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Abstract: Increased transcript diversity, which is caused in
part by alternative splicing and cryptic transcription, is an
underappreciated aspect of age-associated transcriptome
remodeling. Recent work has revealed that structurally
novel transcripts increase during aging in many tissues.
Genes with cryptic and alternatively spliced transcripts with
age are enriched for functional categories relevant to tissue
function and aging, and have been implicated in cognitive
decline, decreased muscle strength, reduced oocyte quality,
immune aging, altered stem cell properties, and senescence.
Indeed, there is emerging evidence that alternatively spliced
transcripts and elevated cryptic transcription directly
contribute to aging phenotypes in multiple tissues. The full
impact of the increased transcript diversity on the aging
process has yet to be explored. The increased transcript di-
versity engendered by alternative splicing and cryptic
transcription is emerging as a potent driver of aging and
aging phenotypes, adding another layer to our understand-
ing of the transcriptional regulation of aging.
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Introduction

Aging is characterized by the functional decline of many
tissues, which is driven by specific cellular and molecular
mechanisms, collectively termed the “hallmarks of aging”
[1]. While itself not a hallmark of aging, transcriptional
dysregulation is thought to be the consequence of other

processes that are disrupted during aging. Transcriptomic
changes have been linked to the loss of cell identity and
altered tissue function during aging [2–4]. However, such
changes have largely been characterized at the gene
expression level, and do not take into account the nature of
the transcripts themselves. Through cryptic transcription
(aberrant transcription initiated from intragenic promoter-
like sequences) and alternative splicing, novel transcripts
that have a different structure than a gene’s primary,
endogenous transcript can be generated. However, such
transcripts are discounted inmost analyses of age-associated
gene expression changes, even though the structural dif-
ferences can affect RNA stability, translation efficiency, and
the sequence of any encoded proteins [5], all of which can
impact physiology. Indeed, numerous studies have revealed
that mRNA processing is disrupted in many tissues during
aging [6], suggesting that distinct transcript variants gener-
ated from the same gene may be present in old and young
organisms. Evidence is accumulating that the diversity of
transcripts produced from a given gene increases during
aging, particularly through alternative splicing and intra-
genic cryptic transcription initiation [7, 8], though these
phenomena have not received nearly as much attention as
gene expression changes. Understanding the effects of these
novel transcripts is essential for our understanding of the
aging process.

Recently, considerable progress has been made in
knowing how dysregulated splicing and cryptic transcription
impact aging. For thefirst time, cryptic transcription has been
shown to increase during mammalian aging, and several
groups have explored what drives this age-associated tran-
scriptional dysregulation and how these transcripts may
contribute to various aging phenotypes, including senescence
[9, 10]. Other groups have shown that perturbations that in-
crease cryptic transcription mimic certain aspects of aging in
a variety of tissues [11–14], further implicating cryptic tran-
scription in the aging process. An even greater focus has been
on understanding how splicing changes drive aging. In addi-
tion to characterizing age-associated splicing events in a va-
riety of tissues, several studieshave identified chromatin state
and transcription changes that drive splicing dysregulation
during aging [15–23]. Accumulating evidence links loss of
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splicing regulators and specific age-associated alternatively
spliced transcripts to the functional decline of tissues during
aging [24–38]. These exciting new results both highlight that
increased transcript diversity is a driver of aging and show
that we are only beginning to understand its impact on this
process.

Generation of structurally diverse
transcripts though alternative
splicing and cryptic transcription

Mammalian gene structure is complex, and it is well estab-
lished that multiple transcripts can be generated from a
single gene. Two fundamental processes that make these
novel transcripts are alternative splicing and cryptic tran-
scription. Both of these processes generate transcripts that
have a distinct structure from the primary transcript, lack-
ing (or gaining) exons and having distinct 5′ or 3′ UTRs [5, 8].
Before exploring the effects that these structural differences
can have on the transcripts and the proteins they encode, we
briefly discuss alternative splicing, cryptic transcription and
how they are regulated.

Alternative splicing

Splicing is a co-transcriptional process by which introns are
excised from a nascent transcript and the flanking exons are
ligated together. Briefly, the U1 snRNP binds the 5′ splice site
at the end of an exon, while SF1 binds the branch point
within the intron, and the accessory factors U2AF1 and
U2AF2 bind the 3′ splice site and intronic polypyrimidine
tract. This allows the U2 snRNP to displace SF1 from the
branch point site and interact with the 3′ splice site through
U2AF1. The U2 snRNP then recruits the U4/U5/U6 snRNP
complex to form the precatalytic spliceosome. U1 and U4 are
released, and the 5′ splice site is cleaved; in the second cat-
alytic step, the 5′ and 3′ splice sites are joined, linking the
flanking exons [39]. While many, if not most, splicing events
are constitutive, i.e., occur in all copies of a given transcript,
others are regulated and occur in only a fraction of all
transcripts from a given gene. These regulated splicing
events are termed alternative splicing, and this is a common
mechanism used to increase transcript and protein di-
versity, with up to 95 % of all human genes subject to this
process [40, 41].

At its heart, alternative splicing is a question of whether
or not a particular splice site is used during the processing
of a given transcript. Given the complexity of the splicing

reaction, many factors can influence splice site usage,
including the splice site itself, binding of splicing factors
(SFs), the transcription rate, and even chromatin state
[42, 43]. The sequences recognized by the core splicing
machinery are degenerate; thus, intrinsically, some splice
sites recruit spliceosome components more efficiently than
others. In the absence of other regulation, these stronger
splice sites are more likely to be used than weaker ones.
However, SFs also contribute to splice site choice. These
proteins bind to splicing enhancers or silencers in the
primary transcript in a sequence-specific manner and
either promote or inhibit the binding of core spliceosome
components to nearby splice sites. Many SFs are in the
hnRNP and SRSF families; broadly speaking, the former
inhibit splice site usage, while the latter enhance it. As
splicing occurs co-transcriptionally in the context of the
primary transcript, both chromatin and the rate of tran-
scription can affect the association of particular SFs with a
primary transcript. Splicing enhancers and silencers can be
upstream or downstream of the splice site they regulate;
intuitively, then, the rate of transcription will impact
whether a downstream regulatory element is transcribed
soon enough to influence a given splice site choice.
Furthermore, SFs can be recruited to a gene through their
interaction with the modified histone residue H3K36me3,
pre-positioning them for rapid association with a nascent
transcript. Thus, altering the chromatin state, transcription
rate, and SF availability can change splice site usage and
induce alternative splicing (Figure 1).

Cryptic transcription

In contrast to alternative splicing, which is a normal part of
RNA processing, cryptic transcription is typically inhibited
in young, healthy tissues. This type of dysregulated tran-
scription occurs when RNA polymerase II (Pol II) binds to
a promoter-like sequence within the body of an actively
transcribed gene and initiates transcription from this site.
Significantly, cryptic transcription is distinct from alterna-
tive promoter use; not only are cryptic promoters defini-
tionally not annotated promoters, but also their sequence
composition and chromatin state when active are distinct
from those of annotated transcription start sites [9, 10, 44].

Cryptic transcription is inhibited by a repressive chro-
matin state that renders these cryptic promoters inacces-
sible, preventing Pol II entry [45–47] (Figure 1). However,
chromatin is opened during transcription, thus allowing Pol
II to interact with cryptic promoters within actively tran-
scribed genes. In young organisms, in the wake of Pol II
transit, a closed chromatin state is restored, thus inhibiting
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cryptic transcription [45]. The histone methyltransferase
SETD2 associates with elongating Pol II and trimethylates
histone H3 on lysine K36; H3K36me3 functions as a scaffold
for the enzymes that generate a repressive chromatin state
[8]. One such complex is FACT, which reassembles nucleo-
somes that are disrupted during transcription [48, 49].
H3K36me3 additionally recruits the DNA methyltransferase
Dnmt3b to gene bodies to increase CpG methylation, which

helps render cryptic promoters inactive [44]. Finally,
H3K36me3 draws the histone demethylase Kdm5b to genic
regions, where it functions to erase H3K4me3, which is co-
transcriptionally conferred by MLL1 [50, 51]; this histone
modification is associatedwith active promoters. Loss of any
of these enzymes, which reduces H3K36me3 levels and DNA
methylation and increases intragenic H3K4me3, allows
cryptic transcription to occur.

Figure 1: Regulation and effects of alternative splicing and cryptic transcription. (A) SFs bind to splicing enhancers and silencers in the nascent transcript
and regulatewhether a particular splice site is recognized by the spliceosome, and thuswhich alternative splicing event occurs. Splice site choices result in
characteristic alternative splicing events: exon exclusion, intron inclusion, mutually exclusive exons, alternative 5’ splice site, alternative 3’ splice site, new
first exon, and new last exon. SF availability and the presence/absence of splicing enhancers are further regulated by H3K36me3 levels on the gene and
the rate of Pol II elongation. H3K36me3 levels, SF availability, and transcription rates change during aging, altering splicing patterns. (B) Intragenic cryptic
transcription is typically inhibited by a repressive chromatin state. Co-transcriptionally conferred H3K36me3 recruits Kdm5b and Dnmt3b to the bodies of
actively transcribed genes, where they erase H3K4me3 and methylate DNA, respectively, rendering cryptic promoters refractory to Pol II entry. As
H3K36me3 is reduced with age, decreased DNA methylation and intragenic H3K4me3 allow transcription from cryptic promoters. (C) Cryptic and
alternatively spliced transcripts can be targeted for degradation or translated. The resulting proteinsmay lack key domains or have/be novel sequences if
the reading frame is altered. These peptidesmay be degraded,misfold and aggregate, or properly fold into functional proteins. Pol II, RNA polymerase II;
H3K36me3, trimethylated lysine 36 of histone H3; H3K4me3, trimethylated lysine 4 of histone H3.
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Structurally diverse transcripts
significantly impact cell function

It is difficult to detect and accurately quantitate the struc-
tural transcript variants generated by alternative splicing
and cryptic transcription [9, 44, 48, 52–55]. As a result,
although it is well established that a single gene can, and
often does, produce multiple distinct transcripts, analysis of
such variants is generally excluded from transcriptomic
studies. Nevertheless, the diverse transcripts produced
through alternative splicing and cryptic transcription, as
well as their protein products, can have a significant effect
on cellular function. Indeed, the cellular processes required
to process these novel transcripts and their protein products
(discussed below) are themselves disrupted during aging [1].
Therefore, it is especially important to understand the
structural diversity of transcripts in this context.

There are seven widely accepted types of alternative
splicing, categorized by the effects of each on the mature
transcript: exon skipping, mutually exclusive exons, intron
retention, alternative 5′ splice site, alternative 3′ splice site,
alternative first exon, and alternative last exon (Figure 1) [56].
Alternative splicing thus produces transcripts that have
distinct 5′ or 3′ UTRs, lack certain coding exons or parts
thereof, or retain canonically intronic sequences relative to
the standard spliceoform. In contrast, the mRNAs that result
from cryptic transcription are less complex and simply lack
some portion of the 5′ end of the full-length transcript, which
can include the 5′UTR and often a part of the coding sequence
(Figure 1). In principle, depending on the location of the
cryptic promoter, these transcripts may lack particular up-
stream splicing enhancers, and thus feed back and influence
the exonic structure of the mature transcript.

These structural variants can have profound effects on
both the RNA molecules themselves and the proteins trans-
lated from them. Changes to the UTRs can alter both tran-
script stability and translation efficiency, which in turn
impacts the amount of protein produced [5]. Likewise, intron
retention can drive nonsense-mediated decay and some
cryptic transcripts are targeted for exosome-mediated
clearance [44, 57]. Structural variants that alter the coding
sequence can generate proteins with altered function due to
inclusion or exclusion of regulatory, interaction, enzymatic,
or localization domains; they can also produce entirely novel
proteins if a different coding frame is used [8, 58]. These
proteins, either novel peptides or structural variants, may
alsomisfold, formaggregates, or be targeted for proteosomal
or autophagic degradation [59] (Figure 1). As many RNA
processing, proteostasis, and autophagy have reduced
function in aging, increased cryptic transcription and

alternative splicing will likely further aggravate an already
overburdened system.

Increased alternative splicing
contributes to aging phenotypes in
a variety of tissues.

The regulation of splicing is dysregulated
during aging

The complex regulation of splicing renders this process
particularly vulnerable to age-associated dysregulation.
Indeed, one of the first indications that splicing is altered
during aging was the finding that SFs and genes associated
with RNA splicing are among the most differentially
expressed genes during aging. This has been observed in
many tissues, including the brain [15, 60], cochlea [38], heart
[18], bone marrow stem cells [25], leukocytes [61, 62], and
muscle [63]. Decreased SF expression was also observed in
aging Drosophila photoreceptors [28]. Proteomic analysis
likewise revealed altered protein levels of SFs in muscle
[19, 31] and oocytes [24] with age. With the exception of one of
the studies in muscle [19], these genes and proteins were
found to be downregulated during aging. SFs are also down-
regulated in fibroblasts from patients with the premature
aging diseaseHutchinson-Guilfordprogeria syndrome (HGPS)
[64], as well as in senescent fibroblasts [62]. Moreover, a
recent study in neurons transdifferentiated from old and
young fibroblasts revealed that, in addition to a down-
regulation of genes involved in splicing, SNRNP70 and
SNRNPA (components of theU1 snRNP); PRPF8 and SNRNP200
(part of the U4/5/6 snRNP); and the SFs TDP-43 and TIA1
become mis-localized to the cytosol during aging [36].

Several studies suggest a direct link between disrupted
splicing and aging. Reduced expression of particular SFs in
human blood correlates with aging pathologies, including
cognitive decline and reducedmuscle strength [31]. Inmice,
expression levels of several SFs in the spleen correlates
with lifespan differences between different strains, with
higher expression of several SFs associated with increased
longevity [65]. Additional evidence is found in the expres-
sion of SFs in the naked mole rat, a rodent with an excep-
tionally long lifespan and few degenerative pathologies
with age. These animals maintain consistent expression of
SFs in several tissues during aging, in contrast to mice and
humans, suggesting that maintaining youthful splicing
patterns can delay aging and the onset of age-associated
phenotypes [66].
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In addition to SFs themselves being mis-regulated dur-
ing aging, histone methylation patterns and transcription
are also altered. A recent study has shown that the rate of Pol
II elongation is increased during aging in a variety of ani-
mals and mammalian tissues; this is correlated with
increased differential splicing in Caenorhabditis elegans and
Drosophila [21]. Furthermore, the levels of H3K36me3, which
can pre-position SFs for association with the nascent tran-
script, are reduced during aging [9, 67, 68]; this loss is asso-
ciated with altered splicing patterns in flies [22]. Thus, the
three major means by which splicing is regulated are dis-
rupted during aging, which drives an increase of alternative
splicing events with age.

Age-associated alternative splicing increases
transcript diversity during aging

The fact that splicing is dysregulated with age implies that
there should be an increase in the structural diversity of
transcripts in aged tissues. Indeed, alternative splicing
increases with age in many tissues. Perhaps the most
attention has been given to brain tissue, due to the known
association of alternative splicing with neurodegeneration,
and peripheral blood, an easy source of tissue markers. In
the mouse brain, several groups have observed altered
splicing patterns in the temporal, pre-frontal, and cerebellar
cortices, as well as the hippocampus [15, 23, 60, 69]. Likewise,
in human leukocytes, age-associated changes in spliceo-
forms were detected in samples from the InCHIANTI study,
in a cohort of subjects between 80 and 90 years old, and in a
recent analysis of publicly available data [16, 61, 70].

Age-associated changes in splicing patterns have also
been detected in the muscle of humans and rats, including
through the GESTALT study [17, 19, 71]. Similarly, alternative
splicing is increased with age in cardiac tissue from aged
mice [18]. Splicing changes also occur during female repro-
ductive aging; this has been observed in mouse oocytes, as
well as in the ovaries of mice and Drosophila [24, 72, 73].
Likewise, differential splicing increases with age in mouse
bone marrow stem cells [25].

Several groups have simultaneously examined splicing
changes in multiple tissues during human and mouse aging.
During mouse aging, skin, muscle, bone, thymus, and white
adipose were found to have different levels of splicing ab-
errations. Bone showed the least differential splicing, while
the greatest number of differentially spliced transcripts
were observed in the skin [74]. Increased alternative splicing
was also seen in human blood, skin, and adipose tissue [20].
Two independent analyses of RNA-seq datasets in the GTEx
database uncovered increased alternative splicing with age

in a variety of tissues [75, 76]. Senescent human fibroblasts
and endothelial cells have increased differential splicing as
well [35, 62].

In additional to mammals, splicing is dysregulated
during aging in worms and flies. There is a progressive in-
crease in intron retention during Drosophila aging. Inter-
estingly, different genes and biological processes are
affected at different timepoints, suggesting that dysregulated
splicing contributes to different aspects of biology at
different ages [77]. Furthermore, alternative splicing is
increased in Drosophila photoreceptors during aging [28].
In C. elegans, differential splicing also increases with
age, particularly in the intestine [26]. Likewise, in both
worms and flies, increased rare splicing events, likely cor-
responding incorrect alternative splicing, were observed
during aging [21]. Thus, increased alternative splicing is a
common feature of aging throughout the animal kingdom.

Interestingly, there is tantalizing evidence that differ-
ential splicing, at least, progressively increases with
increasing age. This trend is perhaps clearest in Drosophila
heads, inwhich 68.7 % of differential splicing events are only
observed in the oldest flies [77]. Similarly, alternative
splicing is progressively elevated with increasing age in the
skin, bone, and skeletal muscle of mice [74]. Work in human
leukocytes indicates that differential splicing increased as
subjects aged from 70 to 80 years old [16], which likely in-
dicates that splicing, at least, is increasingly dysregulated
with age. In contrast, a progressive increase in alternative
splicing was not detected in mouse oocytes [24]. Neverthe-
less, the balance of evidence suggests that differential
splicing continues to increase in a variety of tissues as in-
dividuals advance in age. This suggests both that splicing
regulation itself is more disrupted in older individuals and
that altered splicing can have a greater impact on cell and
tissue function with increasing age.

Several trends are apparent throughout all these
studies. First, in almost every comprehensive study in which
both splicing and gene expression changes were assessed,
little overlap was found between differentially expressed
genes and those subject to age associated splicing changes
[15–18, 23, 69–71, 75]; the one exception is in the Drosophila
ovary, in which 22.5 % of genes with altered splicing are also
differentially expressed [73]. Second, splicing is dysregulated
during aging in a tissue-specific manner, which is most
clearly evident in the multi-tissue analyses [20, 74, 75].
Additionally, largely unique genes are found to have
increased transcript diversity in heart, muscle, and oocytes
[17, 18, 24], though these studies were performed by different
groups, making direct comparison less robust. Third, the
genes undergoing age-associated alternative splicing are
themselves related to aging, senescence, or tissue-essential
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functions. In leukocytes, age-associated alternative splicing
occurs in immune and inflammation-related genes [70]. In
one study in muscles, differentially spliced genes are related
to microtubule organization, calcium homeostasis, and
muscle contraction [17], while in another, they are related to
oxidative phosphorylation, adipogenesis, metabolism, and
cell cycle regulation [71]. In the heart, they are involved in
the sarcomere, metabolism, mitochondrial respiration, and
translation [18]. In the brain, alternative splicing alters
transcripts associated with mitochondria, DNA repair, pro-
tein oligomerization, isoprenoid biosynthesis, synaptic
transmission, learning, and neurogenesis [15, 23, 60]. In
Drosophila photoreceptors, they are associated with photo-
transduction, rhodopsin signaling, synaptic plasticity, and
photoreceptor cell maintenance [28]. In oocytes, such genes
are enriched for functional categories related to DNA dam-
age and cell cycle regulation, which correlates with
increased DNA damage and apoptosis in embryos devel-
oping from older oocytes [24], while in Drosophila ovaries,
splicing impacts circadian rhythm and FOXO and MAPK
signaling, all of which regulate aging [73]. Finally, in Bone
Mesenchymal Stem Cells (BMSCs), alternative splicing drives
the generation of transcripts that promote adipogenic dif-
ferentiation at the expense of osteogenic differentiation
during aging [25]. Altogether, this suggests that increased
alternative splicing is an underappreciated factor in aging
biology.

Altered splicing patterns drive aging
phenotypes

While several alternative splicing events have long been
associated with aging and senescence, namely splicing of
lamin C and p53 [78, 79], recent studies have expanded our
understanding of the role of splicing dysregulation in aging
and aging phenotypes (Figure 2).

As discussed above, both SF expression and H3K36me3
are reduced in the photoreceptors of aged flies, which is
correlated with increased alternative splicing [22, 28].
Importantly, photoreceptor-specific knockdown of select
downregulated SFs, including Can; SC35; Caper; Saf-B; and
the ortholog of the human LUC7-like protein, CG7564, both
induces an aged splicing pattern and decreases visual acuity
in youngflies, directly implicating age-associated alternative
splicing in this aging phenotype [28]. Furthermore, knock-
down of Set2, which confers H3K36me3, drives a switch age-
associated splicing patterns and vision loss in young flies,
further implicating dysregulated splicing in visual aging [22].

One of the clearest pieces of evidence that age-
associated alternative splicing regulates aging comes from

C. elegans. Alternative splicing increases with age in worms,
but older animals that maintain youthful splicing patterns
tend to live longer. Furthermore, dietary restriction, which
increases lifespan and healthspan, also maintains youthful
splicing patterns in older worms, and disrupting splicing
during dietary restriction blocks the beneficial effects of this
intervention [26]. Interestingly, splicing patterns themselves
are altered in young worms and the hippocampus of young
mice undergoing dietary restriction; in both cases, affected
genes encode proteins involved in metabolism, RNA pro-
cessing, splicing, and translation or protein processing [27].
In C. elegans, the ability of dietary restriction itself to both
extend lifespan and regulate splicing requires the SFs HRPU-
1 (ortholog of human hnRNPU) and SFA-1 (human SF1) at a
minimum. In the context of dietary restriction, SFA-1
is required for nutrient sensing downstream of TORC1
signaling, while HRPU-1-mediated splicing events are
required to activate the nonsense-mediated decay pathway,
both of which are necessary to extend lifespan [26, 27].
Reduced function of the SF RNP-6 (human PUF60) extends
lifespan in worms by causing intron retention in EGL-8 (a
phospholipase Cβ ortholog) transcripts, reducing its protein
levels; decreased EGL-8 protein inhibits TORC1 signaling [32].
Thus, there is a clear interaction between splicing and
TORC1-mediated longevity in C. elegans.

Splicing dysregulation is also directly implicated in
senescence, particularly the senescence-associated secre-
tory phenotype (SASP). Treatment of senescent human fi-
broblasts with resveratrol or resverologs, which inhibit
TORC1 signaling, decreases canonical senescence markers,
including β-gal staining and SASP gene expression, while
increasing SF expression. Importantly, this also alters the
splicing patterns of several senescence-related genes [80].
This points to conservation of the interaction between
splicing and TORC1 signaling in humans and worms. Like-
wise, inhibiting ERK or AKT signaling also increases SF
expression and reduces senescence in senescent human fi-
broblasts and also decreases the senescence load of fibro-
blasts from HGPS patients, including reducing the SASP in
both cases [64, 81]. In senescent human fibroblasts, reduced
autophagy increases the levels of the SF SFPQ, thus pro-
moting exon skipping in EIF4H, which encodes a short iso-
form of the protein. EIF4H-S promotes the interaction of
EIF4A to its target mRNAs, including those of many SASP
transcripts, increasing their translation [35], directly linking
altered splicing to inflammaging. Additionally, down-
regulation of the SF SRSF7 is a feature of human fibroblast
senescence; its loss drives senescence by promoting the
alternative splicing of MDM2 into the MDM2-C isoform,
which is limited in its ability to ubiquitinylate p53 [34].
Similarly, in murine fibroblasts, an increase in the long
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variant of MRG15, which has reduced affinity for acylated
H4, drives senescence through its lessened interaction with,
and activation of, the Cdk1 promoter [37].

Several studies link the loss of SF activity with increased
alternative splicing in the brain. In the frontal cortex, the SF
hnRNP K progressively mislocalizes from the nucleus to the
cytosol during aging, and knockdown of HNRNPK in neuro-
blastoma cells increases differential splicing [29], similar to
what is observed during brain aging. Protein levels of the long
isoform of the SF hnRNP DL are reduced during aging in the
mouse hippocampus, and loss of this protein in the brains of

young mice increases alternative splicing, particularly of
genes involved in synaptic function, cognitive processing, and
synapse structure [30], which overlaps with the processes
enriched for alternative splicing in the agedhippocampus [69].
In a model of neural aging, TDP-43 was found to bind 500
transcripts subject to age-associated alternative splicing;
notably TDP-43 localizes to the cytosol in aged neurons,
directly implicating the age-associated loss of this proteinwith
splicing changes inneurons [36]. Alterative splicing of PDGFRβ
is also implicated in the breakdown of the blood-brain barrier
in themouse brain. The expression of PDGFRβ-S, which has an

Figure 2: Perturbations that alter splicing and increase cryptic transcription mimic aging phenotypes. (A) In mouse oocytes, altered splicing of Cdk9 to
generate an age-associated spliceoform increases DNA damage and apoptosis in developing embryos. Similarly, loss of Setd2, which impacts splicing and
elevates cryptic transcription, prevents progression to the 2 cell stage of development. (B) Loss of the splicing factor Ybx1 in BMSCs or of Setd2 in MSCs
alters the differentiation potential of these cells, driving them towards an adipogenic fate. (C) HSCs that lack the paralogs Dnmt3a and Dnmt3b, which
increases cryptic transcription, are driven to self-renew, expanding the progenitor pool. Loss of Setd2 in these cells causes a myeloid bias during
differentiation. (D) Knockout of Dnmt3b in the hippocampus of adult mice reduces recognition memory. KO, knockout; SFs, splicing factors. (E)
Photoreceptor-specific knockout of several SFs or of Set2 in Drosophila alters splicing patterns and impairs phototaxis.
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alternative first exon and does not code for the trans-
membrane domain of the protein, increases with age; this
short isoform is translated into protein and is thought to
disrupt PDGFR signaling, thus causing a functional decline in
the pericytes that maintain the blood-brain barrier [33].

In BMSCs, Ybx1 is one of many SFs with decreased
expression during aging. Loss of this protein induces
senescence and promotes adipogenic differentiation at the
expense of osteogenic differentiation in BMSCs from young
mice, which mimics the aging phenotype. Likewise, BMSC-
specific knockout of Ybx1 increases bone marrow adiposity
in mice, another feature of aging. Significantly, differential
splicing also increases in BMSCs that lack Ybx1, and Ybx1
directly binds to several alternatively spliced transcripts,
including Fn1, Sp7, Spp1, Sirt1, and Nrp2, which are impli-
cated in the altered differentiation potential and increased
senescence of these cells. Significantly, the alternative
transcripts that are generated in Ybx1 knockouts mimic the
functional decline of BMSCs during aging; that is, they
encode less potent activators of osteogenesis and inhibitors
of adipogenesis than the endogenous transcripts [25].

In mouse oocytes, Cdk9 undergoes age-associated alter-
native splicing; using morpholino-substituted antisense oli-
gonucleotides, Li et al. were able to induce age-associated
exon skipping in Cdk9 transcripts in oocytes isolated from
young mice. Embryos that developed from these oocytes had
increased DNA damage and a higher load of apoptotic cells,
mimicking the phenotype of the embryos of older mice [24].
This is similar to the observation that Troponin T, which
modulates the interaction between myosin and actin, is sub-
ject to alternative splicing with age; in older individuals, the β
spliceoform is predominantly expressed, and this spliceoform
is known to drive weaker muscle contraction, suggesting that
mis-splicing of TNNT3 contribute to a loss of muscle strength
during aging [82, 83]. Thus, not only does altered splicing have
a generally deleterious effect on the aging process, but specific
age-associated splicing events directly contribute to aging
phenotypes.

Elevated cryptic transcription
drives aging phenotypes in
fibroblasts and stem cells

Chromatin state dysregulation drives
increased cryptic transcription during aging

As described above (Figure 1), cryptic transcription is nor-
mally repressed downstream of H3K36me3. However, the

mechanisms by which cryptic transcription is repressed
break down with age as the chromatin becomes more
open. This is primarily due to a decline in intragenic
H3K36me3 [9, 22, 67, 68]; the loss of this scaffold results in
reduced Kdm5b and Dnmt3b recruitment, which renders
cryptic promoters become more accessible and drives the
elevation of cryptic transcription. H3K4me3 accumulates at
cryptic promoters during aging, likely as the result of
reduced Kdm5b, rendering them more accessible to Pol II
[9, 10, 51]. Likewise, lessened Dnmt3b recruitment within
gene bodies contributes to a reduction in CpG methylation,
further opening cryptic promoters to allow transcription
initiation from these sites [9, 10, 44]. Thus, chromatin state
changes that are driven by reduced H3K36me3 promote
cryptic transcription initiation during aging (Figure 1).

Age-associated cryptic transcription
increases transcript diversity during
mammalian aging

Cryptic transcription is a phenomenon that has mostly been
studied in budding yeast, in which the simple gene structure
makes identifying such transcripts relatively easy [46].
Cryptic transcription has long been known to be deleterious
in this organism; it increases with age and severely limits its
lifespan [84]. Until recently, the impact of cryptic tran-
scription on mammalian aging has not been studied. How-
ever, several recent papers have identified elevated levels of
cryptic transcription in a variety of tissues during aging and
senescence in humans and mice. These include skin, liver,
and brain; senescent fibroblasts; and several types of adult
stem cells, including mesenchymal stem cells (MSCs), he-
matopoietic stem cells (HSCs), neural stem cells (NSCs) [9, 10].

The genes subject to increased cryptic transcription
during aging and senescence in human MSCs, fibroblasts
and the mouse liver have a limited overlap with differen-
tially expressed genes in these tissues. Likewise, there is
tissue specificity of age-associated cryptic transcription, as
when comparing genes that specifically generate cryptic
transcripts in the aged/senescent state in mouse liver and
human fibroblasts, Sen et al. found that while there is a
significant overlap in orthologous genes, the majority of
genes are unique to each tissue [10]. Finally, cryptic tran-
scription occurs in genes relevant to tissue function and,
particularly, aging. In MSCs, genes with elevated cryptic
transcription are involved in telomere maintenance, trans-
lation, and protein folding [9], while in both senescent
fibroblasts and agedmouse liver, geneswith elevated cryptic
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transcription are broadly related to signal transduction and
ECM, which are known to be disrupted during aging [1].

Perturbations that increase cryptic
transcription mimic aging phenotypes

Several studies implicate increased cryptic transcription in
driving aging phenotypes (Figure 2). Conditional knock out
of Setd2 in hematopoietic stem cells causes a myeloid bias
during differentiation [11], similar to what is seen during
aging [85]. Likewise, loss of Setd2 from bone marrow stem
cells biases them towards adipogenic differentiation [12],
while in MSCs, SETD2 knockdown reduces proliferation,
both of which occur during aging [86]. Additionally, oocyte-
specific knockout of Setd2 compromises oocyte quality and
causes sterility [13]; reduced oocyte quality causes the age-
associated fertility decline in females [87]. Reduced DNMT3B
function also mimics several aspects of aging. In HSCs,
double knock out of Dnmt3a and Dnmt3b promotes self-
renewal vs. differentiation [88, 89], which phenocopies the
expansion of the progenitor pool in aged mice [86]. Specific
knockdown of Dnmt3b in the hippocampus of adult mice
impairs recognition memory [14], which is also impaired
during aging [90]. Together, these studies suggest that
elevated cryptic transcription may contribute to numerous
aging phenotypes.

Concluding remarks

Altered splicing patterns and elevated cryptic transcription
both increase the structural diversity of transcripts in a
variety of tissues during aging, though relatively few studies
have examined the impact of transcripts variants on the
aging process. As splicing dysregulation and cryptic tran-
scription largely affect genes that are not differentially
expressed with age [9, 15–18, 23, 24, 60, 69, 71, 74, 75], the
effects of this increased transcript diversity are not consid-
ered in most aging studies, although it is essential to un-
derstand how these novel transcripts affect the aging
process. As discussed above, proteins generated from
structurally novel transcripts may have altered functions,
and thus, are likely to have a negative effect the processes in
which they are involved. As these include aging and tissue
function-related processes, cryptic and differentially spliced
transcripts likely have a negative effect on both tissue
function and longevity.

Recent work has shown that altered splicing and
cryptic transcription are pervasive during aging and occur

in genes that are relevant to tissue function or involved in
processes that are disrupted during this process, consistent
with early reports from leukocytes and the brain
[9, 10, 15, 17, 18, 23, 24, 60, 70, 71, 75]. Interestingly, in related
MSCs and BMSCs, there is a divergence of genes subject to
increased alternative splicing and those with elevated
cryptic transcription during aging. While alternatively
spliced transcripts in BMSCs appear to affect the differen-
tiation potential of these cells, cryptic transcripts in MSCs
arise from genes involved more generally in aging [9, 25].
This may point to a divergence in the mechanisms bywhich
cryptic transcription and alternative splicing regulate ag-
ing. Critically, perturbations that dysregulate splicing and
increase cryptic transcription phenocopy occur in certain
aspects of aging in many tissues [11–
14, 24, 25, 34, 35, 37, 88, 89], suggesting that these novel
transcripts directly impact aging.

Detecting altered splicing and cryptic transcripts is
considerably more technically difficult than assessing over-
all gene expression. The technologies developed to globally
assess the transcriptome, microarrays and next generation
sequencing, have a limited ability to robustly detect quali-
tative, as opposed to quantitative, changes to transcripts. The
fact that cryptic and mis-spliced transcripts are relatively
low abundance in the pool of poly-adenylated RNA [9, 21, 44]
further complicates their experimental detection. Thus,
relatively little is known about how splicing changes and
cryptic transcription contribute to the aging process. The
recent proliferation of long read sequencing, particularly
Nanopore sequencing, shows promise in overcoming these
limitations. Indeed, long read sequencing shows consider-
able improvement over Illumina sequencing in quantifica-
tion of transcript spliceoforms [91]. As this technology is
applied to the question of aging, we anticipate that the
increased transcript diversity in aged tissues will be more
broadly appreciated and that future work will uncover how
novel transcripts drive organismal aging.
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