appl. Algebra 70 (1991), 107–127.10.1016/0022-4049(91)90011-PSuche in Google Scholar

[18] Naidoo, I.: On Completion in the Category SSNσFRM, Math. Slovaca 63 (2013), 201–214.10.2478/s12175-012-0093-ySuche in Google Scholar

[19] Paseka, J.: Covers in generalized frames, In: General Algebra and Ordered Sets (Horni Lipova 1994), Palacky Univ. Olomouc, Olomouc pp. 84–99.Suche in Google Scholar

[20] Picado, J.—Pultr, A.: Frames and Locales, Springer, Basel, 2012.10.1007/978-3-0348-0154-6Suche in Google Scholar

[21] Samuel, P.: Ultrafilters and compactification of uniform spaces, Trans. Amer. Math. Soc. 64 (1948), 100–132.10.1090/S0002-9947-1948-0025717-6Suche in Google Scholar

[22] Walters, J. L.: Compactifications and uniformities on σ-frames, Comment. Math. Univ. Carolinae 32 (1991), 189–198.Suche in Google Scholar

[23] Walters, J. L.: Uniform Sigma Frames and the Cozero Part of Uniform Frames, Masters Dissertation, University of Cape Town, 1990.Suche in Google Scholar

[24] Zenk, E. R.: Categories of partial frames, Algebra Universalis 54 (2005), 213–235.10.1007/s00012-005-1939-8Suche in Google Scholar

[25] Zhao, D.: Nuclei on Z-Frames, Soochow J. Math. 22 (1996), 59–74.Suche in Google Scholar

[26] Zhao, D.: On Projective Z-frames, Canad. Math. Bull. 40 (1997), 39–46.10.4153/CMB-1997-004-4Suche in Google Scholar

Received: 2015-12-7
Accepted: 2016-6-8
Published Online: 2018-3-31
Published in Print: 2018-4-25

© 2018 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0100/pdf
Button zum nach oben scrollen