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Abstract: Classical Poisson-Boltzman and Poisson-Nernst-Planck models can only work when ion concentra-
tions are very dilute, which often mismatches experiments. Researchers have been working on the modifica-
tion to include finite-size effect of ions, which is non-negelible when ion concentrations are not dilute. One
of modified models with steric effect is Bikerman model, which is rather popular nowadays. It is based on
the consideration of ion size by putting additional entropy term for solvent in free energy. However, ion size
is non-specific in original Bikerman model, which did not consider speific ion sizes. Many researchers have
worked on the extension of Bikerman model to have specific ion sizes. A direct extension of original Bikerman
model by simply replacing the non-specific ion size to specific ones seems natural and has been acceptable to
many researchers in this field. Here we prove this straight forward extension, in some limiting situations, fails
to uphold the basic requirement that ion occupation sites must be identical. This requirement is necessary
when computing entropy via particle distribution on occupation sites. We derived a new modified Bikerman
model for using specific ion sizes by fixing this problem, and obtained its modified Poisson-Boltzmann and
Poisson-Nernst-Planck equations.

1 Introduction

One of the major limitations of the Poisson-Boltzmann (PB) and Poisson-Nernst-Planck (PNP) models is the
assumption of point-like ions without considering their sizes. These models based on mean field theories
work well for dilute solutions, but breaks down when the electrolyte is concentrated and ions are crowded
in it. High concentration would generally cause steric repulsions and additional correlations among ions.
This problem becomes serious at certain situations. For example, the concentration of counter-ions can be
unreasonably high near electrode surface, as predicted by PB, when electrode voltage is large. Another ex-
ample occurs at selectivity filter in potassium channel, where potassium ion is strongly attracted into this
extremely narrow filter by strong negative charges of oxygen from carbonyl groups of TVGYG amino acids
forming the backbone of filter. Employing PB and PNP would over-estimate the population of potassium ion
inside filter and give incorrect prediction of channel current. Therefore, many researchers have worked on
the modification of PB and PNP models to include the steric effect of ions.

Among many modified PB and PNP models with steric effect based on local/non-local hard-sphere (HS)
potential [6, 7], Bikerman model [1] has been a popular local HS model due to its easiness of application and
qualitatively good agreement with experiments. It is also called Andelman model since Andelman’s group
independently rediscovered it in 1997 [2]. This model has been popular because it captures basic size effects
of ions by using a rather simplified formulation. It modifies the free energy of an ionic system based on mean-
field approximation by adding an ideal-gas-like solvent entropy term. This term also represents the excessive
energy accounting for over-crowding of ions and solvent molecules [3].
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The free energy in Bikerman model treats all species of ions and solvent molecule with an identical size,
and a modified PB/PNP model can then be derived through the minimization of this corrected free energy. A
natural extension of original Bikerman model to account for specific ion sizes is simply replacing the iden-
tical ion size used in the original model by specific ion sizes and many researchers used that without rigor-
ous derivation for justification. A thorough justification of this extension through serious derivation has been
conducted only in a few literatures [4, 5]. However, the entropy part in the derivation of [4, 5] is based on tradi-
tional mean-field gas lattice model. It states the most probable state of particle distribution to reach maximum
entropy is that each particle would occupy just one occupation site and each occupation site can at most be
occupied by a single particle. To further calculate the entropy based on this idea by combinatorics and then
simplify it by Stirling formula, we need to assume all occupation sites are identical in size (characterized by
identical side length of cubical sites). Otherwise, combinatorics would not apply. When ion concentrations
are extremely large in some limiting situations, the modified Bikerman model by simply replacing the identi-
cal ion size with specific ion sizes seems to fail to uphold this basic requirement of identical occupation sites
as shown in latter section. The discussion and fixing of this problem will be the main theme of current study.

2 Review of Bikerman model

Suppose ion sepcies and the solvent molecules are treated as hard spheres and assumed to have the same
diameter a. Taking binary electrolyte as an example, the free energy based on Bikerman model is given as
follows,

F=U-TS @
where U is internal energy, S is entropy, T is absolute temperature:
U=/ [—g\v¢\2+zpep¢+znen¢} dv, )
1S = [ koT [ plog (pa®) + nlog (na?) + L=PL =1@), 3 _na®) | av
-TS= | kg pog(pa)+nog<na>+Tog(l—pa —na) , 3)

where ¢ is the electrostatic potential; p is the concentration of cation with the valence zp; n is the concentra-
tion of anion with valence zy; kg is the Boltzmann constant.
The variation of F with respect to ¢gives the Poisson equation,

-V - (eV@) = zpep + znen (4)

By doing the variation of F with respect to p and n, we can obtain the chemical potentials for cation and
anion, respectively.

37; =yp=zpe¢+kBT[lO§ (pa3)—log (1_pa3_na3>} (5)
3—5 =}1n=Zn€¢+kBT[10g (na3> - log (1_pa3—na3>} ©

Subtracting Eq. (6) from Eq. (5), we get
p=nexp (B (w,~Hy) ~Bp-20)e9) )

where f§ = ﬁ Note that when equilibrium, y,, and p,, would be uniform in space. Assuming electroneutrality
in the region far away, i.e., zpp + znn =0, ¢ — 0, as x — oo, we then obtain from Eq. (7),

ePluy) - ZZn (8)
Zp
and thus
p = _nzle_ﬁ(zp_zfl)eqb (9)

Zp
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From Eq. (5), we get

3
ba = oPlu,~zped
Ty~ (10)

Substitute Eq. (9) into Eq. (6), we obtain

na’

1+ nj—;a3e‘ﬁ(zp‘z")e¢ - na3

— oB(u,—zned) (11)

Hence,
1

= 12
a3 1+ e‘ﬁ(ﬂn_zned)) - ?e_ﬁ(zp_zn)e‘ﬁ ( )
P

n

For bulk solution, p — p;,, n — ny,, ¢ — 0, and Eq. (12) gives

3
ePtn = L L (13)

1- (1—%) nya’

Substituting Eq. (13) into Eq. (12), we can obtain the concentration of anion.

—Bzned
_ npe
Nyt s ) )
(2p-2n)
where v = (1 - j—;) nya® = (p, + np)a’ is the volume fraction of ions at bulk solution.
Substituting Eq. (14) into Eq. (9), we can further obtain the concentration of cation,
-Bzpedp
p= P Pened_z o Poped (15)
1-v+ vg(zpe ned—zne Ppe?)
(2zp-2n)

Finally, substiuting Eqgs. (14) and (15) into Eq. (4), we obtain the modified PB equation based on Biker-
man model (or called Poisson-Fermi equation since p and n above follow Fermi-Dirac distribution instead of
Boltzmann distribution),
zpep,e Pe? + z,en, e Pned
(zpePoned—z,ePope?)

(zp+2zn)

For a symmetric z:z electrolyte, i.e., z, = —-zn = z, and letting p,, = n, = co, Egs. (14) and (15) can be

reduced to

-V - (eV) = (16)

1-v+v

Bzed -Pzed
n= Cpé T , p= Cp€ i (17)
1+ 2vsinh (%) 1+ 2vsinh <%)

and then Eq. (16) can be written as

2zecosinh (fzed)

V. (eVe)=
1+ 2vsinh’ (BZT‘"P)

(18)

Here v = 2coa®. When ion concentrations are dilute, i.e., v < 1, Eq. (18) is further reduced to classical
PB equation for z:z electrolyte:
V- (eV¢) = 2zecosinh (Bzed) (19)

3 Extension of Bikerman model to account for specific ion size

The derivation above is based on the assumption that cation and anion have the same diameter a. Biker-
man model has been often modified for cation and anion to accommodate specific ion diameters by a direct
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extension of chemical potentials in Egs. (5) and (6) to

pay

= edp +kgTlo —_— 20

l’lp Zp ¢ B g 1 _paz — na% ( )
na;

= kgTl —n 21

I’ln Z"e¢+ KB Og<1_pag_na?l> ( )

where a, and a, are diameters for cation and anion respectively. [4, 5] gives a rigorous derivation of Egs.
(20) and (21) from mean-field lattice gas model. For equilibrium, from Egs. (20) and (21), we can obtain the
following equations from uniform distribution of chemcal potentials and equating the chemical potential
anywhere to that of bulk solution, where electro-neutrality is assumed:

3 3
kgTlog (pbap> =zped + kgTlog (1pap> (22)

1-ppaz - npa; - pa; - na;
3 3
n,a na
kgTlog | ——2"" ) =z,ed + kgTlog | ——="—_ ), 23
s g(l—pbaz-nbaz) A g(l—paz—naa) >3
and we can further derive
p= ppexp (-Bzped) (24)
1+ ppay (exp (-Bzped) - 1) + nya; (exp (—Pzned) - 1)
npexp (_le’le(p) (25)

"T1 + ppay (exp (-Bzped) - 1) + nyaz (exp (-Bzned) - 1)

We can further obtain the modifed PB equation based on this version of Bikerman model considering
specific ion size:

zpeppexp (-Bzped) + znenyexp (-pzned) e
1+, (exp (-Bzped) — 1) + nya (exp (-Bzned) - 1)

With ap = a5 = a?, Eq. (26) can be reduced to Eqg. (16).

However, here we think Egs. (20) and (21), though can be reduced to chemical potential for original PB
when ionic concentrations are dilute, still might have some minor problem when concentration of cation or
anion is extremely large in some situations as mentioned above. This minor problem, an inconsistency with
some criterion underlying the traditional calculation of entropy via combinatorics, can be comprehended

by taking the limit ¢ — - oo for Eq. (24), and we obtain p — al Similarly, letting ¢ — oo for Eq. (25),

-V (eVd)) =

-
we obtain n — aiz It means as the magnitude of electric potential gpproaches infinity, the concentration of
counter-ion will increases as well. Size of occupation site will decrease accordingly due to crowdness, but
will limit to max {ap, an}, since each cation and anion particle are requested to occupy identical site, which
provides the necessary combinatorial basis when computing entropy based on mean-field lattice gas model.
Ion concentrations p and n should both approach % with a = max {ap, an} due to single-ion site occupation
at this limiting situation instead of a% and lef, respectively. This is illustrated in Fig. 1(a). The limitation that
each identical site can only be occuﬁied by a single particle at most would cause quite an uneconomic use
of space when ions are extremely crowded (under high concentrations) and size of a certain species of ion is
much larger than the others. However, if ions can be packed like Fig. 1(b) instead of Fig. 1(a) at extreme high
concentrations. The use of space would be more economic. If multiple ions of the same species can occupy a
site like Fig. 1(b) when ion concentrations are extremely large, it would justify the limits n — aia andp — 71;,

as ¢ — + oo without compromise to the limit p,n — a% with a = max {ap, an}, since occupation sites
can still maintain to be identical. The entropy computation under this extreme packing case requires a new
derivation, which will lead to a newly modified Bikerman model as shown in next section. One might argue
that Coulomb force will be very large if ions are packed like Fig. 1(b), and will hinder this kind of arrangement
especially when Coulomb force between ions are repulsive. Actually Coulomb forces between ions are delicate
when there exists solvent molecule, and packing of ions like Fig. 1(b) can be possible. Also, we can treat all

species of particles here carrying no chrage, since we are deriving their entropy only.
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Nbiwe = 10
= Nrea = 20
Ngreen = 1 0 Ngreen — 9 0

Figure 1: (@) The most probable distribution of blue, red and green particles to compute the entropy by mean-field lattice gas
model in the case of crowdness. Note that the occupation site needs to be identical to justify the combinatorics used in entropy
computation. (b) Modification of (a) to allow extra number of particles of the same kind to reside in each identical occupation
site in the case of extreme crowdness. Here rpje = 1, Tyeq = 4, Tgreen = 9.

4 Modification of Bikerman model to include specific ion sizes

When computing entropy, in the approach of traditional mean-field discrete lattice gas model, charge carriers
are distributed over a three dimensional cubic lattice where the volume of a single site is a°. Thus, by dividing
space into discrete cells (lattice sites) and limiting the occupation of each cell to a single ion would give us the
most probable distribution used to calculate the entropy. Cell site length acan be as small as the maximum
diameter of ions at most no matter how crowded ions are. This explains why diameter of cation and anion are
set to be the same (maximum diameter among them) in original Bikerman model. However, it seems plausible
that the presence of ions with large difference in size could lead to a new distribution in the situation of high
ion concentrations as shown in Fig. 1(b). For this case of highly packed and crowded ions, we assume each
cell can allow the occupation of multiple ions of the same kind, when that ion is not the biggest one among
all. Based on this, the entropy will turn out somewhat different from before, and will be illustrated as below.
Consider the free energy for an aqueous electrolyte system,

F=U-TS=) Njgjp-kgT logW 27)

where g; = zje, N ; is the total number of j-species ions and N; is number of identical cells occupied by j-species
particles with Nj > N. If an identical site can allow r; j-species ions to occupy as illustrated in Fig. 1(b), we
can then relate Ni and N; by Ni = Njr;. The entropy based on the most probable distribution of all ions and
solvent molecules over a total of N available identical sites in a system is

w=ﬁw N w-wy (RN (CSRN)
L 7 Ny!(N-Np!N!(N-N; —N2)| NK! (N— Z]K:le)! Ng.1! (H; . )N1<+1
(28)
Note that, after all the ions are distributed, there are N - Z]{i 1 Nj = Nk, sites that will be filled by solvent
molecules. Also, the underlying criterion for the above combinatorics to hold is that all particle occupation
sites must be identical in size, and this criterion is uphold here, even at limiting situations, with the reasoning
of an identical site able to be occupied by multiple particles.
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So the free energy becomes

. N
(

Hszl Nj!) Niiq!

Using the Stirling formula logM! ~ MlogM — M with M >> 1, we can rewrite the free energy as

K K K K K K
=) "Njgj¢ - kT [NlogN - N - > " NjlogN;+ > Nj— | N=> Nj | log (N-) N; | + [N-D N,

j=1 j=1 j=1 j=1 j=1 j=1
K K
- N N;
=) Njqj¢ - kgT |Nlog——%—— - Z Njlog——2—— (30)
j=1 N- Zj:l N; j=1 N- Zj:l N;
Using the follwing relation,
V =Nda3, or %=% (31)
N;
N; Na*® 7 ra
NoNG v a9 G2)

N N N a]' Cj

VNV Y8y G3)
where ¢; is the concentration of j species; V is the volume of system; a = max {ap, an}. The free energy per
unit volume can be expressed as

FoX 1 K ¢
=== Z cjqj¢ — kT —3log7 Z Yiog— I |, (34)
4 i1 a Z; 1G4 54 j 1 Z] 1C)a]3
For binary electrolyte,
f = pap + ngne - kT ilog; _ Elogﬂ _ ﬁlogniai
b a> "1-pay-na; Ttp ~1-paj-na; ™ ~1-pa;-na;
and
5f _ pap
o _ kel 1pg— P% 35
Hp 5p p¢+ P 1_pal3)_na§l ( )
8f kB nal
- log— Mdn 36
n= g ~nf+ Ogl—pa;—naz (36)

Notes that if r, = rn = 1, Egs. (35) and (36) will reduce to Egs. (20) and (21), and the derivation above
is equivalent to the derivation in [4, 5]. Again for equilibrium and then chemical potentials being uniform in
space,

kgT Prap pay

kgT
=L~ log——2F = + =" log——F 37
I'p gl—pbaf,—nba?l ¢ Tp gl—pa},—na?, G7)
kgT n,a; kgT na;
log—2 "% = + == log——="——. 38
'n 1-ppaz - nya; ¢ 'n gl—paf,—na?, G8)
Egs. (37) and (38) are solved to obtain

p= prexp (=Pzprped) (39)

1+ ppaj (exp (-Bzprped) - 1) + nya; (exp (-Bznrned) - 1)
nyexp (Bznrned) “0)

~ 1+ pya; (exp (-Bzprped) - 1) + nyas (exp (-pznrned) - 1)
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Again when rp = ry, = 1, Egs. (39) and (40) reduce to Egs. (24) and (25). By taking the limit p — - oo
for Eq. (39), we obtain p — é Similarly, letting ¢ — oo for Eq. (40), we obtain n — é These justify the
extremely crowded situation like Fig. 1(b). Note that, though same limits are reached as by Egs. (24) and (25),
now there is no contraint like p, n — 713 with a = max {ap, an} needed to be comprimised with. Substitue

Egs. (39) and (40) into Eq. (4), we obtain modified PB equation based on this corrected version of model,

. - zpeppexp (-Bzprped) + znenpexp (—Bznrned)
VOV = a (exp (Bzvroed) - 1) + npad (exp (Panrmed) — 1) (41

However, when ion concentrations are dilute, i.e., ppap < 1, and nya; < 1, Egs. (39) and (40) reduce
to

p = ppexp (-Bzprped), n=nyexp(-Pznrned) (42)
which violates the Boltzmann distribution that p and n should behave in dilute electrolyte:
p =ppexp(-Pzped),  n=npexp(-Pzned) (43)

This problem is also observed in modified Nernst-Planck equations. For non-equilibrium system, we ob-
tain flux by

_ Dy OM,

Jp = kBTp ox’ (44)
__Dn O,

In= 1T ox - (45)

Substitute Egs. (35) and (36) into Eqgs. (44) and (45), we obtain

~Dp ey Dp(0p, PG op,  pay  on

Tp = "1, T77P 5x o\ ox 1 - pa} - na; 0x "1 -paj -naj} ox )’ (46)
__Du 0¢ Dn [on na; op na; on

Jn kT ox " (aX+ 1—pag—naﬁa+ 1-pal-na3 ox |’ (47)

When the ionic concentrations are very dilute meaning paf, < 1and na} < 1, Egs. (46) and (47) are
reduced to
Dp 0¢p Dpop

Ip =—szepa—gay (48)

Jn=-1—znen—L - =——, (49)

which are not exact classical Nernst-Planck equations with diffusion coefficents decreased to ?—: and %" re-
spectively in the diffusion terms above for p and n. Compared with original Bikerman model with an identical
ion diameter which can be reduced to classical PB and PNP equations when ionic concentrations are dilute,
the current model attempted to modify original Bikerman to include specific ion sizes unfortunately fails to
reduce so.

5 Conclusions

The straight forward extension of Bikerman model to include specific ion sizes, though used by many re-
searchers, actually does not uphold the ion occupation site to be identical, a fundamental requirement of
mean-field lattice gas model, at extreme high ion conecntrations. The rigorous modification of Bikerman
model to include specific ion sizes is derived in the current study. It fixes the occupation site problem, but
unfortunately fails to reduce to classical PB and PNP as ion concentrations become dilute. Maybe models of
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steric effect to account for specific ion sizes are better not derived through modification of entropy but through
the introduction of excessive chemical potential [6, 7].
1

Also in the version of straight forward extension of Bikerman model, the limits n — a% and p — -5 as

¢ — t oo, though do not uphold identical occupation site requirement globally, still uphold it locallyf7 For
example in the case of of electrolyte in contact with a charged wall with extremely high voltage, unlike the
situation in Fig. 1(a) usually only one species of counter-ion will dominate the occupancy near wall surface,
even the electrolyte consists of multiple species of counter-ions. It is usually because other energy barrier like
solvation energy will end up only one species of counter-ion would be distributed near wall. Similar situation
occurs at the selectivity filter of potassium channel, and that is how selectivity works.
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