Startseite Mathematik Further Properties of the Lattice of Torsion Classes of Abelian Cyclically Ordered Groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Further Properties of the Lattice of Torsion Classes of Abelian Cyclically Ordered Groups

  • Judita Lihová EMAIL logo und Ján Jakubík
Veröffentlicht/Copyright: 25. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The notion of torsion class of abelian cyclically ordered groups has been introduced and fundamental properties of the collection T of all such classes, ordered by the class-theoretical inclusion, have been proved by the second author in 2011. The present paper can be considered as a continuation of the above mentioned one. We describe all atoms of T , show that T does not have any dual atom and prove complete distributivity of T .

References

[1] FUCHS, L.: Partially Ordered Algebraic Systems, Pergamon Press, Oxford-London-New York-Paris, 1963.Suche in Google Scholar

[2] JAKUBÍK, J.: Distributivity of intervals of torsion radicals, Czechoslovak Math. J. 32 (1982), 548-555.10.21136/CMJ.1982.101833Suche in Google Scholar

[3] JAKUBÍK, J.: Torsion classes of abelian cyclically ordered groups, Math. Slovaca 62 (2012), 633-646.10.2478/s12175-012-0036-7Suche in Google Scholar

[4] JAKUBÍK, J.-ČERNÁK,Š.: Completion of a cyclically ordered group, Czechoslovak Math. J. 37 (1987), 157-174.10.21136/CMJ.1987.102144Suche in Google Scholar

[5] JAKUBÍK, J.-PRINGEROVÁ, G.: Representations of cyclically ordered groups, Časopis Pěst. Mat. 113 (1988), 197-208.10.21136/CPM.1988.118343Suche in Google Scholar

[6] JAKUBÍK, J.-PRINGEROVÁ, G.: Radical classes of cyclically ordered groups, Math. Slovaca 38, (1988), 255-268.10.21136/CMJ.1988.102219Suche in Google Scholar

[7] MARTíNEZ, J.: Torsion theory for lattice ordered groups, Czechoslovak Math. J. 25 (1975), 284-299.10.21136/CMJ.1975.101320Suche in Google Scholar

[8] RIEGER, L.: On linearly ordered and cyclically ordered groups I; II; III, Věstník Král. Čes. Spol. Nauk (1946); (1947); (1948), 1-31; 1-33; 1-26 (Czech).Suche in Google Scholar

[9] SWIERCZKOWSKI, S.: On cyclically ordered groups, Fund. Math. 47 (1959), 161-166.10.4064/fm-47-2-161-166Suche in Google Scholar

[10] ZABARINA, A. I.: On linear and cyclic orders in groups, Sibirsk. Mat. Zh. 26, (1985), 204-207 (Russian). Suche in Google Scholar

Received: 2012-2-27
Accepted: 2012-9-27
Published Online: 2015-3-25
Published in Print: 2015-2-1

© 2015 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0002/pdf
Button zum nach oben scrollen