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Abstract: In this article we address the study of ion charge transport in the biological channels separating the
intra and extracellular regions of a cell. The focus of the investigation is devoted to including thermal driving
forces in the well-known velocity-extended Poisson-Nernst-Planck (vPNP) electrodiffusion model. Two ex-
tensions of the vPNP system are proposed: the velocity-extended Thermo-Hydrodynamic model (vTHD) and
the velocity-extended Electro-Thermal model (vET). Both formulations are based on the principles of conser-
vation of mass, momentum and energy, and collapse into the vPNP model under thermodynamical equilib-
rium conditions. Upon introducing a suitable one-dimensional geometrical representation of the channel, we
discuss appropriate boundary conditions that depend only on effectively accessible measurable quantities.
Then, we describe the novel models, the solution map used to iteratively solve them, and the mixed-hybrid
flux-conservative stabilized finite element scheme used to discretize the linearized equations. Finally, we suc-
cessfully apply our computational algorithms to the simulation of two different realistic biological channels:
1) the Gramicidin-A channel considered in [12]; and 2) the bipolar nanofluidic diode considered in [45].

1 Introduction and Motivation
Ion channels are ubiquitous in the cells of the human body. They allow communication between the intra and
extra-cellular sites and are responsible for the signaling pathways that regulate the activity of each part of the
body system. A complete presentation of ionic channels is far beyond the scope of this article. For a treatment
of the general properties of ionic channels and of their characterization in cellular biology and neuroscience
we refer to the books [19] and [15]. In broad terms, ion channel are “biological gates” that can be activated
(opened) or deactivated (closed) by the application of electrical, chemical, mechanical or thermal stimuli.

In the present article we mainly focus on the interaction among electrical, chemical and thermal driving
forces, starting from the evidence that the sensory system in mammals is capable of discriminating thermal
stimuli ranging from noxious cold (< 8∘ C) to noxious heat (> 52∘ C). Of particular relevance are the biological
temperature sensors denoted thermo-transient receptor potential (thermo-TRP) cation channels. Thermo-TRP
channels constitute a “superfamily” of receptors in sensory neurons that can be activated by noxious stimuli,
resulting in the transmission to the spinal cord and brain of the information of local pain perception [16]. The
fact that the thermal thresholds of many thermo-TRP channels can be modulated by extracellular mediators
has recently led to the development of antagonists for noxious channel blockage in therapeutic uses as novel
analgesics [44]. This is the case, for example, of heat-sensitive TRP channels exposed to capsaicin, a natural
ingredient of spicy foods such as red hot chilli peppers and of cold-sensitive TRP channels exposed to men-
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thol. In [9] and [46], it is shown how the chemical agonists capsaicin and menthol function for both types of
TRP channels as gating modifiers, shifting activation curves towards physiological membrane potentials.

Despite a significant amount of experimental data, the mechanisms underlying the marked tempera-
ture sensitivity of channel gating are still largely unknown. For this reason, the use of mathematical tools is
increasingly becoming popular to support biophysical conjectures and suggest novel theories for data inter-
pretation. Two main kinds of approaches are presently utilized for channel modeling and simulation, one is
called particle approach the other continuum approach. The particle approach is based on the assumption
that ions are charged particles characterized by a given radius and mass. Each particle is in motion within
the electrolyte fluid permeating the channel and interacts with the other particles according to Coulombian
electrostatic forces directed along the radius vector connecting particle i with particle j. The corresponding
simulation approach is based on the use of the Monte Carlo computational method in which the temporal
dynamics of the ion population is studied by solving the motion equations self-consistently with the Poisson
equation that provides the updated electric field at each position of themedium. For details on this procedure
we refer to [6] and bibliography cited therein. The continuum approach is based on the assumption that each
ion species constitutes an homogenized charged fluid. Each ion fluid flows throughout the electrolyte fluid
according to the general laws of hydrodynamics to which the Poisson equation must be added to update the
electric field at each position of the medium. The corresponding simulation approach is based on the use of
the numerical methodologies that are commonly employed to treat the equations for the dynamics of a fluid,
typically the finite elementmethod or the finite volumemethodwith some specific stabilization tools for han-
dling the presence of strong convective terms. For details on this procedurewe refer to [2, 18] and bibliography
cited therein.

In the present article we adopt the point of view of the continuum approach and we apply such point
of view to the numerical study of a single ion channel. This aims at reproducing in mathematical terms the
studies that are done inmodern Electrophysiology using the patch clamp technique. Our choice is principally
motivated by the fact that the scope of the work is to investigate the interplay among several physical mech-
anisms that are recognized to affect the biological response of ion channels but are far from being assessed
in a quantitative manner starting from a first principle analysis. In this respect, we believe that the use of a
continuum-based formulationmay be convenient from a computational standpoint and sufficiently accurate
to provide information about these phenomena.

In the context of formulations based on the continuumassumption, themostwidely adopted approach to
ion channelmodeling and simulation is represented by compartmentalmodels described by a system of ordi-
nary differential equations (ODEs) based on the solution of Kirchhoff current law (KCL) written at the cellular
membrane level [27]. The KCL equation is supplemented by phenomenological expressions characterizing
the input-output functional response of each protein channel to changes in ion concentrations and/or elec-
tric potential inside and outside the cell [19]. Temperature in these models is usually assumed to be a given
parameter.

More sophisticated approaches involve the solution of a system of partial differential equations (PDEs)
expressing balance of mass of each single ion species flowing across the channel and the Gauss law for the
electric field. The system is supplemented by a transport relation, known as the Nernst-Planck (NP) equa-
tion, that describes ion motion under an electrochemical gradient [22, 24, 36]. Also in this kind of modeling,
well-known as the Poisson-Nernst-Planck (PNP) system and as the Drift-Diffusion (DD) system [23, 30], tem-
perature is a given parameter.

A significant step forward to account for temperature as a dependent variable was taken in [12]. In this
reference a hydrodynamic (HD) formulation including convective and thermal energy in the electro-chemical
motion of a single cation is proposed and numerically investigated. A remarkable feature of [12] is that model
and analysis are inspired and guided by the analogy between a biological ion channel and the channel of a
semiconductor device in which electrons and holes, instead of charged ion particles, flow to transport elec-
trical current between device terminals. This similarity between biology and solid-state electronics has been
thoroughly addressed in the overview paper [14], in the numerical simulations of [17, 22, 33] and in the MSc
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thesis [29]. In this latter reference, the mathematical view of [12] is generalized by the introduction of a hier-
archical modeling perspective to represent ion transport in a biological channel in which the interstitial elec-
trolyte fluid is assimilated to the semiconductor device medium where two monovalent species (anion and
cation) are flowing under the effect of electric, chemical and thermal forces. The hierarchy proposed in [29]
is based on the ideas discussed in the semiconductor modeling reference books [41], [31], [23] and [26], and
includes four members: the basic DD formulation, the electro-thermal (ET) formulation, the hydrodynamic
(HD) formulation and the thermo-hydrodynamic (THD) formulation. For each member of the hierarchy, a set
of conservation laws for mass, momentum and energy is written. In the case of DD, ET and HD models, the
energy exchange between particles and medium are neglected while in the case of the THD model a supple-
mentary conservation law is added to account for the dynamical thermo-electrochemical balance among the
three interacting subsystems. The hierarchy is extensively investigated in a series of numerical computations
performed in a simplified one-dimensional channel geometry. Externally applied data on which a sensitiv-
ity analysis is carried out are the values of bulk ion concentrations in the intra and extra-cellular sites and
the applied potential drop across the channel. Simulations indicate that: i) channel heating is, in general,
relatively small compared to ion heating; and ii) for certain ranges of model parameters, the high-order ef-
fects introduced by the THD picture can significantly affect the input-output transfer characteristics of the
“biological transistor”.

Based on the experience and results described above, in the present article we propose the following
mathematical structure for the modeling of ion charge transport in biological channels:

(a) in Section 2 we review the classic DD (PNP) model for ion electrodiffusion;
(b) in Section 3 we use the channel conformation model proposed in [11] to supply the DD (PNP) formula-

tion with a set of “reduced order” boundary conditions that allow one to account for the experimentally
accessible values of applied bias, ion concentrations and bathing temperatures;

(c) in Section 4we review twomembers of the hierarchy ofmodels for ion charge transport introduced in [29],
the Thermo-Hydrodynamic and Electro-Thermal systems, and include electroosmotic effects by adding
a linear advective term into the momentum balance equations proportional to the given electrolyte fluid
velocity. The resulting modified hierarchy is a family of (approximated) velocity-extendedmodels, as the
self-consistent study of electrolyte fluid dynamics through Navier-Stokes equations is neglected unlike
in [24, 25, 36, 40];

(d) in Section 5 we illustrate the solutionmap used to solve iteratively themodels in (a), (b) and (c) in steady-
state conditions;

(e) in Section 6 we study a linear model advective-diffusive and reactive boundary value problem (BVP) that
represents each of the subproblems arising in the solution map, focusing on the continuous maximum
principle;

(f) in Section 7 we address the numerical study of the model BVP in (e) based on the dual-mixed hybridized
(DMH) finite element method proposed and analyzed in [4, 7, 34] for elliptic equations and extended to
more general differential operators in [3];

(g) in Section 8 we propose a stabilization of the DMH scheme to deal with the case where advection or
reaction dominate over diffusion in the model BVP;

(h) in Section 9 we conduct a series of numerical tests to verify the convergence and stability properties of
the DMHmethod;

(i) in Section 10 we apply external temperature gradients, besides the usual electrochemical gradients, to
the biological transistor to replicate in vitro the biophysical situations occurring in vivo in thermo-TRP
channels;

(j) in the concluding Section 11 we summarize themain contributions of the present research andwe address
a list of forthcoming activities for model improvement.
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2 The Poisson-Nernst-Planck model for ion electrodiffusion
The Poisson-Nernst-Planck system (PNP) for ion electrodiffusion reads [36]:

∂ci
∂t + div fi (ci , φ) = 0 i = 1, . . . ,M (1a)

fi (ci , φ) = −Di∇ci + µi
zi
|zi|

ciE i = 1, . . . ,M (1b)

Di =
µiVth
|zi|

i = 1, . . . ,M (1c)

divE = ρε (1d)

E = −∇φ (1e)

ρ = q
M∑︁
i=1

zici + qP. (1f)

In thePNP system, (1a) is the continuity equationdescribingmass conservation for each ionwhose concentra-
tion is denoted by ci (m−3), i = 1, . . . ,M,M ≥ 1 being the number of ions flowing in the electrolyte fluid. Each
ion flux density fi (m−2s−1) is defined by the Nernst-Planck relation (1b) in which it is possible to recognize a
chemical contribution and an electric contribution, in such away that themodel be regarded as an extension
of Fick’s law of diffusion to the case where the diffusing particles are also moved by electrostatic forces with
respect to the fluid. The quantity zi is the valence of the i-th ion, while µi and Di are themobility and diffusiv-
ity of the chemical species, respectively, related by the Einstein relation (1c) where Vth = kBTsys/q (V) is the
thermal potential, our having denoted by kB, Tsys and q, the Boltzmann constant, the absolute temperature
of the system and the elementary charge, respectively. We remark that in the PNP modeling approach, Tsys
is a parameter representing the constant temperature of the system, without distinction between the ionic
species and the electrolyte fluid. This assumption is going to be relaxed in Section 4. The function ρ is the
space charge density (Cm−3) in the electrolyte and is given by the sum of two contributions, the mobile ion
charge q

∑︀M
i=1 zici and the fixed charge qP, where P = P(x) is a space-dependent charge density profilewhose

absolute value is measured in (M). The electric field E (Vm−1) due to space charge distribution ρ in the elec-
trolyte is determined by the Poisson equation (1d) which represents Gauss’ law in differential form, ε being
the dielectric permittivity of the electrolyte fluid medium. For further development, it is useful to introduce
the electrical current density Ji (Am−2), equal to the number of ion charges flowing through a given surface
area per unit time and defined as

Ji := qzifi = −qziDi∇ci + qµi|zi|ciE i = 1, . . . ,M. (1g)

Remark 1. The PNP system (1) has the same format and structure as theDrift-Diffusion (DD) equations for semi-
conductors (see, e.g., [23]), but it is applied to a different medium (water instead of a semiconductor crystal lat-
tice) and includes, in general, more charge carriers than just holes and electrons, as in the case of semiconductor
device theory.

3 Geometry, biophysical assumptions and boundary conditions
Following the presentation of [11], we illustrate in Fig. 1 the schematic representation of a cross-section of a
biological channel, assuming rotational invariance around the channel axis (x axis).

Five regions can be distinguished, ordered from left to right:

1. Region 1, L ≤ x ≤ 0−: this is the bathing solution in the intracellular side.
2. Region 2, 0− < x ≤ 0: this is the channel antichamber (or access region) from the intracellular side.
3. Region 3, 0 ≤ x < d: this is the channel region.
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Figure 1: Schematic view of the biophysical problem. Five regions can be distinguished. From left to right: intracellular bathing
solution, antichamber, channel region, antichamber, bathing solution in the extracellular side. At the endpoints, x = 0 and
x = L, terminal contacts are marked in red color.

4. Region 4, d ≤ x < d+: this is the channel antichamber from the extracellular side.
5. Region 5, d+ ≤ x ≤ R: this is the bathing solution in the extracellular side.

The above geometrical representation leads naturally to a multi-domain formulation for ion channel simu-
lation. The biophysical treatment of such a problem is fully carried out in [11] whilst its mathematical and
numerical treatment is the object of the present article, where the PNP formulation (1) is extended to include
thermo-hydrodynamical phenomena to ion electrodiffusion in the channel.

3.1 Assumptions

The endpoints of the domain, x = L and x = R, are located sufficiently far from the antichamber and chan-
nel regions, in such a way that appropriate equilibrium conditions can be applied. More importantly, the
endpoints are assumed to be the physical place where the solution intra and extra-cellular electrochemical
conditions are accessible to experimental measurements. Because of this, following [10, 11], we assume that
at x = L and x = R:

(A1) the electric potential φ is a known given quantity, so that:

φ(L) = φL (2a)
φ(R) = φR; (2b)

(A2) the ion concentrations ci are known given quantities, so that:

ci(L) = ci,L , i = 1, . . . ,M (2c)
ci(R) = ci,R , i = 1, . . . ,M (2d)



Thermo-Fluid-Electrochemically Driven Ion Flow | 83

where M ≥ 1 is the number of ions flowing in the cellular solution. The boundary values for the ion
concentrations satisfy the electroneutrality constraint:

M∑︁
i=1

zici,L = 0 (2e)

M∑︁
i=1

zici,R = 0 (2f)

where zi is the charge number associated with each ion species ci (zi > 0 for cations, zi < 0 for anions
and zi = 0 for neutral species).

We close the characterization of the bathing regions by assuming that:

(A3) the ion current densities Ji(x) vanish inside the baths

Ji(x) = 0 L ≤ x ≤ 0−, i = 1, . . . ,M (2g)
Ji(x) = 0 d+ ≤ x ≤ R, i = 1, . . . ,M. (2h)

Continuing to move from the periphery of the domain towards the channel region, we encounter the
antichamber openings, at x = 0− and x = d+, respectively. Located on the membrane lipid bilayer, a space-
dependent fixed charge density P = P(x) is distributed. We make the following assumptions within the an-
tichamber regions:

(A4) electroneutrality holds at the channel mouth entrances:

qP(0−) + q
∑︁

zjcj(0−) = 0 (2i)

qP(d+) + q
∑︁

zjcj(d+) = 0; (2j)

(A5) the electric potential is constant in the antichamber regions:

φ(x) = φ(0−) 0− ≤ x ≤ 0 (2k)
φ(x) = φ(d+) d ≤ x ≤ d+; (2l)

(A6) the ion concentrations are constant in the antichamber regions:

ci(x) = ci(0−) 0− ≤ x ≤ 0 i = 1, . . . ,M (2m)
ci(x) = ci(d+) d ≤ x ≤ d+ i = 1, . . . ,M. (2n)

3.2 Boundary Conditions at Channel Openings

In this sectionwe use the geometrical multi-domain representation of the problem of Sect. 3 and the assump-
tions made in Sect. 3.1 to derive the boundary conditions to be supplied to the PNP Model at x = 0 and x = d
(channel openings). Using Einstein’s relation (1c) in (1g) we can write the PNP current density as

Ji = −q|zi|µici
∂φeci
∂x i = 1, . . . ,M (3a)

where

φeci := φ + 1
zi
Vth ln

(︂
ci
cref

)︂
i = 1, . . . ,M (3b)

is the electrochemical potential and cref := max
i=1,...,M

{ci,L; ci,R} is a reference concentration. Inverting (3b) we

obtain the well-known Maxwell-Boltzmann (MB) statistics for the ion densities

ci = cref exp
(︂
zi
φeci − φ
Vth

)︂
i = 1, . . . ,M. (3c)
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Using (A3) we get

φeci (x) = const =: φeci,L L ≤ x ≤ 0− i = 1, . . . ,M (3d)

φeci (x) = const =: φeci,R d+ ≤ x ≤ R i = 1, . . . ,M (3e)

where φeci,L and φeci,R, i = 1, . . . ,M, are constants yet to be determined. From (3c) we get

ci(x) = cref exp
(︂
zi
(φeci (x) − φ(x))

Vth

)︂
L ≤ x ≤ R i = 1, . . . ,M. (3f)

Thus, using (3d) and (3e) and assumptions (A5) and (A6), we find:

ci(x) = cref exp

⎛⎝zi
(︁
φeci,L − φ(x)

)︁
Vth

⎞⎠ L ≤ x ≤ 0 i = 1, . . . ,M

ci(x) = cref exp

⎛⎝zi
(︁
φeci,R − φ(x)

)︁
Vth

⎞⎠ d ≤ x ≤ R i = 1, . . . ,M.

Using (A2) in the equations above at z = L and z = R, respectively, we obtain the boundary values for the
electrochemical potential:

φeci,L = φL +
Vth
zi

ln
(︂
ci,L
cref

)︂
i = 1, . . . ,M (3g)

φeci,R = φR +
Vth
zi

ln
(︂
ci,R
cref

)︂
i = 1, . . . ,M. (3h)

Remark 2. It is important to note that relations (3g)and (3h)allowone to express the electrochemical potentials
at the contacts as a function of the sole accessible quantities. This is in contrast with [29], page 42, relations
(3.8a)-(3.8b), where the values of the electrochemical potentials were imposed and the corresponding values of
the electrical potential were computed using (3.14a)-(3.14b).

From the previous discussion, we see that electroneutrality holds at the external contacts (x = L, x = R) and
at the channel mouth entrances (x = 0−, x = d+), but not, in general, elsewhere. Therefore, it makes sense to
introduce the voltage drops occurring in the bathing solution regions, the so-called built-in potentials:

φbi(0−) := φ(L) − φ(0−) (4a)
φbi(d+) := φ(d+) − φ(R). (4b)

Using the charge neutrality conditions (2i) and (2j), theMB relations (3c) and the definitions (4), the built-
in potentials can be determined by solving the two following nonlinear algebraic equations:

P(0−) +
M∑︁
i=1

zici,L exp
(︂
zi
φbi(0−)
Vth

)︂
= 0 (4c)

P(d+) +
M∑︁
i=1

zici,R exp
(︂
−zi

φbi(d+)
Vth

)︂
= 0. (4d)

Remark 3. In the particular case of the KCl solution (z1 = +1, z2 = −1) considered in [10], equations (4c)
and (4d) can be explicitly solved, to yield:

φbi(0−) = Vth ln
(︃
−P(0−) +

√︀
(P(0−))2 + 4(c1,L)2
2c1,L

)︃

φbi(d+) = Vth ln
(︃
P(d+) +

√︀
(P(d+))2 + 4(c1,R)2
2c1,R

)︃
where we notice that c1,L = c2,L and c1,R = c2,R because of the electroneutrality constraints (2e) and (2f).
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In order to complete the characterization of the boundary values for the dependent variables of the prob-
lem we need the value of the electric potential and of the ion concentrations at the two endpoints of the
channel. The potential is determined using (4) and (A5), which yield:

φ(0) = φ(0−) = φL − φbi(0−) (5a)
φ(d) = φ(d+) = φR + φbi(d+). (5b)

To determine the ion concentrations we use (3f), (3g) and (4a) at x = 0 to obtain

ci(0) = cref exp
(︂
zi
(φeci (0) − φ(0))

Vth

)︂
= ci,L exp

(︂
zi
φbi(0−)
Vth

)︂
i = 1, . . . ,M (5c)

and (3f), (3h) and (4b) at x = d to obtain

ci(d) = cref exp
(︂
zi
(φeci (d) − φ(d))

Vth

)︂
= ci,R exp

(︂
−zi

φbi(d+)
Vth

)︂
i = 1, . . . ,M. (5d)

Summarizing, theDirichlet boundary conditions for thePNPsystem in the reduced channel domainΩ = (0, d)
are at x = 0:

P(0−) +
M∑︁
i=1

zici,L exp
(︂
zi
φbi(0−)
Vth

)︂
= 0 (6a)

φ(0) = φL − φbi(0−) (6b)

φeci (0) = φL +
1
zi
Vth ln

(︂
ci,L
cref

)︂
i = 1, . . . ,M (6c)

ci(0) = ci,L exp
(︂
zi
φbi(0−)
Vth

)︂
i = 1, . . . ,M (6d)

and, at x = d:

P(d+) +
M∑︁
i=1

zici,R exp
(︂
zi
φbi(d+)
Vth

)︂
= 0 (6e)

φ(d) = φR + φbi(d+) (6f)

φeci (d) = φR +
1
zi
Vth ln

(︂
ci,R
cref

)︂
i = 1, . . . ,M (6g)

ci(d) = ci,R exp
(︂
−zi

φbi(d+)
Vth

)︂
i = 1, . . . ,M. (6h)

4 Extensions of the PNP model
In this sectionwepresent two extensions of the PNP equation system illustrated in Sections 2 and 3. Fromnow
on we restrict our attention to the study of a channel in stationary conditions and to simplify the exposition,
in close analogy with semiconductor device physics, we consider a binary mixture ofmonovalent anions and
cations, i.e., such that their chemical valence is equal to ±1 as in the case of the KCl solution or the NaCl
solution. We use the symbol p (positive) and n (negative) to refer to the concentrations of cations and anions,
respectively. The symbol ν is used to indicate either p or n. When the operators ∓ or ± are used, the upper
sign always refers to n-type particles, the lower sign to p-type particles, and the value for ν must be chosen
accordingly. The quantities associated with the electrolyte medium are referred to by the symbol e, while x
denotes henceforth the spatial coordinate.

In our analysis we follow [29], the series of references [5, 23, 37] in the context of semiconductor device
modeling, and the theory of [24, 25, 36, 40].
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The first extension is denoted velocity-extended Thermo-Hydrodynamic model (vTHD) and the second
extension is denoted velocity-extended Electro-Thermal model (vET). Both extensions include thermal driv-
ing forces and the translational contribution of electrolyte fluid flow, besides the usual electrochemical forces
accounted for by the PNP equations. In the vTHD model the temperature of anions, cations and lattice are
considered as distinct dependent variables, while in the vET model there is only one temperature, generally
varying with the spatial coordinate x, to describe the global system.

Finally, in the present article we assume the electrolyte fluid velocity ve to be a given user-defined con-
stant value. This is a strong simplification which is going to be removed in a future publication (cf. Sect. 11).
Moreover, to self-consistently account for electrodynamical effects, we adjoin to both vTHD and vET model
the solution of the Poisson equation, written below in conservation form:

∂E
∂x = qϵ (p − n + P) (7a)

E = −∂φ∂x . (7b)

Notice that, in general, the dielectric permittivity is a space dependent function, that is ε = ε(x). The com-
puter code implementing the discretization scheme of Sect. 7 can deal with this situation, as demonstrated
in [29] in the numerical study of the K-channel. However, this is not the case of the simulated channels shown
in Section 10, where a constant value of ε is prescribed inside the channel region.

4.1 Thermodynamical Equilibrium

Let Tp = Tp(x), Tn = Tn(x) and Te = Te(x) denote the temperatures of cations, anions and electrolyte,
respectively, with x ∈ [0, d]. Let also Tsys be a given value representing the constant temperature of thewhole
environment (ions + fluid). By definition, thermal equilibrium is the condition corresponding to applying no
external electrical,mechanical, chemical and thermal forces to the biophysical system. In such a case, system
response is represented by the following values of the dependent variables:

vp(x) = vn(x) = 0 (8a)
ve(x) = 0 (8b)
Tp(x) = Tn(x) = Te(x) = Tsys . (8c)

Eq. (8a) expresses the fact that the ion drift velocity is equal to zero, while Eq. (8b) expresses the fact that the
fluid translational velocity is equal to zero. Eq. (8c) expresses the fact that the system settles in an isothermal
condition.

Definition 1 (Consistency). A model is consistent if under thermal equilibrium (i.e., if conditions (8) hold) the
following conditions are satisfied:

Jn(x) = Jp(x) = 0 (9a)
Sn(x) = Sp(x) = Se(x) = 0 (9b)

where Jn and Jp are anion and cation current densities, while Sn, Sp and Se are ion and fluid energy fluxes.

Remark 4 (Electrochemical potentials at thermal equilibrium). Using (3a) in (9a) tells us that at thermal equi-
librium each ion electrochemical potential is constant in [0, d]

φecν (x) = φecν,eq (10)

where the constant value φecν,eq is different for each ion and can be computed as detailed in Sect. 3.2.
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4.2 Velocity-extended Thermo-Hydrodynamic (vTHD) model

The stationary velocity-extended thermo-hydrodynamicmodel in the one-dimensional setting consists of the
following system of conservation laws (see [41, Chap. 2] and [5, 23, 37]):

1
q
∂Jν
∂x = 0 (11a)

Jν + ντpν vν
∂
∂x

(︂
Jν
ν

)︂
= ±qDν

∂ν
∂x − qµνν

∂
∂x

(︂
φ ∓ kBTν

q

)︂
∓ qνve (11b)

∂Sν
∂x = EJν −

ν
τwν

(wν − weqν ) (11c)

∂Se
∂x =

[︂
p
τwp

(wp − weqp ) + n
τwn

(wn − weqn )
]︂

(11d)

Sν = −κν
∂Tν
∂x ∓ Jν

q (wν + kBTν) (11e)

Se = −κe
∂Te
∂x + Nevewe (11f)

wν =
1
2mν|vν|2 +

3
2 kBTν (11g)

we =
1
2me|ve|2 +

3
2 kBTe (11h)

weqν = 3
2 kBTe . (11i)

In system (11), ν and Tν represent ion density and temperature, Ne and Te are electrolyte number density and
temperature, while vν, Jν, Sν and Se represent the drift (or translational) velocity of each ion, the ion current
density, the ion energy density flux and the electrolyte energy density flux, respectively. The drift velocities
and the current densities are related through the phenomenological law

vν = ∓ Jν
q ν (12a)

Eq. (11a) expresses conservation of ion density, eq. (11b) expresses conservation of ion momentum den-
sity, eqns. (11c) and (11d) express conservation of the energy densities for ions and electrolyte fluid, eqns. (11e)
and (11f) are constitutive laws for ion and electrolyte energy density fluxes Sν and Se, respectively.

The quantities κν and κe are the thermoconductivity coefficients of ions and electrolyte, respectively,
while τpν and τwν are the momentum and energy relaxation times, respectively. Phenomenological expres-
sions for these coefficients are:

τpν =
mνµ0νTe
qTν

, (13a)

τwν =
3
2

µ0νkBTνTe
qv2sat(Tν + Te)

+ τpν2 , (13b)

κν =
3
2
µ0ν k2BTe

q ν, (13c)

where µ0ν is the low-field mobility and vsat is the saturation velocity. For a physical interpretation of the
parameter vsat and its influence on system behavior, we refer to [12, 29].

The ion mobility

µν =
q
mν

τpν (14a)

is related to the diffusion coefficient Dν by the generalized Einstein relation

Dν = µν
kBTν
q = kBTνmν

τpν (14b)

where mν is the ionic mass.
Finally,wν andwe are the ion and electrolyte energies, inwhichwe can distinguish a kinetic contribution

and a thermal contribution. The quantities weqp and weqn are the equilibrium energies of cations and anions.
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Proposition 1 (Consistency of the vTHD model). The vTHD model is consistent in the sense of Def. 1.

Proof. Thermal equilibrium implies that conditions (8) are satisfied. In particular, using (8a) into (12a) we get
Jp(x) = Jn(x) = 0, i.e., conditions (9a). Using (8b) and (8c) in (11b) and (14b) we get

Jν = ±qµν
kBTsys
q

∂ν
∂x − qµνν

∂φ
∂x = 0

or, equivalently,
Jν = −qµνν

∂
∂x
(︀
∓Vth ln

(︀
ν/νref

)︀
+ φ
)︀
= 0.

The above equation shows that for the vTHD model at thermal equilibrium the electrochemical potential

φecν := φ ∓ Vth ln
(︂

ν
νref

)︂
is constant for all x ∈ [0, d], i.e., condition (10) is satisfied. Having proved (9a) (and, equivalently, (10)) and
using (8c) in (11e) and (11f), we immediately obtain

Sn = Sp = Se = 0

that is the energy flux equilibrium condition (9b). We notice that at thermal equilibrium the ion and fluid
energies coincide with their rest energy

wn = wp = we =
3
2 kBTsys .

4.3 Velocity-extended Electro-Thermal (vET) model

This model differs from the vTHD because of the following simplifying assumptions:

(H1) cations, anions and electrolyte are in local equilibrium, i.e.

Tn = Tp = Te =: T(x). (15a)

This situation occurs when the system is assumed to have had enough time to evolve and to reach steady
state;

(H2) the kinetic energy is small compared to the thermal energy, i.e.
1
2mν|vν|2 ≪ 3

2 kBT . (15b)

Thus we can write

wν ≃
3
2 kBT (15c)

and neglect the nonlinear inertial term in the momentum balance equation (11b).

Using (H1), and summing up the three resulting energy balance equations we obtain the following equa-
tions of the velocity-extended ET system:

1
q
∂Jν
∂x = 0 (16a)

Jν = qµννE ± µν
∂
∂x (νkBT)∓ qνve (16b)

∂Stot
∂x = E · (Jn + Jp) −

∂
∂x

(︂
5
2
kBT
q (Jp − Jn)

)︂
(16c)

Stot = −κtot
∂T
∂x + 3

2 kBTNeve (16d)

κtot = κe + κn + κp . (16e)
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Remark 5. Looking at the (simplified) momentum conservation equation (16b), we see that it now furnishes
an explicit expression for the current density as a function of concentration, electric potential and temperature.
This allows one to adopt the basic ideas of the Scharfetter-Gummel discretizationmethod [39], which is themost
widely used numerical scheme in contemporary semiconductor device simulation because of its remarkable
stability and accuracy.

Remark 6. Simple manipulations of (16b) show that it can be written in the following equivalent DD form

Jν = ±qDν
∂ν
∂x + qµννEν (16f)

where

Eν = E ∓ ve
µν
± ∂
∂x

(︂
kBT
q

)︂
. (16g)

The effective electric drift Eν acting on each ion species can be interpreted as the linear superposition of the
electric, fluid and thermal forces that drive ion motion in the electrolyte channel fluid. Relation (16f) can be
interpreted as the formal limit of (11b) as the relaxation time τpν → 0.

Remark 7. The two previous remarks indicate that the vET model differs quite significantly from the vTHD
model because the latter is a PDE system with a markedly hyperbolic character due to the convective terms in
the momentum balance equations whereas the former is an incompletely parabolic PDE system. We refer the
reader to [23] and bibliography cited therein for a deeper analysis of this important issue.

Proposition 2 (Consistency of the vET model). The vET model is consistent in the sense of Def. 1.

Proof. The current density (16f) can be written as

Jν = ∓qνvν (17a)

where the drift velocity is defined as

vν = −Dν
1
ν
∂ν
∂x ∓ µννEν . (17b)

Using (8a) into (17a) we get Jp(x) = Jn(x) = 0, i.e., conditions (9a). Also, using (8b) and (8c) into (16d) we get
Stot(x) = 0, i.e., condition (9b). The thermal equilibrium electrochemical potential φecν is defined in the same
manner as in the proof of Proposition 1.

5 Solution map for the vTHD system
In this section we describe the solution map that is used to iteratively solve the vTHD and vET models. The
description of the method is discussed in detail in the case of the vTHD system as a similar approach is used
to treat also the vET model. The adopted solution map is an extension of the decoupled algorithm known as
Gummel’s map, a functional tool widely employed in contemporary Drift-Diffusion simulation of semicon-
ductor devices [23, 31, 41]. The Gummel solution map is basically a nonlinear block Gauss-Seidel iteration
that allows one to subdivide the considered PDE model system into blocks of single equations to be solved
separately and in sequence until convergence is achieved.

To describe the method, we follow the idea proposed in [1] (cf. Eq. (25) of this latter reference), and we
introduce the generalization of the Maxwell-Boltzmann statistics (3c) to the case of the vTHD system:

n = cref exp
(︂
q φ − φnkBTn

)︂
(18a)

p = cref exp
(︂
q φp − φkBTp

)︂
(18b)
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where, for notational brevity, we have omitted the superscript ec in the electrochemical potentials for anions
and cations. The main difference between the definitions (18) and the corresponding (3c) valid in the case of
the standard PNP model, is that the ion temperatures Tn and Tp are used instead of the system (constant)
temperature Tsys. Assuming local thermal equilibrium at the channel entrance and outlet, the temperature
of the ions and of the fluid satisfy the following Dirichlet boundary conditions:

T0n(0) = T0p(0) = T0e (0) = TL (19a)
T0n(d) = T0p(d) = T0e (d) = TR . (19b)

We notice that TL and TR are the externally accessible temperatures of the intra and extracellular baths,
not necessarily being equal to the same value. This feature of the model is important when an external tem-
perature gradient has to be enforced across the channel to model the heat biosensors described in Sect. 1.
Conditions (19) imply that Vth = kBTL/q at x = 0 and Vth = kBTR/q at x = d.

The Gummel algorithm for the iterative solution of the vTHD model starts with an initial guess[︀
φ0, φ0

p , φ0
n , T0p , T0n , T0e

]︀T that satisfies the boundary conditions (6) and (19). Then, for k ≥ 0 until con-
vergence, the algorithm consists of the following steps:

1. solve with the damped Newton method (see [41], Chapt. 7) the nonlinear Poisson equation (NLP) re-
sulting from substituting (18) into (7). This returns the updated potential φk+1;

2. solve the continuity and momentum balance equations (11a)- (11b). This returns the updated concen-
trations pk+1, nk+1;

3. solve the energy equations (11c)- (11e) . This returns the updated ion temperatures Tk+1p , Tk+1n ;
4. solve the fluid energy equation (11d)- (11f). This returns the updated fluid temperature Tk+1e ;
5. update the electrochemical potentials by inverting (18):

φk+1n = φk+1 − kBT
k+1
n
q ln

(︂
nk+1
cref

)︂
(20a)

φk+1p = φk+1 + kBT
k+1
p
q ln

(︂
pk+1
cref

)︂
; (20b)

6. check the convergence of the iteration by controlling whether the maximum absolute difference be-
tween two consecutive iterations k and k + 1 is less than a prescribed tolerance

max
η∈U

||ηk+1 − ηk||∞ < toll (20c)

where toll is a given tolerance, U = {φ, φp , φn , Tp , Tn , Te}, and ‖ · ||∞ is the norm in the space L∞(Ω).
If condition (20c) is satisfied, the algorithm stops.

A deep analysis of the convergence properties andmathematical foundations of the Gummel decoupling
algorithm for the stationary DDmodel of semiconductors can be found in [23]. Preconditioning strategies for
improving the convergence rate of the map are investigated in [28].

6 The Advection-Diffusion-Reaction Model Problem
As outlined in items (e)-(h) of the introduction, we are providing a detailed description of the algorithm,
beginning in this section, and continuing through Sect. 9.

All the linearized equations of the vTHD system (11) that need be solved during the iterative procedure
described in Sect. 5 can be cast into the following general Boundary Value model Problem (BVP):



Thermo-Fluid-Electrochemically Driven Ion Flow | 91

find u and J such that:
∂J
∂x + cu = g in Ω (21a)

J = vu − D ∂u∂x in Ω (21b)

u = u on ∂Ω. (21c)

In (21), Ω is the open interval (0, d), u and J denote the primal unknown and the associated flux, while c and
g are the reaction and production terms such that (21a) can be regarded as a stationary conservation law for
u. In view of the numerical treatment of (21) we assume D, v, c and g to be piecewise smooth functions in Ω,
the diffusion coefficient D being a positive bounded function while c and g are nonnegative given functions.
Dirichlet boundary conditions are expressed by the nonnegative function u : ∂Ω → R+. Let

Lu := ∂J
∂x + cu =

∂
∂x

(︂
−D ∂u∂x + vu

)︂
+ cu : Ω → R. (22a)

The following properties express important biophysical features of the solution of the linearized BVP (21). We
refer the reader to [35] for details and examples.

Definition 2 (Inverse monotonicity). Let w ∈ C2(Ω)∩C0(Ω). We say thatL is inverse-monotone if the inequal-
ities

Lw(x) ≥ 0 ∀ x ∈ Ω (22b)
w(x) ≥ 0 ∀ x ∈ ∂Ω (22c)

together imply that
w(x) ≥ 0 ∀ x ∈Ω. (22d)

Remark 8. Inverse monotonicity expresses the fact that the dependent variable of the problem, say, a concen-
tration, a temperature or a mass density, cannot take negative values.

Theorem 1 (Comparison principle). Suppose that there exists a function ϕ ∈ C2(Ω) ∩ C0(Ω) such that

Lu(x) ≤ Lϕ(x) ∀ x ∈ Ω (22e)
u(x) ≤ ϕ(x) ∀ x ∈ ∂Ω. (22f)

Then, we have
u(x) ≤ ϕ(x) ∀ x ∈ Ω (22g)

and we say that ϕ is a barrier function for u.

Combining (22d) and (22g), we obtain the following result which is a very useful tool in the approximation
process of the BVP (21).

Theorem 2 (Continuous Maximum Principle). Suppose that L is inverse-monotone and that the comparison
principle holds for a suitable barrier function ϕ. Then, setting Mϕ := max

x∈Ω
ϕ(x), we have

0 ≤ u(x) ≤ Mϕ ∀ x ∈Ω (22h)

and we say that u satisfies a continuous maximum principle (CMP).

7 Finite Element Approximation
The content of the present methodological section is organized as follows. In Sect. 7.1 we introduce the dual-
mixed weak formulation of (21) and in Sect. 7.2 its corresponding hybridized finite element approximation,
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denoted DMH method. Then, in Sections 7.3 and 7.4 we illustrate how to reduce the computational complex-
ity of the dual-mixed hybridized method by the use of static condensation, which leads to solving a linear
algebraic system of the same structure as a standard nodal-based finite element scheme.

7.1 Continuous formulation

In the dual mixed method, the variables u and J in (21) are treated as independent unknowns, each of which
belongs to a different functional space, namely u ∈ V := L2(Ω) and J ∈ Q := H(div, Ω) ≡ H1(Ω). We proceed
by formally multiplying equation (21a) by a test function w ∈ V and equation (21b) by a test function q ∈ Q,
and integrate by parts over Ω to obtain the problem:

find (u, J) ∈ V × Q such that, for all (w, q) ∈ V × Q:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫︁
Ω

D−1 (J − vu) q dx −
∫︁
Ω

u ∂q∂x dx = −
∫︁
∂Ω

(q · n)u dσ

−
∫︁
Ω

∂J
∂x w dx −

∫︁
Ω

cuw dx = −
∫︁
Ω

gw dx.

(23a)

(23b)

Existence and uniqueness of the solution pair (u, J) of problem (23) can be proved under suitable coercivity
assumptions, see [13].

7.2 Discrete formulation

We denote by Ω the open interval (0, L) and by ∂Ω = {0, L} its boundary on which an outward unit normal
n is defined, in such a way that n(0) = −1 and n(L) = +1We introduce a partition (triangulation) Th of Ω into
a number Nel ≥ 2 of intervals Ki = [xi , xi+1], i = 1, . . . , Nel , with x1 = 0 and xNel+1 = L. On each element Ki
we introduce a local unit outward normal vector n|∂Ki , we denote by hi := xi+1 − xi the length of the interval
and set h := maxTh hi. We also set N := Nel + 1 and denote with Nh := {xi}Ni=1 the set of vertices of Th. We
associate with Th the following function spaces:

Vh := {wh ∈ L2(Ω) s.t. wh|K ∈ P0(K)∀K ∈ Th} (24a)
Qh := {qh ∈ L2(Ω) s.t. qh|K ∈ P1(K)∀K ∈ Th} (24b)
Λh,ρ := {λh : Nh → R s.t. λh(a) = ρa , λh(b) = ρb} (24c)

where Vh is the vector space of piecewise constant polynomials defined over Ω, Qh is the vector space of
piecewise linear polynomials discontinuous over Ω, and Λh,ρ is the space of functions defined only at the
vertices of Th with given boundary values. Notice that dim(Qh) = 2Nel because its functions are not continu-
ous at interelement interfaces. The DMH formulation of problem (23) is:

find (Jh , uh , λh) ∈ Qh × Vh × Λh,u such that, for all (qh , wh , ξh) ∈ Qh × Vh × Λh,0:

∑︁
K∈Th

⎡⎣∫︁
K

D−1h (Jh − vuh) qh dx −
∫︁
K

uh
∂qh
∂x dx +

∫︁
∂K

(qh · n|∂K)λh dx

⎤⎦ = 0 (25a)

−
∑︁
K∈Th

⎡⎣∫︁
K

∂Jh
∂x wh dx −

∫︁
K

cuhwh dx

⎤⎦ = −
∑︁
K∈Th

∫︁
K

gwh dx (25b)

∑︁
K∈Th

∫︁
∂K

(Jh · n|∂K)ξh dx = 0 (25c)
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where Dh : Th → R+ is a modified diffusion coefficient containing a stabilization term to deal with advective-
dominated problems.

Remark 9. The proof of existence and uniqueness of the solution (Jh , uh , λh) of (25) is not an easy task because
of the advective term. In what follows, we assume that such a solution always exists and we refer to [7, 34] for
the general theoretical tools required in the analysis of (25) and to [3] for an example of such analysis in the
case of mixed methods interpreted as nonconforming discretizations.

Remark 10. Conditions (25c) imply the continuity of Jh across interdomain boundaries.

Remark 11. The hybrid variable λh is the Lagrange multiplier associated with the continuity constraint of Jh ·n
and it can be regarded as an approximation of u at the grid nodes:

λh ≃ u|Nh .

7.3 Static condensation

Consider a generic element K ∈ Th. From (25a), we can compute Jh|K by inverting the local flux mass matrix
as

JK = −A−1K
[︁
(BTK + CK)uK + LKλK

]︁
∈ R2×1. (26a)

Substituting JK into (25b), we get uh|K

uK = H−1K
[︁
gK + BKA−1K LKλK

]︁
∈ R1×1 (26b)

where
HK :=

[︁
−BKA−1K (BTK + CK) + EK

]︁
∈ R1×1.

Now, using (26b) in (26a), we can express JK in terms of the sole hybrid variable λK and of gK as

JK = MKλK + bK (26c)

where
MK := −

[︁
A−1K (BTK + CK)H−1K BKA−1K LTK + A−1K LK

]︁
∈ R2×2

and
bK :=

[︁
−A−1K (BTK + CK)H−1K gK

]︁
∈ R2×1.

The above procedure is well known as static condensation and corresponds to Gaussian elimination of the
internal variables Jh|K and uh|K in favor of λh|∂K at the level of the element K ∈ Th (see [4]).

7.4 The algebraic system

Enforcing the continuity of Jh at each internal node through (25c) yields the following Nel − 1 conditions

JKi−12 (λi−1, λi) = JKi1 (λi , λi+1) i = 1, . . . ,M − 1 (27a)

which can be written in the form of a linear tridiagonal algebraic system for λ, i.e., for i = 1, . . . ,M − 1:{︃
MKi

21λi−1 + (M
Ki
22 −M

Ki+1
11 )λi −MKi+1

12 λi+1 = bKi+11 − bKi2
λ1 = u0, λN = uL .

(27ba)
(27bb)

Equations (27b) constitute a linear system of the form

Mλ = f (27c)
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where the entries of the stiffness matrixM ∈ RM−1×M−1 are defined as:⎧⎪⎪⎨⎪⎪⎩
Mi,i−1 = MKi

21

Mi,i = MKi
22 −M

Ki+1
11

Mi,i+1 = −MKi+1
12

(27da)

(27db)

(27dc)

and the entries of the load vector f ∈ RM−1 are f i = bKi+11 − bKi2 . The explicit expressions of these entries will
be specified in Sect. 8.1.

8 The Stabilized DMH Method and the Discrete Maximum Principle
If the solution of a given boundary value problem satisfies a CMP, then a properly designed approximation
should behave in the sameway. A numerical scheme that does not generate spurious global extrema in the in-
terior of the computational domain is said to satisfy a discrete maximum principle (DMP). We assume that the
solution u of the BVP (21) satisfies the a priori estimate (22h) and we characterize the conditions under which
the same estimate is satisfied also by the DMH approximation λh computed by solving the linear algebraic
system (27c) associated with the problem.

The following definitions turn out to be useful.

Definition 3 (Inverse monotone matrix). An invertible squarematrix A of size n is said to be inversemonotone
if

A−1 ≥ 0 (25a)

the inequality being understood in the element-wise sense.

A special class of monotone matrices is that introduced below.

Definition 4 (M-matrix). An invertible square matrix A is an M-matrix if:

– Aij ≤ 0 for i ≠ j;
– A is inverse-monotone.

Given a function ηh ∈ Λh,ρ, for any given function ρ : ∂Ω → R, we denote by ρ*h the piecewise linear contin-
uous interpolate of ηh over Th.

Theorem 3 (Sufficient condition for DMP). Assume that matrixM is an M-matrix. Then λ*h satisfies the DMP,
i.e.

0 ≤ λ*h(x) ≤ Mϕ ∀ x ∈Ω. (25b)

The following (necessary and sufficient) condition is useful to verify the property of being an M-matrix.

Theorem 4 (Discrete comparison principle). Let A be an invertible matrix with non-positive off diagonal en-
tries (Aij ≤ 0 for i ≠ j). Then, A is an M-matrix if and only if there exists a positive vector e such that Ae ≥ 0 (in
the component-wise sense), with at least one row index i* such that (Ae)i* > 0.

8.1 The stabilized DMH method

The solution of the model BVP (21) may exhibit sharp boundary and/or internal layers according to the rela-
tive weight of the advective and reactive coefficients with respect to the diffusion term (see [35]). Correspond-
ingly, this is well known to reflect into numerical instability (spurious unphysical oscillations) if the local
mesh size h is not sufficiently small. However, a smaller value of hmeans a larger size of the linear algebraic
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system and thus an increased computational effort. To avoid this inconvenience, we introduce in the DMH
formulation (25) two specific approaches that ensure numerical stability without necessarily resorting to a
small value of h:

(S1) diagonal lumping of the local mass flux matrix AK (for dominant reaction);
(S2) addition of an artificial diffusion (for dominant convection).

In particular, in the remainder of the section we show that, when (S1) and (S2) are used in conjunction, the
stiffness matrix M is an M-matrix irrespective of the value of h. This property guarantees that system (27c)
is uniquely solvable and that the piecewise linear interpolate of the solution, λ*h, satisfies the DMP and, in
particular, the a-priori estimate (25b). We refer to [35] for a thorough discussion of continuous and discrete
maximum principles enjoyed by the solution of singularly perturbed BVPs and by their corresponding finite
element and finite difference approximations. For ease of presentation, we assume henceforth that problem
coefficients D, v, c and g are constant positive quantities and that the mesh size is uniform and given by
h = 1/Nel.

8.1.1 (S1): Lumping of the local flux mass matrix

The stabilization approach to deal with the case where the reaction coefficient c dominates over the diffusion
coefficient D in (21) consists of replacing the local flux mass matrix AK in (26a) with a diagonal matrix ̂︀AK
such that:

(̂︀AK)ii = 2∑︁
j=1

(AK)ij =
1
2 i = 1, 2 (26a)

(̂︀AK)ij = 0 i ≠ j. (26b)

The approach (26) is referred to as mass lumping and is equivalent to using the trapezoidal quadrature rule
to compute the integral

(AK)ij =
∫︁
K

ψjψi dx i, j = 1, 2

where
P1(K) = span {ψ1, ψ2} ∀K ∈ Th .

Using (26) in (25a), when qh = ψ1, we get

J1 = vuK − Dh
uK − λ1
h/2 , (26c)

while, when qh = ψ2, we similarly get

J2 = vuK − Dh
λ2 − uK
h/2 . (26d)

Equations (26c) and (26c) express each local degree of freedom of the flux Jh|K as the sum of an average
advective flux and a finite difference approximation of the Fick diffusive flux flowing between the boundary
of K and its center. The two relations are the DMH analogues of those of the dual-mixed stabilized method
of [38].

8.1.2 (S2): Artificial diffusion

The stabilizationapproach todealwith the casewhere the advection coefficient v dominates over thediffusion
coefficient D in (21) consists of replacing the diffusion coefficient D with the following modified expression
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(cf. [8])
Dh := D

(︀
1 + Φ(Peloc)

)︀
(27a)

where Peloc :=
|v|h
2D is the local Péclet number and Φ : R+ → R+ is a suitable stabilization function to be

chosen in such a way that:

Φ(t) ≥ 0 (27b)
lim
t→0+

Φ(t) = 0. (27c)

The approach (27a) is referred to as artificial diffusion. Two special choices of Φ are:

– Upwind (UP) stabilization function
ΦUP(t) := t (27d)

– Scharfetter-Gummel (SG) stabilization function

ΦSG(t) := t − 1 +B(2t), B(t) := t
et − 1 . (27e)

In the case where (27e) is adopted, the resulting stabilized DMH coincides with the classic SG exponen-
tially fitted difference scheme (cf. [39]).

The accuracy of the two stabilized DMH methods, as h → 0, is O(h) if Φ = ΦUP while is O(h2) if Φ = ΦSG.
Thus, the SG formulation is far superior than the upwind method in the limit of a small grid size. However,
for a large value of the Pèclet number the two stabilized methods are practically equivalent in terms of the
amount of added artificial diffusion (see also [38] and [29]).

8.1.3 Matrix form of the stabilized DMH method

Using superscripts − and + to refer to quantities on the interval K−i = [xi−1, xi] and K+i = [xi , xi+1], respectively,
let us enforce continuity of Jh at every interior node xi (i = 2, . . . , N − 1)

J−2 = J+1 . (28a)

Then, combining equations (26c) and (26d) with condition (28a), we get

− λi
2D−
h +

(v− + 2D−
h )(g−h2 + 2λi−1D− + 2λiD−)

4D− + c−h2 = λi
2D+

h +
(v+ − 2D+

h )(g+h2 + 2λiD+ + 2λi+1D+)
4D+ + c+h2 . (28b)

By inspection on (28b) the entries of the stiffness matrixM and of the load vector f become:

Mi,i−1 = −
(︂
v
2 + D(1 + Φ)h

)︂
1

1 + ch
2

4D

(28c)

Mi,i =
2D(1 + Φ)

h

⎛⎜⎝1 + ch
2

2D

1 + ch
2

4D

⎞⎟⎠ (28d)

Mi,i+1 =
(︂
v
2 −

D(1 + Φ)
h

)︂
1

1 + ch
2

4D

(28e)

fi =
gh

1 + ch
2

4D

. (28f)
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Proposition 3 (Discrete Maximum Principle in the non stabilized case). Set Φ = 0 and assume that

Peloc < 1. (28g)

Then, the stiffness matrixM is an M-matrix.

Proof. Recalling that v > 0, it turns out thatMi,i−1 is < 0. Moreover, we haveMi,i > 0 and fi > 0. By inspection
onMi,i+1we see that if (28g) is satisfied thenM is anM-matrix and theDMPholds for the solution of (27c).

Condition (28g) may be too restrictive in the choice of the mesh size so that the following result may be a
convenient remedy.

Proposition 4 (Discrete Maximum Principle in the stabilized case). When Φ = ΦUP or Φ = ΦSG, the stabi-
lized DMH method satisfies the DMP irrespective of the value of Peloc.

Proof. It is easy to verify that ∑︁
j=1,...,N

Mi,j > 0

for every interior node (i = 2, . . . , N − 1), and

M1,1 +M1,2 > 0
MN−1,N−1 +MN,N > 0

at boundary nodes. Then, the conclusion immediately follows by applying Theorem 4.

9 Experimental Validation of the DMH method
In this section we numerically verify the convergence and stability properties of the DMHmethod.

9.1 Convergence Analysis

We consider the model BVP (21) with with homogeneous BCs, u(0) = u(L) = 0, d = 5, coefficients D = v = c =
1, and g(x) = e−x

[︀
x2 − (6 + L)x + 3L − 2

]︀
in such a way that the exact solution is the pair

u(x) = xe−x(L − x), J(x) = −e−x
[︁
2x2 + 2x(L − 1) + L

]︁
.

In the numerical approximation of the problem, the mesh size is uniform and equal to h = d/Nel, with Nel =
[10, 20, 40, 80, 160, 320, 640, 1280, 2560]T . Table 1 illustrates the convergence history of the DMHmethod
by reporting various norms for the errors u − uh, Π0u − uh and u − λ*h, where Π0u is the L2 projection of u
onto the finite element space Vh defined in (24a). The discrete maximum norm ‖·‖∞,h associated with the
triangulation Th is defined for each continuous function η(x) : [0, L] → R as

‖η(x)‖∞,h := max
xi∈Nh

|η(xi)|.

Table 2 reports the error J − Jh in the L2-norm and in the Hdiv ≡ H1-norm.
The analysis of the asymptotic convergence orders that are predicted by Tables 1 and 2 show that the

computed numerical solutions verify the following error estimates

– ‖u − uh‖L2 ≤ Ch
– ‖Π0u − uh‖L2 ≤ Ch2

– ‖u − λ*h‖L2 ≤ Ch
2
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Table 1: Various error norms for numerical solutions uh and λ*h as a function of the number of intervals Nel. No stabilization is
adopted. Π0u is the L2−projection of u onto Vh.

Nel ‖u − uh‖L2 ‖Π0u − uh‖L2 ‖u − λ*h‖L2 ‖u − λ*h‖∞,h

10 4.77887e-01 2.21777e-01 1.30666e-01 8.64963e-02
20 1.91869e-01 6.25684e-02 3.38644e-02 2.22424e-02
40 8.63963e-02 1.61248e-02 8.54321e-03 5.60052e-03
80 4.18183e-02 4.06198e-03 2.14066e-03 1.40542e-03

160 2.07297e-02 1.01743e-03 5.35468e-04 3.51510e-04
320 1.03422e-02 2.54479e-04 1.33886e-04 8.78873e-05
640 5.16826e-03 6.36272e-05 3.34727e-05 2.19724e-05

1280 2.58377e-03 1.59073e-05 8.36820e-06 5.49311e-06
2560 1.29184e-03 3.97683e-06 2.09202e-06 1.37325e-06

Table 2: Error norms H1 and L2 for numerical solution Jh as a function of the number of intervals Nel. No stabilization is
adopted.

Nel ‖J − Jh‖L2 ‖J − Jh‖H1

10 3.28036e-01 2.60239e+00
20 8.75295e-02 1.30056e+00
40 2.16140e-02 6.47536e-01
80 5.29217e-03 3.23222e-01

160 1.30365e-03 1.61529e-01
320 3.23124e-04 8.07533e-02
640 8.04091e-05 4.03752e-02

1280 2.00543e-05 2.01874e-02
2560 5.00749e-06 1.00937e-02

– ‖u − λ*h‖∞,h ≤ Ch2

– ‖J − Jh‖H1 ≤ Ch
– ‖J − Jh‖L2 ≤ Ch2

The above results are in excellent agreement with the theoretical convergence rates predicted in the elliptic
case in [4] and [7, 34].

9.2 Reaction-Dominated and Advective-Dominated Regimes

In this section we demonstrate the efficacy of the stabilization techniques proposed in Sect. 8.1 in the study
of two model problems, special instances of the BVP (21). For ease of presentation, we set L = 1 and we
subdivide the computational domain into Nel = 10 uniform intervals of size h = 1/Nel = 0.1. We also assume
that the coefficients D, v, c and g are constant, with g = 1 and we take homogeneous boundary conditions,
u(0) = u(1) = 0 (u = 0).

9.2.1 Diffusion-reaction BVP: mass-lumping

In this case we have v = 0. A barrier function for u is ϕ(x) = 1/c. If the diffusion coefficient is small compared
to the reaction term, e.g D = 10−3, c = 1, spurious (unphysical) oscillations arise near the boundaries, see
Figure 2a. In order to eliminate such oscillations, we adopt the mass-lumping stabilization procedure. The
numerical solution λh obtained with mass-lumping is illustrated in Figure 2b.
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(a) No lumping (b) Lumping

Figure 2: Exact and numerical solution of the diffusion-reaction BVP. Exact solution u (green, solid line) and numerical solution
λh (blue line with bullets).

9.2.2 Diffusion-advection BVP: artificial diffusion

In this case we have c = 0. A barrier function for u is ϕ(x) = x/v. If the diffusion coefficient is small compared
to the advective term, e.g D = 5 · 10−3, v = 1, spurious (unphysical) oscillations arise in the neighborhood of
x = 1 and propagate throughout the entire domain polluting the overall quality of the computed solution, see
Figure 3a. Numerical solutions λh obtained with UP and SG stabilization functions are illustrated in Figures
3b and 3c, respectively. In the case of the SG stabilization function, the computed λh is nodally exact.

(a) Φ = 0 (b) Φ = ΦUP (c) Φ = ΦSG

Figure 3: Exact and numerical solution of the diffusion-advection BVP. Exact solution u (green, solid line) and numerical solu-
tion λh (blue line with bullets).

10 Simulation of biological channels
In this concluding section we carry out a thorough validation of the vET and vTHDmodels in the study of two
different biological channels: 1) the Gramicidin-A channel considered in [12]; and 2) the bipolar nanofluidic
diode considered in [45]. The main focus of the simulations is on the current-voltage (IV) characteristics of
the channel and on how the IV curves are affected by the boundary conditions, especially the temperature of
the two bulk regions, T(0) = TL and T(d) = TR. Also, we aim to investigate the electroosmosis effect, which
is accounted for by the electrolyte fluid velocity ve. In all the reported computations, if not otherwise stated,
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we set Nel = 200 and use the SG stabilization function (27e), with the exception of a specific case discussed
in Section 10.1. Moreover, in the case of the vTHD model we set the saturation velocity vsat equal to 10ms−1.
We also assume that the channel has a constant cross-sectional area equal toA, whose value may vary from
channel to channel. The current I (A) is thus computed as

I = (Jp(d) + Jn(d))A. (29)

For further information on the simulated channels, we suggest to consult [29] and the references cited therein.

10.1 Gramicidin-A channel (ballistic diode)

This channel is thoroughly analyzed in the work [12] that is here used as a benchmark for the biophysical and
numerical assessment of models andmethods proposed in the present article. To allow comparison between
the results of our models and those of [12] we set ve = 0. Unless otherwise specified, the subsequent figures
refer to computations with the THDmodel, meaning that the outcome of the ETmodel would appear indistin-
guishable. The channel length d is equal to 2.5 nm, φR is always set equal to 0V and φL = Vapp, Vapp being
the externally applied voltage.

10.1.1 Electrochemical variables

The permanent charge profile of the channel is illustrated in Fig. 4 (left). Because of the negative fixed charge
the channel is highly selective to ion flow and attracts positive Na+ ions while Cl− ions are mainly repelled.
This behavior is confirmed by the computed ion concentration profiles shown in Fig. 4 (right) in the case
where a voltage drop φL − φR = Vapp = 0.1V is applied across the channel. We first observe that the cation
concentration computed by our algorithm is in excellent agreement with that of [12]. We also notice the pres-
ence of strong internal layers in the Na+ distribution which are effectively captured by the stabilized DMH
discretization without introducing spurious oscillations. In the mentioned reference [12] the hydrodynamic
equations are solved using a rather different numerical strategy based on the essentially non oscillatory finite
differences with shock capturing introduced in [42, 43]. The role of the SG stabilization in the quality of the
computed ion concentrations is well documented by the results shown in Fig. 5. In this graph, we see on the
left side the cation and anion densities obtained by running the DMH discretization scheme without stabi-
lization (Φ = 0) on an uniform grid of Nel = 19 elements. The maximum local Pèclet number is in this case
equal to 68.6288 so that the solution exhibits a markedly oscillatory behavior and fails to satisfy the DMP.
Conversely, the adoption of the SG stabilization with the same number of elements produces the ion concen-
trations plotted on the right side of Fig. 5. The computed solution is strictly positive and the internal layers
at the interfaces between the channel and highly doped regions are captured with the resolution allowed by
the roughness of the grid size.

The permanent charge profile and the consequent distribution of ions allows us to regard the Gramicidin-
A channel as the biophysical analogue of an electronic "ballistic" diode of type p+-p-p+. This analogy is useful
in the interpretation of simulation results and supports the idea that "channels are transistors alive" (cf. [14]).
In this respect, the region of the channel x ∈ [0, 0.5] nm corresponds to the Source terminal which has the
role of emitting cations into the channel, while the region of the channel x ∈ [2, 2.5] nm corresponds to the
Drain terminal which has the role of collecting the cations that have travelled throughout the channel under
the action of the thermo-electro-chemical forces. Electric potential and electric field profiles are shown in
Fig. 6 (left) and Fig. 6 (right), respectively. Again, we observe that the electric potential and field computed by
our algorithmare in excellent agreementwith those of [12]. By inspection of the electric potential distribution,
we see that the positive pole of the bio-electrical system is located at x = 0, nm while the negative pole is at
x = 2.5 nm. Thus, the cations move from left to right, giving rise to accumulation of (fixed) negative charge at
the entrance of the channel and positive (mobile) charge at the outlet of the channel. These accumulations
correspond to the two strong peaks visible in the electric field distribution.
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Permanent charge and concentrations
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Figure 4: Gramicidin-A channel. Left: permanent charge profile where the absolute value is measured in (M). Right: ion concen-
trations.

Concentration profile without and with numerical stabilization
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Figure 5: Gramicidin-A channel. Concentration profile with a grid of only 19 elements. When no numerical stabilization is
adopted, spurious oscillations arise (left). The SG stabilization (right) leads to a stable solution.

To investigate the effect of different boundary values for the temperature at both entrance and outlet
of the channel we let T(0) = T(d) range between 270K and 330K. Fig. 7 shows the IV curves for the THD
model (left) and the ETmodel (right), respectively. The externally applied voltage Vapp ranges from 0 to 0.1 V.
Temperature influence is visible in both models: the higher the bath temperature the lower the current. This
agrees with the biophysical insight that an increase of bath temperature corresponds to a higher thermal
energy for the ions and, consequently, to a higher energy dissipation because of frictional effects between
particles and fluid. We notice also that the ET model predicts a slightly higher current than the THD model
because this latter model accounts for convective energy dissipation within the fluid.

10.1.2 Thermal variables

Cation temperature profiles when T(0) and T(d) are increased separately, are shown in Fig. 8.
Looking at the two families of distributions, we can distinguish five distinct subregions in each curve: the

Source and Drain regions (reservoirs), the channel region and the two junctions separating Source and Drain
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Potential and electric field
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Figure 6: Gramicidin-A channel. Left: electric potential. Right: electric field.

IV curves when T(0) = T(d) ≠ 300K
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Figure 7: Gramicidin-A channel. IV curves when T(0) = T(d) ≠ 300 K (left). THD model (left). ET model (right).

Ion temperature when T(0) or T(d) > 300K
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Figure 8: Gramicidin-A channel. Cation temperature profiles. T(0) > 300 K (left). T(d) > 300 K (right).
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from the ion channel. In the two reservoirs, the temperature profile is linear, because the cation concentration
is almost constant and the electric field is very small. Then, ion temperature increases in the channel region
according with the fact that particles are accelerated by the electric field from left to right, approximately for
x ≥ 0.8 nm (cf. Fig. 6, right). However, the effect of the electric field at the two junctions is quite different in the
two sets of thermal boundary conditions. If T(0) > T(d), electric and thermal fields act in the same direction
(from left to right) so that as T(0) increases, the thermal flow at the two channel boundaries correspondingly
increases. If T(d) > T(0) electric and thermal forces act in opposite directions and this contributes to dimin-
ishing the thermal flow at the two channel boundaries. It is interesting to notice that ion heating (i.e., the
maximum value of ion temperature inside the channel) is considerably larger in the case where T(d) > T(0),
because in this condition ion acceleration due to the electric field greatly dominates over the thermal field
along the channel (moving from left to right) so that the ion total energy increases and temperature gets larger.
Then, once the ions are injected across the junction between channel and Drain they immediately thermalize
to the local energy of the reservoir distribution and approximately cool down to the temperature enforced at
x = d.

Electrolyte fluid temperature when T(0) or T(d) > 300K
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Figure 9: Gramicidin-A channel. Electrolyte fluid temperature profiles. T(0) > 300 K (left). T(d) > 300 K (right).

Temperature profiles of the electrolytic fluid are almost linear for both choices of the applied thermal
drop, see Fig. 9. This behaviour is to be ascribed to the high value of thermal conductivity of the electrolyte
fluid compared to that of the ion fluid. This makes the fluid behave as a perfect sink so that its heating is only
passively driven by an external temperature gradient according to Fourier’s law (11f) (ve = 0 in this case).

10.1.3 Ion velocity

From ion velocity profiles we can inspect how an externally applied temperature gradient may affect ion
motion in the channel.

In Fig. 10 (left) we see ions moving slower when T(0) > T(d) = 300K. The opposite happens in Fig. 10
(right) where T(d) > T(0) = 300K. However, in this latter case, velocity variations are much smaller. Again,
the different behavior of the ion velocity in the two sets of thermal conditions is related to the interplay be-
tween electric and thermal forces already discussed in Sect. 10.1.2. If T(0) > T(d) thermal diffusion is larger
than in the case where T(d) > T(0), and increases as T(0) increases. This explains the maximum value of
vn at T(0) = 300K. If T(d) > T(0) ion motion is mainly driven by the electric field, which explains why the
various curves are substantially insensitive to the increase of T(d). The ion velocity in the ET model exhibits
a trend similar to that of the THD model, see Fig. 11, even if the distribution of the peak value shows a much
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Ion velocity when T(0) or T(d) > 300K. THDmodel
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Figure 10: Gramicidin-A channel. Cation velocity computed by the THD model. T(0) > 300 K (left), T(d) > 300 K (right).

Ion velocity when T(0) or T(d) > 300K. ET model
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Figure 11: Gramicidin-A channel. Cation velocity computed by the ET model. T(0) > 300 K (left), T(d) > 300 K (right).

larger spread than in the case of the velocity computed by the THDmodel. This is to be ascribed to the larger
thermal conductivity of the (thermally) unified system composed by anions, cations and fluid.

The IV curves computed by the twomodels in the two distinct thermal sets of boundary conditions reflect
what reported about ion velocities: a smaller ion velocitymeans a smaller current flowing in the channel. The
externally applied voltage Vapp ranges from 0 to 0.1 V. Fig. 12 (left) shows the IV curves for the THD model
when T(0) > T(d) = 300K. Notice that the current assumes negative valueswhen Vapp is close to zero and the
temperature gradient due to thermal BCs is strong enough to counterbalance the affect of the applied voltage.
Consistently with the ion velocity profiles of Fig. 10 (left), the current flowing in the channel is lower than in
the case of homogeneous thermal BCs. As T(0) increases, the I-V profile is shifted down with respect to the
case of homogeneous BCs (T(0) = 300K solid black line). The case when T(d) > T(0) = 300K is shown in
Fig. 12 (right). In this situation the IV relationships are shifted up, meaning that as T(d) increases, a higher
current flows in the channel, just as predicted from the ion velocity profiles of Fig. 10 (right). Similar results
and observations hold for the IV curves predicted by the ET model, see Figs. 13.
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IV curve when T(0) or T(d) > 300K. THDmodel
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Figure 12: Gramicidin-A channel. I-V curves computed by the THD model. T(0) > 300 K (left), T(d) > 300 K (right).

IV curve when T(0) or T(d) > 300K. ET model
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Figure 13: Gramicidin-A channel. I-V curves computed by the ET model. T(0) > 300 K (left), T(d) > 300 K (right).

10.2 IV curves with velocity extended THD and ET models

In the simulations conducted so far, we set ve = 0, which corresponds to neglecting the electroosmosis effect.
We have also conducted simulations with ve varying in the range from 0 to 0.01ms−1, and we found that it
has no appreciable influence on the current flowing in the channel, so that no results are shown in this case.
However, different conclusions are drawn in the channel presented in the following section.

10.3 Bipolar nanofluidic diode

The nanofluidic channel investigated in the present section (whose detailed representation can be found
in [29, 45]) is called Bipolar (BP) nanofluidic diode because of its similarity with a p-n electronic diode: as
a matter of fact, the BP channel can operate into two different states, depending on the sign of the applied
voltage: (1) an ’open’ state (also called ’forward’ bias), characterized by high current flowing through the
device, and (2) a ’closed’ state (also called ’reverse’ bias), with very little current flowing in the channel.
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10.3.1 Electrochemical variables

The input-output behavior of the BP channel is related to the surface permanent charge profile (cf. Fig. 1). The
channel has a negative surface charge along half of its length, while the remaining part has positive surface
charge (of the same magnitude), see Fig. 14 (left). Thus, anions and cations carry equal weight to channel
behavior. This is confirmed by the symmetric spatial distribution of ion concentrations, both in the case of
forward and reverse bias, see Fig. 14 (middle) and Fig. 14 (right), respectively. Notice that ion concentration
is much higher in forward bias than reverse bias. Electric potential and electric field profile are shown in
Fig. 15. One can see that, in the closed-state, carrier flow is inhibited by the potential barrier at the middle
of the channel. Conversely, in the open-state, the potential drop enhances ion flow. The computed IV curves
show the on-off trend just described. In particular, we see that if Vapp is negative the current is almost equal
to zero, while it increases in a nonlinear manner if Vapp is positive (cf. Fig. 16). The predicted marked on-off
function mode of the BP channel and the shape of the I-V curves are also in very good qualitative agreement
with data reported in the study of heat biosensors in [9, 44, 46]. This fact is an encouraging motivation to a
further use and calibration of the computational models and methodologies proposed in the present article
on biophysical novel applications.
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bias Vapp = +1V (middle), reverse bias Vapp = −1V (right).
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10.3.2 Temperature

The IV curves, when T(0) = T(d) assumes lower or higher values than the reference value of 300K, are
shown in Fig. 16 for the THD model (left) and ET model (right), respectively. The externally applied voltage
Vapp ranges from -1 to 1 V. The IV curves computed by the THD model follow the same trend, as a function
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Figure 16: BP diode. IV curves when T(0) = T(d) ≠ 300 K: THD model (left), ET model (right).

of the bath temperature, as in Sect. 10.1 (cf. Fig. 7): the higher the bath temperature the lower the current
flowing in the channel because of increased frictional effects, see Fig 16 (left). The IV curves computed by the
ET model in this type of channel differ remarkably from those computed by the THD model with respect to
boundary temperature: the higher the bath temperature, the higher the current, see Fig 16 (right). We also
observe that the spread in the value of the maximum channel current as a function of bath temperature is
much wider for the THD model than for the ET model. This trend was exactly the opposite in the simulation
of the Gramicidin-A channel of Sect. 10.1, as demonstrated by Fig. 7. We point out that the application to the
BP channel of the theoretical prediction for channel current given by the ideal diode model (see, e.g., [32])
would yield

I = I0
[︂
exp

(︂
qVapp
KBTsys

)︂
− 1
]︂

(30)

where I is the total current flowing in the diode and I0 is the saturation current. Thus, according to (30), an
increase of channel system temperature turns out into a decrease in channel current, in accordance with the
results computed by the THD model. Despite this preliminary indication in favor of the predictions of the
THD model, we feel that the strongly different response of the two models when applied to different channel
configurations certainly warrants further investigation and will be the object of a further step of our research
activity.

Also the temperature profiles of electrolytic fluid differ between the ET model and the THD model. The
profiles from ETmodel have a non linear profile, while those from THDmodel are linear, see Fig. 17 (left) and
Fig. 17 (right), respectively, when T(0) ranges from 270 to 330 K.

10.3.3 Electroosmosis

In this type of channel the influence of the electrolytic fluid velocity is shown in Fig 18 (left) for the vTHD
model and in Fig. 18 (right) for the vETmodel. The selected range for the electrolyte fluid velocity (ve from0 to
0.01m/s) is rather arbitrary since our model does not account, at the moment, for a self-consistent coupling
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Te(x) profile when T(0) ≠ 300K
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Figure 17: BP diode. Water temperature in the ET model (left) and THD model (right).

IV curves when ve > 0m/s
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Figure 18: BP diode. IV curve when ve ranges from 0 to 0.01m/s. vTHD model (left). vET model (right).

between the vTHDsystemand theNSequations for thefluid. As thefluid velocity has positive sign, electrolytic
particles flow from left to right. Accordingly, this additional translational force should enhance themovement
of positive ions, while it should reduce that of negative ions, since the two ions move in opposite directions.
From the IV curves shown, one can see that the additional driving force due to ve lowers the total current
flowing in the channel in both models. Analogous results hold for negative values of ve (not shown).

The temperature of the electrolytic fluid velocity for different values of ve is shown in Fig. 19. Tempera-
ture is only partially affected by ve. The increase in temperature predicted by the vET model (left) is about
3 K, which is quite remarkable, especially if compared to the results obtained with the vTHD model (mid-
dle), where temperature changes aremuch less significant, instead. The very different prediction of the vTHD
formulation is related to the parameter vsat that strongly affects the value of the relaxation time parameter
τwν (cf. (13b)) in the energy balance equation (11c): the larger vsat, the smaller τwν , which corresponds to al-
most instantaneous restoration of equilibrium conditions in the electrolyte. Indeed, taking a smaller value of
the saturation velocity, for example vsat = 1m/s, leads to a result that is much closer to the thermal profile
predicted by the vET model, see Fig. 19 (right).
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Te(x) profile for different ve (vET vs. vTHD)
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Figure 19: BP diode. ve ranges from 0 to 0.01ms−1. vET model (left) differs greatly from vTHD at vsat = 10m/s (middle), while it
is quite close to vTHD at vsat = 1m/s (right).

11 Conclusions and Research Perspectives
In the present article we have proposed and numerically investigated a hierarchy of mathematical models for
the simulation of thermal, fluid and electrochemical phenomena in biological transmembrane channels. The
hierarchy is an extension of the classic Poisson-Nernst-Planckmodel for ion electrodiffusion and is conducted
along the same lines of thought that have guided the development of the so-called hydrodynamic transport
model in the analysis of semiconductor devices. To discretize the proposedmodels we have devised in the 1D
case a robust finite element dual-mixed hybridized method that ensures flux conservation, self-equilibrium
and satisfaction of a positivity principle for ion concentrations and temperatures. The numerical scheme
has been thoroughly studied in several benchmark problems that demonstrate its accuracy and stability.
An appropriate solution map is used to successively solve the nonlinear system of equations arising from
model hierarchy and the resulting computational tool has been successfully calibrated and validated in the
simulation of two realistic biological channels. Future developments of this study include:

– time dependent simulations to describe the response of the channel to externally applied stimuli;
– self-consistent coupling of the hierarchy with the solution of the Navier-Stokes equations for the elec-

trolyte fluid;
– deeper investigation of the dependence of model predictions on biophysical parameters, for instance,

saturation velocity that seems to play a critical role in determining the self-heating effect in the elec-
trolyte fluid;

– extension of the numerical scheme to 2D and 3D channel simulation;
– the coupling with the Hodgkin-Huxleymodel for the gating variable kinetics regulating the probability

of opening/closure of the channel [15, 20, 21, 27];
– a multi-physics/multi-scale coupling between molecular, continuum and lumped parameter simula-

tions to devise a hierarchy ofmodels characterized by different levels of biophysical accuracy and com-
putational cost.
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