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Abstract: Classical Poisson-Boltzman and Poisson-Nernst-Planckmodels can only work when ion concentra-
tions are very dilute, which often mismatches experiments. Researchers have been working on the modi�ca-
tion to include �nite-size e�ect of ions, which is non-negelible when ion concentrations are not dilute. One
of modi�ed models with steric e�ect is Bikerman model, which is rather popular nowadays. It is based on
the consideration of ion size by putting additional entropy term for solvent in free energy. However, ion size
is non-speci�c in original Bikerman model, which did not consider spei�c ion sizes. Many researchers have
worked on the extension of Bikermanmodel to have speci�c ion sizes. A direct extension of original Bikerman
model by simply replacing the non-speci�c ion size to speci�c ones seems natural and has been acceptable to
many researchers in this �eld. Herewe prove this straight forward extension, in some limiting situations, fails
to uphold the basic requirement that ion occupation sites must be identical. This requirement is necessary
when computing entropy via particle distribution on occupation sites. We derived a new modi�ed Bikerman
model for using speci�c ion sizes by �xing this problem, and obtained its modi�ed Poisson-Boltzmann and
Poisson-Nernst-Planck equations.

1 Introduction
One of the major limitations of the Poisson-Boltzmann (PB) and Poisson-Nernst-Planck (PNP) models is the
assumption of point-like ions without considering their sizes. These models based on mean �eld theories
work well for dilute solutions, but breaks down when the electrolyte is concentrated and ions are crowded
in it. High concentration would generally cause steric repulsions and additional correlations among ions.
This problem becomes serious at certain situations. For example, the concentration of counter-ions can be
unreasonably high near electrode surface, as predicted by PB, when electrode voltage is large. Another ex-
ample occurs at selectivity �lter in potassium channel, where potassium ion is strongly attracted into this
extremely narrow �lter by strong negative charges of oxygen from carbonyl groups of TVGYG amino acids
forming the backbone of �lter. Employing PB and PNP would over-estimate the population of potassium ion
inside �lter and give incorrect prediction of channel current. Therefore, many researchers have worked on
the modi�cation of PB and PNP models to include the steric e�ect of ions.

Among many modi�ed PB and PNP models with steric e�ect based on local/non-local hard-sphere (HS)
potential [6, 7], Bikerman model [1] has been a popular local HS model due to its easiness of application and
qualitatively good agreement with experiments. It is also called Andelman model since Andelman’s group
independently rediscovered it in 1997 [2]. This model has been popular because it captures basic size e�ects
of ions by using a rather simpli�ed formulation. It modi�es the free energy of an ionic system based onmean-
�eld approximation by adding an ideal-gas-like solvent entropy term. This term also represents the excessive
energy accounting for over-crowding of ions and solvent molecules [3].
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The free energy in Bikerman model treats all species of ions and solvent molecule with an identical size,
and a modi�ed PB/PNP model can then be derived through the minimization of this corrected free energy. A
natural extension of original Bikerman model to account for speci�c ion sizes is simply replacing the iden-
tical ion size used in the original model by speci�c ion sizes and many researchers used that without rigor-
ous derivation for justi�cation. A thorough justi�cation of this extension through serious derivation has been
conducted only in a few literatures [4, 5]. However, the entropy part in the derivation of [4, 5] is based on tradi-
tionalmean-�eld gas latticemodel. It states themost probable state of particle distribution to reachmaximum
entropy is that each particle would occupy just one occupation site and each occupation site can at most be
occupied by a single particle. To further calculate the entropy based on this idea by combinatorics and then
simplify it by Stirling formula, we need to assume all occupation sites are identical in size (characterized by
identical side length of cubical sites). Otherwise, combinatorics would not apply. When ion concentrations
are extremely large in some limiting situations, the modi�ed Bikermanmodel by simply replacing the identi-
cal ion size with speci�c ion sizes seems to fail to uphold this basic requirement of identical occupation sites
as shown in latter section. The discussion and �xing of this problem will be the main theme of current study.

2 Review of Bikerman model
Suppose ion sepcies and the solvent molecules are treated as hard spheres and assumed to have the same
diameter a. Taking binary electrolyte as an example, the free energy based on Bikerman model is given as
follows,

F = U − TS (1)

where U is internal energy, S is entropy, T is absolute temperature:

U =
∫ [

− ϵ2 |∇ϕ|
2 + zpepϕ + znenϕ

]
dV , (2)

−TS =
∫
kBT

[
plog

(
pa3

)
+ nlog

(
na3

)
+ (1 − pa3 − na3)

a3 log
(
1 − pa3 − na3

)]
dV , (3)

where ϕ is the electrostatic potential; p is the concentration of cation with the valence zp; n is the concentra-
tion of anion with valence zn; kB is the Boltzmann constant.

The variation of F with respect to ϕgives the Poisson equation,

−∇ · (ϵ∇ϕ) = zpep + znen (4)

By doing the variation of F with respect to p and n, we can obtain the chemical potentials for cation and
anion, respectively.

∂F
∂p = µp = zpeϕ + kBT

[
log
(
pa3

)
− log

(
1 − pa3 − na3

)]
(5)

∂F
∂n = µn = zneϕ + kBT

[
log
(
na3

)
− log

(
1 − pa3 − na3

)]
(6)

Subtracting Eq. (6) from Eq. (5), we get

p = n exp
(
β
(
µp − µn

)
− β (zp − zn) eϕ

)
(7)

where β = 1
kBT . Note thatwhen equilibrium, µp and µn would beuniform in space. Assuming electroneutrality

in the region far away, i.e., zpp + znn = 0, ϕ → 0, as x →∞, we then obtain from Eq. (7),

eβ(µp−µn) = −znzp
(8)

and thus
p = −n znzp

e−β(zp−zn)eϕ (9)
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From Eq. (5), we get
pa3

1 − pa3 − na3 = eβ(µp−zpeϕ) (10)

Substitute Eq. (9) into Eq. (6), we obtain

na3

1 + n znzp a
3e−β(zp−zn)eϕ − na3

= eβ(µn−zneϕ) (11)

Hence,
n = 1

a3
1

1 + e−β(µn−zneϕ) − zn
zp e

−β(zp−zn)eϕ (12)

For bulk solution, p → pb , n → nb , ϕ → 0, and Eq. (12) gives

eβµn = nba3

1 −
(
1 − zn

zp

)
nba3

(13)

Substituting Eq. (13) into Eq. (12), we can obtain the concentration of anion.

n = nbe−βzneϕ

1 − ν + ν (zpe
−βzn eϕ−zne−βzp eϕ)
(zp−zn)

(14)

where ν =
(
1 − zn

zp

)
nba3 = (pb + nb)a3 is the volume fraction of ions at bulk solution.

Substituting Eq. (14) into Eq. (9), we can further obtain the concentration of cation,

p = pbe−βzpeϕ

1 − ν + ν (zpe
−βzn eϕ−zne−βzp eϕ)
(zp−zn)

(15)

Finally, substiuting Eqs. (14) and (15) into Eq. (4), we obtain the modi�ed PB equation based on Biker-
man model (or called Poisson-Fermi equation since p and n above follow Fermi-Dirac distribution instead of
Boltzmann distribution),

−∇ · (ϵ∇ϕ) =
zpepbe

−βzpeϕ + znenbe−βzneϕ

1 − ν + ν (zpe
−βzn eϕ−zne−βzp eϕ)
(zp+zn)

(16)

For a symmetric z:z electrolyte, i.e., zp = −zn = z, and letting pb = nb = c0, Eqs. (14) and (15) can be
reduced to

n = c0eβzeϕ

1 + 2νsinh2
(
βzeϕ
2

) , p = c0e−βzeϕ

1 + 2νsinh2
(
βzeϕ
2

) (17)

and then Eq. (16) can be written as

∇ · (ϵ∇ϕ) = 2zec0sinh (βzeϕ)
1 + 2νsinh2

(
βzeϕ
2

) (18)

Here ν = 2c0a3. When ion concentrations are dilute, i.e., ν � 1, Eq. (18) is further reduced to classical
PB equation for z:z electrolyte:

∇ · (ϵ∇ϕ) = 2zec0sinh (βzeϕ) (19)

3 Extension of Bikerman model to account for speci�c ion size
The derivation above is based on the assumption that cation and anion have the same diameter a. Biker-
man model has been often modi�ed for cation and anion to accommodate speci�c ion diameters by a direct
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extension of chemical potentials in Eqs. (5) and (6) to

µp = zpeϕ + kBTlog
(

pa3p
1 − pa3p − na3n

)
(20)

µn = zneϕ + kBTlog
(

na3n
1 − pa3p − na3n

)
(21)

where ap and an are diameters for cation and anion respectively. [4, 5] gives a rigorous derivation of Eqs.
(20) and (21) from mean-�eld lattice gas model. For equilibrium, from Eqs. (20) and (21), we can obtain the
following equations from uniform distribution of chemcal potentials and equating the chemical potential
anywhere to that of bulk solution, where electro-neutrality is assumed:

kBTlog
(

pba3p
1 − pba3p − nba3n

)
= zpeϕ + kBTlog

(
pa3p

1 − pa3p − na3n

)
(22)

kBTlog
(

nba3n
1 − pba3p − nba3n

)
= zneϕ + kBTlog

(
na3n

1 − pa3p − na3n

)
, (23)

and we can further derive

p = pbexp (−βzpeϕ)
1 + pba3p (exp (−βzpeϕ) − 1) + nba3n (exp (−βzneϕ) − 1)

(24)

n = nbexp (−βzneϕ)
1 + pba3p (exp (−βzpeϕ) − 1) + nba3n (exp (−βzneϕ) − 1)

. (25)

We can further obtain the modifed PB equation based on this version of Bikerman model considering
speci�c ion size:

−∇ · (ϵ∇ϕ) =
zpepbexp (−βzpeϕ) + znenbexp (−βzneϕ)

1 + pba3p (exp (−βzpeϕ) − 1) + nba3n (exp (−βzneϕ) − 1)
(26)

With a3p = a3n = a3, Eq. (26) can be reduced to Eq. (16).
However, here we think Eqs. (20) and (21), though can be reduced to chemical potential for original PB

when ionic concentrations are dilute, still might have some minor problem when concentration of cation or
anion is extremely large in some situations as mentioned above. This minor problem, an inconsistency with
some criterion underlying the traditional calculation of entropy via combinatorics, can be comprehended
by taking the limit ϕ → − ∞ for Eq. (24), and we obtain p → 1

a3p
. Similarly, letting ϕ → ∞ for Eq. (25),

we obtain n → 1
a3n

. It means as the magnitude of electric potential approaches in�nity, the concentration of
counter-ion will increases as well. Size of occupation site will decrease accordingly due to crowdness, but
will limit to max {ap , an}, since each cation and anion particle are requested to occupy identical site, which
provides the necessary combinatorial basis when computing entropy based on mean-�eld lattice gas model.
Ion concentrations p and n should both approach 1

a3 with a = max {ap , an} due to single-ion site occupation
at this limiting situation instead of 1

a3p
and 1

a3n
respectively. This is illustrated in Fig. 1(a). The limitation that

each identical site can only be occupied by a single particle at most would cause quite an uneconomic use
of space when ions are extremely crowded (under high concentrations) and size of a certain species of ion is
much larger than the others. However, if ions can be packed like Fig. 1(b) instead of Fig. 1(a) at extreme high
concentrations. The use of space would be more economic. If multiple ions of the same species can occupy a
site like Fig. 1(b) when ion concentrations are extremely large, it would justify the limits n → 1

a3n
and p → 1

a3p
as ϕ → ± ∞ without compromise to the limit p, n → 1

a3 with a = max {ap , an}, since occupation sites
can still maintain to be identical. The entropy computation under this extreme packing case requires a new
derivation, which will lead to a newly modi�ed Bikerman model as shown in next section. One might argue
that Coulomb force will be very large if ions are packed like Fig. 1(b), andwill hinder this kind of arrangement
especiallywhenCoulomb force between ions are repulsive. Actually Coulomb forces between ions are delicate
when there exists solvent molecule, and packing of ions like Fig. 1(b) can be possible. Also, we can treat all
species of particles here carrying no chrage, since we are deriving their entropy only.



146 | Tzyy-Leng Horng, Ping-Hsuan Tsai, and Tai-Chia Lin

Figure 1: (a) The most probable distribution of blue, red and green particles to compute the entropy by mean-�eld lattice gas
model in the case of crowdness. Note that the occupation site needs to be identical to justify the combinatorics used in entropy
computation. (b) Modi�cation of (a) to allow extra number of particles of the same kind to reside in each identical occupation
site in the case of extreme crowdness. Here rblue = 1, rred = 4, rgreen = 9.

4 Modi�cation of Bikerman model to include speci�c ion sizes
When computing entropy, in the approach of traditionalmean-�eld discrete lattice gasmodel, charge carriers
are distributed over a three dimensional cubic latticewhere the volume of a single site is a3. Thus, by dividing
space into discrete cells (lattice sites) and limiting the occupation of each cell to a single ionwould give us the
most probable distribution used to calculate the entropy. Cell site length acan be as small as the maximum
diameter of ions at most nomatter how crowded ions are. This explains why diameter of cation and anion are
set to be the same (maximumdiameter among them) in original Bikermanmodel. However, it seems plausible
that the presence of ions with large di�erence in size could lead to a new distribution in the situation of high
ion concentrations as shown in Fig. 1(b). For this case of highly packed and crowded ions, we assume each
cell can allow the occupation of multiple ions of the same kind, when that ion is not the biggest one among
all. Based on this, the entropy will turn out somewhat di�erent from before, and will be illustrated as below.

Consider the free energy for an aqueous electrolyte system,

F = U − TS =
K∑
j=1

Ñjqjϕ − kBT logW (27)

where qj = zje, Ñj is the total number of j-species ions andNj is number of identical cells occupiedby j-species
particles with Ñj ≥ N. If an identical site can allow rj j-species ions to occupy as illustrated in Fig. 1(b), we
can then relate Ñj and Nj by Ñj = Njrj. The entropy based on the most probable distribution of all ions and
solvent molecules over a total of N available identical sites in a system is

W =
K∏
j=1
Wj =

N!
N1! (N − N1)!

(N − N1)!
N2! (N − N1 − N2)!

· · ·

(
N −

∑K−1
j=1 Nj

)
!

NK!
(
N −

∑K
j=1 Nj

)
!

(
N −

∑K
j=1 Nj

)
!

NK+1!
= N!(∏K

j=1 Nj!
)
NK+1!

.

(28)
Note that, after all the ions are distributed, there are N −

∑K
j=1 Nj = NK+1 sites that will be �lled by solvent

molecules. Also, the underlying criterion for the above combinatorics to hold is that all particle occupation
sitesmust be identical in size, and this criterion is uphold here, even at limiting situations,with the reasoning
of an identical site able to be occupied by multiple particles.
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So the free energy becomes

F =
K∑
j=1

Ñjqjϕ − kBT log
N!(∏K

j=1 Nj!
)
NK+1!

(29)

Using the Stirling formula logM! ≈ MlogM −M with M � 1, we can rewrite the free energy as

F =
K∑
j=1

Ñjqjϕ − kBT [NlogN − N −
K∑
j=1

Nj logNj +
K∑
j=1

Nj −

N − K∑
j=1

Nj

 log
N − K∑

j=1
Nj

 +

N − K∑
j=1

Nj

]
=

K∑
j=1

Ñjqjϕ − kBT

Nlog N
N −

∑K
j=1 Nj

−
K∑
j=1

Nj log
Nj

N −
∑K

j=1 Nj

 (30)

Using the follwing relation,

V = Na3, or N
V = 1

a3 (31)

Nj
N =

Nja3

Na3 =
Ñj
rj rja

3
j

V = cja3j , (32)

Nj
V =

Nj
N
N
V = cj

a3j
a3 =

cj
rj
. (33)

where cj is the concentration of j species; V is the volume of system; a = max {ap , an}. The free energy per
unit volume can be expressed as

f = F
V =

K∑
j=1

cjqjϕ − kBT

 1
a3 log

1
1 −
∑K

j=1 cja3j
−

K∑
j=1

cj
rj
log

cja3j
1 −
∑K

j=1 cja3j

 . (34)

For binary electrolyte,

f = pqpϕ + nqnϕ − kBT
[
1
a3 log

1
1 − pa3p − na3n

− p
rp
log pa3p

1 − pa3p − na3n
− n
rn
log na3n

1 − pa3p − na3n

]
,

and

µp =
δf
δp = qpϕ + kBTrp

log pa3p
1 − pa3p − na3n

(35)

µn =
δf
δn = qnϕ + kBTrn

log na3n
1 − pa3p − na3n

. (36)

Notes that if rp = rn = 1, Eqs. (35) and (36) will reduce to Eqs. (20) and (21), and the derivation above
is equivalent to the derivation in [4, 5]. Again for equilibrium and then chemical potentials being uniform in
space,

kBT
rp

log pba3p
1 − pba3p − nba3n

= qpϕ + kBTrp
log pa3p

1 − pa3p − na3n
(37)

kBT
rn

log nba3n
1 − pba3p − nba3n

= qnϕ + kBTrn
log na3n

1 − pa3p − na3n
. (38)

Eqs. (37) and (38) are solved to obtain

p = pbexp (−βzprpeϕ)
1 + pba3p (exp (−βzprpeϕ) − 1) + nba3n (exp (−βznrneϕ) − 1)

(39)

n = nbexp (−βznrneϕ)
1 + pba3p (exp (−βzprpeϕ) − 1) + nba3n (exp (−βznrneϕ) − 1)

. (40)
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Again when rp = rn = 1, Eqs. (39) and (40) reduce to Eqs. (24) and (25). By taking the limit ϕ → − ∞
for Eq. (39), we obtain p → 1

a3p
. Similarly, letting ϕ → ∞ for Eq. (40), we obtain n → 1

a3n
. These justify the

extremely crowded situation like Fig. 1(b). Note that, though same limits are reached as by Eqs. (24) and (25),
now there is no contraint like p, n → 1

a3 with a = max {ap , an} needed to be comprimised with. Substitue
Eqs. (39) and (40) into Eq. (4), we obtain modi�ed PB equation based on this corrected version of model,

−∇ · (ϵ∇ϕ) =
zpepbexp (−βzprpeϕ) + znenbexp (−βznrneϕ)

1 + pba3p (exp (−βzprpeϕ) − 1) + nba3n (exp (−βznrneϕ) − 1)
(41)

However, when ion concentrations are dilute, i.e., pba3p � 1, and nba3n � 1, Eqs. (39) and (40) reduce
to

p = pbexp (−βzprpeϕ) , n = nbexp (−βznrneϕ) (42)

which violates the Boltzmann distribution that p and n should behave in dilute electrolyte:

p = pbexp (−βzpeϕ) , n = nbexp (−βzneϕ) (43)

This problem is also observed in modi�ed Nernst-Planck equations. For non-equilibrium system, we ob-
tain �ux by

Jp = −
Dp
kBT

p
∂µp
∂x , (44)

Jn = −
Dn
kBT

n ∂µn∂x . (45)

Substitute Eqs. (35) and (36) into Eqs. (44) and (45), we obtain

Jp = −
Dp
kBT

zpep
∂ϕ
∂x −

Dp
rp

(
∂p
∂x + pa3p

1 − pa3p − na3n
∂p
∂x + pa3n

1 − pa3p − na3n
∂n
∂x

)
, (46)

Jn = −
Dn
kBT

znen
∂ϕ
∂x −

Dn
rn

(
∂n
∂x + na3p

1 − pa3p − na3n
∂p
∂x + na3n

1 − pa3p − na3n
∂n
∂x

)
. (47)

When the ionic concentrations are very dilute meaning pa3p � 1 and na3n � 1, Eqs. (46) and (47) are
reduced to

Jp = −
Dp
kBT

zpep
∂ϕ
∂x −

Dp
rp
∂p
∂x , (48)

Jn = −
Dn
kBT

znen
∂ϕ
∂x −

Dn
rn
∂n
∂x , (49)

which are not exact classical Nernst-Planck equations with di�usion coe�cents decreased to Dp
rp and Dn

rn re-
spectively in the di�usion terms above for p and n. Comparedwith original Bikermanmodel with an identical
ion diameter which can be reduced to classical PB and PNP equations when ionic concentrations are dilute,
the current model attempted to modify original Bikerman to include speci�c ion sizes unfortunately fails to
reduce so.

5 Conclusions
The straight forward extension of Bikerman model to include speci�c ion sizes, though used by many re-
searchers, actually does not uphold the ion occupation site to be identical, a fundamental requirement of
mean-�eld lattice gas model, at extreme high ion conecntrations. The rigorous modi�cation of Bikerman
model to include speci�c ion sizes is derived in the current study. It �xes the occupation site problem, but
unfortunately fails to reduce to classical PB and PNP as ion concentrations become dilute. Maybe models of
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steric e�ect to account for speci�c ion sizes are better not derived throughmodi�cation of entropy but through
the introduction of excessive chemical potential [6, 7].

Also in the version of straight forward extension of Bikerman model, the limits n → 1
a3n

and p → 1
a3p

as
ϕ → ± ∞, though do not uphold identical occupation site requirement globally, still uphold it locally. For
example in the case of of electrolyte in contact with a charged wall with extremely high voltage, unlike the
situation in Fig. 1(a) usually only one species of counter-ion will dominate the occupancy near wall surface,
even the electrolyte consists of multiple species of counter-ions. It is usually because other energy barrier like
solvation energy will end up only one species of counter-ionwould be distributed near wall. Similar situation
occurs at the selectivity �lter of potassium channel, and that is how selectivity works.
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