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Abstract: In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electro-
statics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1)
re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-
integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To intro-
duce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood’s clas-
sic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a
dilute electrolyte, which is modeled with the linearized Poisson–Boltzmann equation. The eigenfunction-
expansion approach provides a computationally efficient way to test some implications of nonlocal models,
including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that
nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-
dependent protein behavior, thoughmore sophisticated nonlocal models are needed to resolve this question
in full. An open-source MATLAB implementation of our approach is freely available online.

DOI 10.1515/mlbmb-2015-0001
Received August 24, 2014; accepted December 11, 2014

1 Introduction
One of the long-standing challenges inmolecular biophysics is the development of accurate, yet simplemod-
els for the influence of biological fluids (aqueous solutions composed of water and dissolved ions) on bio-
logical molecules such as proteins and DNA. Atomistic simulations that include explicit water molecules, for
instance molecular dynamics (MD), provide the most detailed molecular understanding that is widely ac-
cessible without specialized computational resources. However, these simulations come at two prices: first,
MD simulations can require many hundreds of compute hours, most of which are spent on the thousands
of water molecules whose individual behaviors are not of primary relevance; second, practitioners must un-
derstand numerous subtleties about simulation protocols and the parameters associated with the physical
models (force fields). Implicit-solvent models replace the explicit water molecules with an approximation to
the theoretically rigorous potential of mean force (PMF) [1], creating the possibility of simulating molecular
behavior accurately but orders of magnitude faster, and with fewer statistical uncertainties. Unfortunately,
the statistical mechanical derivation of the PMF is not constructive, in the sense that the derivation does not
provide a general PMF suitable for all molecular solutes. Instead, one must guess a functional form for the
electrostatic interactions between solvent and solute, find the optimal parameters, and then test its fit against
real data (both experiment and more accurate theories such as MD).
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Of course, evaluation of an implicit-solvent model is greatly accelerated if it can be solved easily and
rapidly on relevant, non-trivial problems. With the advent of fast computers, one reasonable option is to
make numerical software implementing the new model freely available online [2, 3]. Another option is to
provide analytical solutions for tractable geometries. Spheres are frequently used for continuum electrostatic
modeling, because exact results can be obtained using spherical harmonics and the method of separation of
variables [4, 5]. Kirkwood’s classic solution for a spherical protein embedded in a dilute electrolyte repre-
sents the best-known example [4], and demonstrates this conceptually simple approach. One merely writes
down spherical-harmonic expansions and matches expansion coefficients using the known boundary con-
ditions. Even though proteins obviously have complicated shapes, analysis of spherical geometries can offer
insights into problems such as pKa predictions [6], redox potentials [7], strategies for optimizing molecular
binding [8], and fast analytical models such as Generalized Born [9, 66].

However, Kirkwood’s work also demonstrates a difficulty with the approach: as one adds detail to the
model—in Kirkwood’s case, an ion-exclusion layer outside the protein—calculations become onerously com-
plex very quickly. In addition, modeling the linearized Poisson–Boltzmann equation in the solvent necessi-
tated the introduction of a set of polynomials for the radial coordinate because the standard Bessel functions
were unsuitable [4]; more than sixty years passed before the relationship between Kirkwood’s polynomials
and the Bessel functions was established, allowing at the end a substantial simplification [10].

In this paper, we present an alternative strategy for obtaining analytical solutions in separable ge-
ometries. The first step is to transform the given system of partial-differential equations (PDEs) into one of
boundary-integral equations (BIEs) [11], so that the unknowns are no longer functions defined over three-
dimensional regions of space, but instead functions defined on two-dimensional boundaries. This reformu-
lation removes the complications associated with using Bessel functions in the solvent electrolyte volume.
Second, the boundary-integral operators are diagonalized using the appropriate harmonics [12, 13]. This
allows a mode-by-mode calculation of the unknown functions on the boundary in terms of the appropriate
surface harmonics—in contrast to matched-expansion approaches that employ solid harmonics. To demon-
strate the BIE-eigenfunction approach, we solve the Kirkwood problem (a spherical protein embedded in a
dilute electrolyte, with a thin ion-exclusion or Stern layer [4]) and derive the full solution to the more recent
nonlocal-dielectric model of Dogonadze and Kornyshev [14, 15].

The nonlocal model was originally developed to address one of the key shortcomings of macroscopic
continuum theories for molecular solvation: the fact that the solvent molecules (usually water) are not in-
finitesimally small compared to length scales of interest, e.g., small ions [16, 17] and proteins [18]. Unfor-
tunately, nonlocal response means that even the simplest form of the nonlocal model, called the Lorentz
nonlocal theory [19], leads to an integrodifferential Poisson equation, which is difficult to solve analytically
or even numerically. The only readily solved geometries for the Lorentz nonlocal model have been the sphere
with central charge [20, 21] and the charge near a half-space [18, 22, 23], and no numerical algorithms for the
original nonlocal model in arbitrary geometries were ever presented. Although Vorotyntsev and Kornyshev
presented a possible general formalism [15], which enabled a solution for arbitrary charges in a sphere [24],
the analytical approach has not been widely adopted.

Very recently, however, Hildebrandt and collaborators derived several mathematical reformulations to
render the Lorentz nonlocal electrostatic model tractable both analytically and computationally [17, 25–27].
The firstmajor stepwas reformulating the nonlocal integrodifferential Poisson problem in one unknown vari-
able, the electrostatic potential φ(r), as a pair of coupled, purely local PDEs with two unknown variables
throughout space (φ(r) and an additional auxiliary potential) [17]. Similar reformulations of nonlocal contin-
uum theory were obtained independently in other areas of physics [28–30]. Following reformulation, Green’s
theorem and double reciprocity can be used to transform the coupled PDE system into a purely boundary-
integral-equation (BIE) representation of the nonlocal model [26, 31].

In principle, both the local-formulation PDE problem and the purely BIE method are solved problems
numerically, in the sense that asymptotically optimal (linear-scaling) numerical algorithms exist [27, 32–36].
However, even “fast solvers” can require an hour or more of computation, and therefore analytical solutions
of non-trivial problems still hold significant value in this relatively early stage of testing nonlocal electro-
statics of molecular solvation. One application of analytical methods is to obtain qualitative insight into the
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differences between nonlocal and local models using visualization: analytical methods allow rapid calcu-
lations of the reaction potential induced throughout a model geometry by a chemical group in the protein,
e.g. an amino acid side chain. Another application of analytical methods is to obtain quantitative informa-
tion that may help to determine model parameters. For example, the nonlocal model includes an additional
parameter beyond those of the standard local model. This parameter, denoted by λ, is an effective length
scale that captures water’s transition from behaving like a low-dielectric material at short length scales to
more familiar high-dielectric, bulk-like behavior at longer length scales. Parameterization requires extensive
simulation and testing, and fast calculations aid significantly.

To support the development and testing of nonlocal electrostatic models for biomolecule solvation, we
present here the nonlocal-model analogue of Kirkwood’s result: namely, an analytical approach for the elec-
trostatic solvation free energy of an arbitrary charge distribution in a spherical solute embedded in a solvent
modeled as a Lorentz nonlocal dielectric. Kirkwood’s classic work continues to have impact decades after
the advent of numerical simulations of the continuum electrostatic model [6, 9, 37], and the present work
significantly enlarges the scope of nonlocal problems that can be studied analytically. We note that mobile
ions such as sodium and potassium play crucial physiological roles and that the present work addresses only
pure water solvent. However, the nonlocal theory can be extended easily to linearized Poisson–Boltzmann
treatment of physiological electrolyte solutions [17, 38], and these extensions are the subject of ongoingwork.

The remainder of the paper is organized as follows: the next section describes the local and nonlocal
models, their reformulation as systems of boundary-integral equations, and the eigendecompositions of the
associated boundary-integral operators. In Section 3 we introduce our BIE-eigenfunction strategy by red-
eriving the solution to Kirkwood’s problem, and then apply the strategy to solve the nonlocal problem. In
Section 4, we present several applications of the analytical solution, which illuminate important differences
between local and nonlocal electrostatics, including the choice of solute dielectric constant and the sensitiv-
ity of the nonlocal results to the solvent length-scale parameter λ. The paper concludes in Section 5 with a
brief summary and discussion.

2 Background

2.1 Kirkwood’s Local-Response Electrostatic Model

Figure 1(a) is an illustration of the local-response model under consideration. We assume that the solute
region I is a sphere of radius b, which is centered at the origin, and that the solute is at infinite dilution in a
dilute aqueous electrolyte solvent. The solute charge distribution ρ(r) is modeled as a set of Q discrete point
charges contained within the sphere, the ith of which has value qi and is situated at (ri , θi , ϕi). The solute is
treated as a homogeneous local-response dielectric with relative permittivity ϵprotein, i.e. inside the protein,
the constitutive relation between the displacement and electric field is

DI(r) = ϵproteinϵ0EI(r) (1)

where as usual E(r) = −∇φ(r) with φ the electrostatic potential. Substituting this constitutive relation into
Gauss’s law for dielectrics

∇ · DI(r) = ρ(r), (2)

we see the electrostatic potential in region I satisfies the familiar Poisson equation

∇2φI(r) = −
ρ(r)

ϵ0ϵprotein
. (3)

In a thin solvent layer surrounding the protein, we have water but no mobile ions; assuming that they are
point charges in hard spheres of radius d, the ion density must be zero for ||r|| < b + d. Consequently, in this
region (labeled II in Figure 1(a)) the potential satisfies a Laplace equation and we assume the permittivity
is just that of pure water ϵwater ≈ 80. Standard boundary conditions hold at the protein–solvent interface
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Figure 1: Diagram of the two continuum electrostatic models to be solved analytically. (a) Kirkwood’s problem [4]. (b) Nonlocal-
response model in a pure-water solvent.

defined by ||r|| = b, namely the continuity of the potential and the normal component of the displacement
field:

φI(r−b) = φII(r+b) (4)
n̂ · DI(r−b) = n̂ · DII(r+b). (5)

For local-response dielectrics, Eq. 5 reduces to the familiar

ϵprotein
∂φI(r−b)
∂n = ϵwater

∂φII(r+b)
∂n . (6)

where the normal direction n̂ points outward from region I to region II, we use the notation ∂
∂n = n̂ ·∇, and

superscripts − and + denote interior (solute) and exterior (solvent) regions, respectively.
Outside this ion-exclusion layer, the mobile ions are assumed to redistribute such that at any point r,

the net charge density is the sum of the Boltzmann-weighted ion densities (i.e., neglecting the ion sizes and
correlationsbetween them). This leads to thenonlinear Poisson–Boltzmannequation,whichherewe simplify
by linearization, i.e. the potential in region III satisfies the linearized Poisson–Boltzmann equation (LPBE)

∇2φIII(r) = κ2φIII(r) (7)

where κ is the inverse Debye screening length; for physiological solutions, κ−1 ≈ 8 Å. The electrolyte is also
assumed to have relative permittivity ϵwater, and so the boundary conditions at the ion-exclusion boundary
Ωa, defined as ||r|| = a, are

φII(r−a) = φIII(r+a) (8)
∂φII(r−a)
∂n = ∂φIII(r+a)

∂n (9)

Kirkwood solved the above problem for the potential using matched expansions in the solid spherical
harmonics [4]. Here, we show that an alternative is to use the surface harmonics for the BIE formulation of
this problem, which may be derived as follows. For a point r in one of these regions, Green’s representation
theorem allows the potential at r to bewritten in terms of the potential and its normal derivative at the surface
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or surfaces that bound the region [5, 35, 39, 40]. In region I, for example,

φI(r) = −
∫︁
Ωb

∂GL(r, r′)
∂n′ φI(r′)dA′ +

∫︁
Ωb

GL(r, r′)∂φI(r′)
∂n′ dA′ + 1

ϵprotein

∫︁
region I

GL(r, r′)ρ(r′)dV ′, (10)

where the subscript Ωb denotes the spherical boundary ||r|| = b, GL(r, r′) = 1
4π||r−r′|| is the free-space Green’s

function for the Laplace equation, and the third term on the right-hand side represents the Coulomb potential
induced by the solute charge distribution. Writing similar expressions for the potential in regions II and III,
and taking careful limits as the field points approach these bounding surfaces, we obtain a system of four
boundary-integral equations for the four unknown functions (the potential and normal derivative on the two
boundaries). The complete derivation is presented elsewhere [35], but the final system may be written as⎡⎢⎢⎢⎣

1
2 I + K

L
b,b −VLb,b 0 0

1
2 I − K

L
b,b ϵp,wVLb,b KLb,a −VLb,a

−KLa,b ϵp,wVLa,b 1
2 I + K

L
a,a −VLa,a

0 0 1
2 I − K

Y
a,a VYa,a

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ϕb
∂ϕb
∂n
ϕa
∂ϕa
∂n

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
∑︀Q

i=1
qi

ϵprotein G
L

0
0
0

⎤⎥⎥⎥⎦ . (11)

where I is the identity operator, and for domains Ωx and Ωy labeled x and y,

VLx,y
∂φy
∂n =

∫︁
Ωy

GL(r, r′)∂φ(r
′)

∂n′ dA′, r ∈ Ωx

KLx,yφy = −
∫︁
Ωy

∂GL(r, r′)
∂n′ φ(r′)dA′, r ∈ Ωx

and ϵp,w = ϵprotein
ϵwater . Operators denoted with V are called single-layer potential operators (i.e., the second term

on the right-hand side of Eq. 10) and those denoted K are referred to as double-layer potential operators (the
first term on the right-hand side of Eq. 10). Note that the dash in the double-layer potential integral indicates
that the integral should be understood in a Cauchy-principal value sense if the surfaces are the same (i.e.
if x = y). The superscripts on these operators, L or Y, denote the Laplace or linearized Poisson–Boltzmann
(Yukawa) Green’s function, and the subscript pair x, y denotes the “source” surface (y) and the “destination”
surface (x).

2.2 Nonlocal-Response Electrostatic Model

Figure 1(b) is an illustration of the nonlocal-response model. As in the local-response problem, we assume a
spherical solute of radius b, centered at the origin, with Q discrete point charges as the solute charge distri-
bution ρ(r). We denote the one spherical boundary in the problem, which separates the protein and solvent,
by b, and remind the reader that in this problem we are only treating a single boundary. Inside the protein,
the total electrostatic potential φI(r) again obeys the familiar local-response dielectric theory with dielectric
constant ϵprotein:

EI(r) = −∇φI(r), (12)
DI(r) = ϵproteinϵ0EI(r) (13)

∇ · DI(r) = ρ(r). (14)

We denote the Coulomb potential due to the fixed protein charges as

φmol =
Q∑︁
k=1

qk
ϵprotein|r − rk|

(15)

and the reaction potential due to the difference between the protein and solvent dielectric properties by φreac,
the total electrostatic potential is

φI(r) = φmol(r) + φreac(r). (16)
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In this nonlocal problem, we have a pure water solvent (no mobile ions) in which the displacement and elec-
tric fields are related nonlocally by a convolution with a dielectric function of the form E(r, r′) = ϵ(|r − r′|) so
that

DII(r) = ϵ0
∫︁

region II

E(r, r′)EII(r′)d3r′ (17)

∇ · DII(r) = 0, (18)

and ϵ(|r − r′|) is the Lorentz nonlocal function

E(r, r′) = ϵ∞δ(r − r′) +
ϵwater − ϵ∞

λ2
exp(−|r − r′|/λ)

4π|r − r′| , (19)

where ϵwater is the bulk solvent dielectric constant (80 in the present work), ϵ∞ is the short-range dielectric
constant, here taken to be the optical dielectric constant 1.8, and λ is an effective parameter that reflects the
length scale associated with correlations between solvent molecules. At the solute–solvent interface b, the
usual Maxwell boundary conditions Eqs. 4 and 5 apply. By Eqs. 17 and 18, the potential in the solvent must
obey not the familiar Laplace equation but instead the integrodifferential equation

∇ ·
∫︁

region II

E(r, r′)∇φII(r′)d3r′ = 0, (20)

the solution of which requires substantial calculation even for simple cases such as a sphere with central
charge [16, 17, 20, 21, 25] or a charge approaching a planar half-space [17, 18, 22, 23].

Hildebrandt et al. recently reformulated this nonlocal model as a system of coupled but purely local par-
tial differential equations (PDEs) [17]. Similar simplification strategies have been demonstrated for modeling
dispersive electromagnetic media [28] and plasticity [29]. Essentially, for a nonlocal relationship that takes
the formof a Green’s function for a knownPDE, onemay be able to introduce a newunknownpotential whose
gradient is the vector field resulting from the convolution (here DII). Enforcing the original conservation law
(here, ∇ · D = 0) leads to an additional Laplace equation and then the original unknown interest and the
additional unknown are coupled. For the Lorentzian model, the nonlocality resides in the second term of
Eq. 19, which is merely the Green’s function of the Yukawa equation ∇2u(r) = λ2u(r). Here, by introducing
the auxiliary displacement potential ψII, one may write the coupled PDE system as

∇2φI(r) = − ρ(r), r ∈ region I (21)
∇2ψII(r) =0, r ∈ region II (22)(︂

∇2 − 1
Λ2

)︂
φII(r) = −

1
λ2ψII(r), r ∈ region II (23)

with Λ = λ
√︀
ϵ∞/ϵwater. The exact displacement boundary condition (Eq. 5) is nonlocal and slow to compute,

and so Hildebrandt [17] proposed the approximate boundary conditions

φI(r−b) =φII(r+b), rb ∈ Ωb (24)

ϵ0ϵprotein
∂
∂n φI(r−b) =

∂
∂nψII(r+b), rb ∈ Ωb (25)

∂
∂nψII(r+b) =ϵ0ϵ∞

∂
∂n φII(r+b), rb ∈ Ωb . (26)

Different choices for boundary conditions are analyzed in more detail elsewhere, with model calculations
suggesting that the impact onmany calculations should be small compared to the overall differences between
local and nonlocal models [21].

For numerical scaling, it is useful to change variables by introducing the substitution

Ψ = 1
ϵ∞

(︂
1
ϵ0
ψII − ϵproteinφmol

)︂
, (27)
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as discussed extensively elsewhere [25]. Then, defining

ξ = −
(︂
1
2 I − K

Y
Λ +

ϵprotein
ϵwater

KDRΛ
)︂
φmol −

(︂ ϵprotein
ϵ∞

VYΛ −
ϵprotein
ϵwater

VDRΛ
)︂
∂φmol
∂n , (28)

the complete BIE system is⎡⎢⎣ 1
2 I − K

Y
Λ − ϵproteinϵ∞ VYΛ −

ϵprotein
ϵwater V

DR
Λ

ϵ∞
ϵwater K

DR
Λ

1
2 I + K

L −VL 0
0 ϵprotein

ϵ∞ VL 1
2 I − K

L

⎤⎥⎦
⎡⎢⎣ φII

∂φII
∂n
Ψ

⎤⎥⎦ =

⎡⎢⎣ ξ
0
0

⎤⎥⎦ , (29)

where VDRΛ = VYΛ − VL, and similarly KDRΛ = KYΛ − KL. We omit the lengthy derivation and refer interested
readers to Hildebrandt [25].

A point of great importance for fast numerical solution of Eq. 29 is that each non-zero block is a linear
combination of the same boundary integral operators as are needed to solve Eq. 11. As a result, the same fast
BEM solvers used for local electrostatics in the LPBE model (e.g., fast multipole methods [34], pre-corrected
FFT [41], and the FFTSVDalgorithm [35, 42]) can be adapted easily to solve nonlocal electrostaticsmodels [36].
Fast solvers allow the discretized linear system, which is dense in the sense that the number of non-zero
entries grows quadratically with the number of unknowns, to be solved in linear or near-linear time.

2.3 Eigenfunction Expansions of Boundary-Integral Operators on Spheres

All of the boundary-integral operators of Eqs. 11 and 29 are diagonalized by the surface spherical harmon-
ics [43]. Consequently, the boundary integrals of the form

∫︀
F(r, r′)u(r′)dA′ can be re-written as∫︁

Ωsrc

F(r, r′)u(r′)dA′ =
∞∑︁
n=0

+n∑︁
m=−n

Ynm(θ, ϕ)λFnm
∫︁
Ωsrc

Yn,*m (θ′, ϕ′)u(θ′, ϕ′)dA′ (30)

where the domain of integrationΩsrc is the “source” surface (i.e. where the distribution of interest is located),
(θ, ϕ) are the angular coordinates for r, Ynm(θ, ϕ) are the orthonormal surface harmonics, and λFnm is the
eigenvalue for the n,mmode of the operator F. Note that Eq. 30 represents a slight abuse of notation, in that
the radii of the “source” and “destination” spheres are included only implicitly in the eigenvalues. Also, due
to spherical symmetry, the eigenvalues of the relevant operators are independent ofm, so we omit the second
subscript in the remainder of the text.

For a sphere of radius R, the eigenvalues of the four “self-to-self” operators VL, KL, VY , and KY are

λV
L

n = R
2n + 1 (31)

λK
L

n = − 1
2(2n + 1) (32)

λV
Y

n = i(iκ)R2jn(iκR)h(1)n (iκR) (33)

λK
Y

n = i(iκ)2R2/2
(︁
jn(iκR)h(1)n (iκR)

)︁′
(34)

where i =
√
−1, jn(x) and h(1)n (x) denote the spherical Bessel function and spherical Hankel function of the

first kind, respectively, and the prime notation in Eq. 34 denotes differentiation with respect to the argument.
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The Kirkwood problem also involves four Laplace boundary-integral operators that map between con-
centric spheres. We demonstrate in Appendix A that the eigenvalues of these operators are

λV
L
a,b
n =

(︂
b
a

)︂n+1 b
2n + 1 (35)

λK
L
a,b
n =

⎧⎨⎩0, n = 0

−2n
(︁
b
a

)︁n+1 −1
2(2n+1) , n > 0

(36)

λV
L
b,a
n =

(︁a
b
)︁n a

2n + 1 (37)

λK
L
b,a
n =

{︃
1, n = 0
2(n + 1)

(︀ a
b
)︀n −1

2(2n+1) , n > 0.
(38)

3 Eigenfunction Expansions of Boundary-Integral-Equation
Formulations

3.1 Application to the Kirkwood Problem

To simplify the coupled boundary-integral equations, we introduce the spherical-harmonic projection op-
erator Y*, which maps a function u(r) defined on a sphere (i.e. in angular coordinates) into the expansion
coefficients ũ = [un,m] in the basis of surface spherical harmonics, which is complete and orthonormal:

Y*u(r) = [u0,0, u1,−1, u1,0, u1,1, . . .]T (39)

un,m =
∫︁
Ωsrc

Yn,*m (θ, ϕ)u(θ, ϕ)dA. (40)

Here again, the domain of integrationΩsrc is the sphere onwhich u is defined. The operator Y, similarly,maps
a vector of expansion coefficients in the basis of surface harmonics to a function on a given “destination”
sphere, i.e. where the potential or its normal derivative is being evaluated:

u(r) = Yũ (41)

u(θ, ϕ) =
∞∑︁
n=0

+n∑︁
m=−n

Ynm(θ, ϕ)un,m . (42)

Using these definitions, the non-zero blocks of the matrix in Eq. 11 can be simultaneously diagonalized as⎡⎢⎢⎢⎣
1
2 I + D

(1) −D(2) 0 0
1
2 I − D

(1) ϵp,wD(2) D(3) −D(4)

−D(5) ϵp,wD(6) 1
2 I + D

(7) −D(8)

0 0 1
2 I − D

(9) D(10)

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
Y* 0 0 0
0 Y* 0 0
0 0 Y* 0
0 0 0 Y*

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
2 I + K

L
b,b −VLb,b 0 0

1
2 I − K

L
b,b ϵI,IIVLb,b KLb,a −VLb,a

−KLa,b ϵI,IIVLa,b 1
2 I + K

L
a,a −VLa,a

0 0 1
2 I − K

Y
a,a VYa,a

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Y 0 0 0
0 Y 0 0
0 0 Y 0
0 0 0 Y

⎤⎥⎥⎥⎦ , (43)

with D(1)
ii = λK

L

n(i)|R=b, D
(2)
ii = λV

L

n(i)|R=b, D
(3)
ii = λK

L
b,a
n(i) , D

(4)
ii = λV

L
b,a
n(i) , D

(5)
ii = λK

L
a,b
n(i) , D

(6)
ii = λV

L
a,b
n(i) , D

(7)
ii = λK

L

n(i)|R=a,
D(8)
ii = λV

L

n(i)|R=a, D
(9)
ii = λK

Y

n(i)|R=a, and D
(10)
ii = λV

Y

n(i)|R=a, where n(i) denotes the degree associated with the ith
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eigenmode. Expanded in the surface harmonics, the unknowns of Eq. 11 are written⎡⎢⎢⎢⎢⎣
ϕ̃b
˜∂ϕb
∂n
ϕ̃a
˜∂ϕa
∂n

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Y* 0 0 0
0 Y* 0 0
0 0 Y* 0
0 0 0 Y*

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ϕb
∂ϕb
∂n
ϕa
∂ϕa
∂n ,

⎤⎥⎥⎥⎦ (44)

and projecting the right-hand side similarly, we obtain the surface-harmonic analogue to Kirkwood’s result:⎡⎢⎢⎢⎣
1
2 I + D

(1) −D(2) 0 0
1
2 I − D

(1) ϵp,wD(2) D(3) −D(4)

−D(5) ϵp,wD(6) 1
2 I + D

(7) −D(8)

0 0 1
2 I − D

(9) D(10)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

ϕ̃b
˜∂ϕb
∂n
ϕ̃a
˜∂ϕa
∂n

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Y*φmol

0
0
0

⎤⎥⎥⎥⎦ . (45)

Note that this representation does not diagonalize the entire operator, but does decompose the reaction po-
tential in the protein into the individual harmonics.

Analgorithm to solve theKirkwoodproblemusing theBIE/eigenfunctionapproach is therefore structured
as follows. For each mode i to be solved (up to a desired order), one first computes the projection of the
solute charge distribution onto the ith solid spherical harmonic (i.e. one computes the appropriate multipole
expansion coefficient). Then one calculates the ith eigenvalues for the boundary integral operators to set up
a linear system of equations with four unknowns, and solves for the ith expansion coefficient of the reaction
potential. The reaction potentials at all desired locations is then easily computed. Explicit expressions are
given in Appendix B.

3.2 Application to Nonlocal Electrostatics

We now derive our main result—the exact analytical solution of nonlocal electrostatics for a spherical solute.
The 3-by-3 block operator of Eq. 29 can be decomposed as⎡⎢⎣ Y 0 0

0 Y 0
0 0 Y

⎤⎥⎦
⎡⎢⎣ D(1) D(2) D(3)

D(4) D(5) 0
0 D(6) D(7)

⎤⎥⎦
⎡⎢⎣ Y* 0 0

0 Y* 0
0 0 Y*

⎤⎥⎦ , (46)

where again Y* projects from a distribution on the sphere surface into an expansion in surface spherical
harmonics, Y represents the harmonics themselves, and the matrices D(k) are all diagonal. The entries of
the D(k) matrices are simply the appropriate scaled sum of the operator eigenvalues. Denoting the degree
associated with the ith eigenmode by n(i),

D(1)
ii = 1

2 − λ
KYΛ
n(i) (47)

D(2)
ii = −

ϵprotein
ϵ∞

λV
Y
Λ
n(i) −

ϵprotein
ϵwater

λV
DR
Λ
n(i) (48)

D(3)
ii = ϵ∞

ϵwater
λK

DR
Λ
n(i) (49)

D(4)
ii = 1

2 + λK
L

n(i) (50)

D(5)
ii = −λV

L

n(i) (51)

D(6)
ii =

ϵprotein
ϵ∞

λV
L

n(i) (52)

D(7)
ii = 1

2 − λ
KL
n(i). (53)

Projecting both sides of Eq. 29, one obtains⎡⎢⎣ D(1) D(2) D(3)

D(4) D(5) 0
0 D(6) D(7)

⎤⎥⎦
⎡⎢⎣ φ̃II

∂φ̃II
∂n
Ψ̃

⎤⎥⎦ =

⎡⎢⎣ ξ̃
0
0

⎤⎥⎦ , (54)
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where the ith entry of the projected form of Eq. 28 is defined by

ξ̃i = −
(︂
1
2 − λ

KYΛ
n(i) +

ϵprotein
ϵwater

λK
DR
Λ
n(i)

)︂
φ̃mol −

(︂ ϵprotein
ϵ∞

λV
Y
Λ
n(i) −

ϵprotein
ϵwater

λV
DR
Λ
n(i)

)︂
∂φ̃mol
∂n . (55)

Again, solving analytically for each coefficient φ̃n(i) independently provides the desired expansion (in surface
harmonics) of the potential at the protein-water boundary. These coefficients are readily converted to the solid
harmonics to obtain the potential inside the sphere. The analytical nonlocal model has been implemented in
MATLAB and is available online [44], while explicit expressions are provided in Appendix B.

It may be verified that in the limits λ → 0 and λ →∞, the analytical solution converges to the appropriate
local-response models; see Figure 2 for the example of a sphere with a single central charge, which is known
as the Born ion. As amore challenging validation,we have used the nlFFTSVD fast BEM solver [36] to compute
the solvation free energy of a single +1e charge situated at (0, 0, 6 Å) inside a sphere of radius 8 Å centered
at the origin, and plotted the convergence of these results to the solvation free energy computed analytically
(Figure 3). This test case is challenging because it lacks the spherical symmetry of the Born-ion test case, and
in fact BEM simulations require finer discretization for charges close to the surface [39].
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Figure 2: The analytically computed solvation free energy for a sphere with central charge (Born ion) converges to the correct
local-response limits as the nonlocal length-scale parameter λ approaches 0 or∞.

The required spherical Bessel and Hankel functions have been computed using the algorithm proposed
by Cai [45], and their derivatives were calculated using well-known recurrence relations [46]. Using numer-
ically stable implementations of the Bessel functions and their derivatives is of utmost importance. Most
available implementations of these special functions do not provide accurate results for purely imaginary
arguments (see Eq. 34), resulting in divergence of the solvation free energy as the order of the calculation
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Figure 3: Relative error for numerical simulations of the nonlocal model using BEM, as a function of the number of unknowns in
the discretized problem, for a 8-Å-radius sphere with a single +1e charge situated 2 Å from the sphere surface.

is increased; very large and very small values of R/λ are particularly problematic for the calculation of the
Yukawa-operator eigenvalues using standard methods. However, Vioreanu and Rokhlin have developed a
much more accurate algorithm that promises to resolve these problems (personal communication).

4 Results
As a first application of the eigenfunction-expansion approach, we estimate the length scale parameter λ by
comparison to both experiment and simulation. This application highlights that this particularly simple non-
localmodel doesnot fully capture asymmetric dielectric response [47], and that improvementswill beneeded.
Our second application illustrates that local and nonlocal models predict qualitatively different electrostatic
fields at long length scales, offering important opportunities to establish the importance of nonlocality.

4.1 Reasonable λ

Early work on nonlocal models, by Kornyshev et al. (e.g. [48]) and by Basilevsky and Parsons [20], employed
physically reasonable values of the length-scale parameter λ between 3 and 6 Angstroms, i.e. on the order
of the size of a water molecule or two. More recent work on nonlocal models have employed much larger
values; Hildebrandt et al. found λ ≈ 15 − 24 Å provided an excellent fit to experimental data for monatomic
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cations [17, 25], and others have used similarly large values [49]. We show here that two factors suffice to
explain why recent work has needed such large λ, and properly accounting for these factors leads one to find
the earlier range λ = 4 − 6 Å as optimal.

The first factor is the approach to parameterization; if one starts by assigning ions radii that are too small,
then the solvation free energywill be large anda large λwill beneeded to reduce it. Recalling that in these con-
tinuummodels, the ion radius is the solute–solvent dielectric boundary, it seems reasonable to estimate the
ion radius according to where the overall solvent charge distribution in MD simulations rises from zero [50].
Radii estimated in this manner are substantially larger than those employed in works that needed such large
λ.

The second factor is the influence of the solvent structure around uncharged solutes, which is one reason
why positive and negative charges have different solvation free energies [47]. In our recent study of ion solva-
tion using molecular dynamics, we found that in an uncharged quasi-spherical solute representing a small
molecule, the electrostatic potential due to solvent structurewas on the order of 10 kcal/mol/e [51]; Ashbaugh
has shown that this potential depends non-monotonically on the ion radius for small ions [52], though the
magnitude of variation is small compared to the overall magnitude. This “static potential” contributes lin-
early to the electrostatic solvation free energy, so that instead of the usual linear-response model in which
∆Gsolv(q) = 1

2q
TLqwhere L is theusual reaction-potential operator,wehave insteadanaffine-responsemodel

∆Gsolv(q) = 1
2q

TLq+ϕstatic,Tq. Therefore, for monovalent cations and anions, the static potential contributes
an asymmetry of 2eϕstatic, or approximately 20 kcal/mol.

Figure 4 contains four plots that illustrate the influence of nonlocal response and the static potential.
The solvation free energies in the upper plots ((a) and (b)) correspond to monovalent cations; those in the
lower plots (c) and (d), to monovalent anions. The free energies in the left-hand side plots, (a) and (c), do not
include the static-potential contribution,whereas those on the right-hand side, (b) and (d), do. The horizontal
lines indicate Rashin and Honig’s estimates of individual ion solvation free energies, which were derived
from experimental measurements of salts [53]. The symbols represent Joung and Cheatham’s ion radii (the
Lennard-Jones Rmin/2) from their thorough MD parameterization study of monovalent ions with multiple
water models [54]; the red circles correspond to ion radii and solvation free energies in TIP3P water [55], and
the blue squares are for SPC/Ewater [56] (Fedorov andKornyshev have also used SPC/Ewater, to demonstrate
the successes and limitations of nonlocal theory [56]).

Figure 4(a) illustrates that large λ, larger than 10 Å, are needed to fit experimental data, if one does not
employ the static potential. Once the static potential is taken into account, however, as in Fig. 4(b), λ between
4 and 6 Å is quite satisfactory to predict cation solvation free energies if one merely uses standard Lennard-
Jones radii. The discrepancy for the smallest ion, Li+, is due in part to nonlinear response involving dielectric
saturation, e.g. [57]. The story for anions is more complicated [47, 51, 58–60]. In Fig. 4(c) it seems that using
Lennard-Jones radii leads to grossly underestimated electrostatic solvation free energies, even for the local-
dielectric model, and that nonlocal response leads to even worse accuracy. Inclusion of the static-potential
term (Fig. 4(d)) improves the situation significantly, but by no means completely.

These results are less unsatisfactory than they appear at first. Free-energy perturbation (FEP) calcula-
tions in explicit solvent show that for small ions, the electrostatic potential varies with a piecewise linear
dependence on the ion charge, with one coefficient of linearity for positive charges and another coefficient
for negative charges [51]. For an ionwith the chloride anion Lennard-Jones parameters, the difference in these
coefficients is approximately 18 kcal/mol/e2 (the coefficients are -65.7 and -84.1 kcal/mol/e2 for positive and
negative charges), or about 27%. Scaling the local- and nonlocal-response coefficients for chloride using the
Joung and Cheatham SPC/E radius of 2.711 Å, one obtains predicted solvation free energies of -99.5 kcal/mol
for the localmodel, -91.9 kcal/mol for λ = 4Å, and -89.0 kcal/molwhen λ = 6Å. These are surprisingly close to
Rashin and Honig’s estimate of -85.3 kcal/mol, and we note also these employ the same static potential term
as used in the Figure, 10 kcal/mol/e, which is only approximate. Because the relative deviation in response
coefficients varies as a function of the charge’s proximity to solvent [51], this simple scaling cannot be applied
immediately to the other ions in this series, which have different radii. However, the dramatic improvement
from the predictions without the static potential, to including both the static potential and the water-steric
components of asymmetry, provides extra support to the idea that small λ are appropriate.
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Strictly speaking, of course, asymmetry constitutes nonlinear response, but onemust be clear aboutwhat
“response” is of interest. Fedorov and Kornyshev discuss nonlinear response in terms of the screening factor,
which is a function of position and proportional to the electrostatic potential in the solvent [47]. This function
is not only nonlinear, but very complicated (see Figure 5 in [47]). For many applications of implicit-solvent
models, however, one cares only about the potential in the solute. As shown in our earlier work [51], even for
small ions, the potential appears to change piecewise linearly with the charge distribution, which is a com-
paratively simple nonlinearity. It is possible that capturing this effect will still require the full sophistication
of nonlocal models tested by Kornyshev et al., but perhaps simplifications of their advanced theories will be
found.
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Figure 4: Electrostatic solvation free energies for monovalent ions of varying radii for local and nonlocal electrostatic mod-
els, when one either omits the energetic contribution induced by solvent structure for an uncharged solute (the static po-
tential [51]), as shown in the plots on the left, or includes its contribution, as shown in the plots on the right. The horizontal
lines represent Rashin and Honig’s estimates from experimental measurements on salts [53]; the symbols represent Joung and
Cheatham’s optimized Lennard-Jones radii (Rmin/2) for TIP3P water (red circles) and SPC/E water (blue squares) [54]. The static
potential is set to 10 kcal/mol/e for all radii, which is an approximation [52]. (a) Cation solvation free energies calculated with-
out the static potential; (b) Cation solvation free energies calculated with the static potential; (c) Anion solvation free energies
calculated without the static potential; (d) Anion solvation free energies calculated with the static potential. In these calcula-
tions, ϵprotein = 1, ϵwater = 80, and ϵ∞ = 1.8.
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4.2 Spherical Models of Proteins

Analytical solutions for simple geometries also allow fast determination of the reaction potential throughout
the whole system. More thorough visualizations of solvent response may offer new insights into the empiri-
cal, seemingly application-specificdefinitions of theproteindielectric constant [61, 62], including for example
why values of ϵprotein much larger than experimental estimates [63] are often needed to obtain accurate cal-
culations of pKa shifts in proteins [64]. To illustrate the fundamental differences between local and nonlocal
theory, as well as the computational advantage of having a fast analytical model for visualization, we plot the
reaction potentials for both simple and complicated charge distributions as we vary key model parameters:
the protein dielectric constant in the local theory, and the effective length scale λ in the nonlocal model.

Figure 5 contains plots of the reaction potential induced by a single +1e charge in a protein-sized sphere
of radius 24 Å, where the charge is situated 2 Å from the dielectric boundary. The reaction potential for local-
response models is shown in (a) and (b), with ϵprotein = 2 in (a) and ϵprotein = 4 in (b). Nonlocal-model results
are plotted in (c) and (d); for both nonlocal calculations, ϵprotein = 2, with λ = 1 Å in (c) and λ = 5 Å in (d). For
comparison, all potentials are plotted according to the same color scale. Adjusting ϵprotein from 2 to 4 in the
local model leads to a qualitative global shift in the reaction potential. On the other hand, nonlocal response
presents relatively small overall changes, even though λ varies substantially. For a single +1e charge buried
deep within the protein at (0, 0, 10 Å), the reaction potential is smaller in magnitude, which means that the
qualitative shift for increased ϵprotein can be seen more easily (Figure 6).
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Figure 5: Reaction potential (in kcal/mol/e) induced in a sphere of radius 24 Å by a single +1e point charge situated 2 Å from
the boundary, for different local and nonlocal models. All potentials are plotted on the same color scale, and for all models,
ϵwater = 80. (a) Local-response model with ϵprotein = 2; (b) local-response model with ϵprotein = 4; (c) nonlocal-response model
with ϵprotein = 2 and λ = 1 Å; (d) nonlocal-response model with ϵprotein = 2 and λ = 10 Å.
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Figure 6: Reaction potential (in kcal/mol/e) induced in a sphere of radius 24 Å by a single +1e point charge buried 14 Å from
the boundary, for different local and nonlocal models. All model parameters are the same as the corresponding plots in Fig-
ure 5.

4.3 Computational Eflciency

We would like to emphasize the substantial difference in speed between numerical and analytical methods.
For calculating the reaction-potential operator on a test problem involving a sphere of radius 24 Å, with 500
charges inside, a low-resolution numerical simulation using the highly optimized, linear-scaling boundary-
element method (BEM) code nlFFTSVD [36]—one of the fastest numerical implementations of the nonlocal
model—requires approximately 25 minutes on a 2012 MacBook Air, and 540 megabytes (MB) of memory. In
contrast, the unoptimized MATLAB implementation of the eigenfunction-expansion approach (i.e. the MAT-
LAB code is interpreted rather than compiled) requires less than 7 seconds on the same computer, making it
about 200 times faster, and it requires only about 1MBofmemory. As shown in Figure 7, the effect of nonlocal-
ity is the same in realistic charge distributions as for simple model ones—nonlocality permits surface charge
solvation to be strongly modulated, as if by smaller dielectric contrast between solute and solvent, while
buried charges still essentially see the “standard” high dielectric contrast. On the other hand, the common
practice of changing the solute dielectric constant affects both types of charges drastically (Figure 7(b)).

5 Discussion
The shortcomings of local electrostatics continue to motivate new models, but often the practical compli-
cations of numerical simulation slow their testing and improvement. To accelerate studies of the promising
Lorentz nonlocal model [17, 26, 27, 65], we have derived the exact analytical solution for a spherical solute
containing an arbitrary charge distribution. Our approach uses Hildebrandt’s boundary-integral equation
(BIE) formulation [26] and the analytically known eigendecompositions of the associated boundary-integral
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Figure 7: Reaction potential (in kcal/mol/e) induced in a sphere of radius 24 Å by the charge distribution of the protein bovine
pancreatic trypsin inhibitor (BPTI), for different local and nonlocal models. All model parameters are the same as the corre-
sponding plots in Figure 5. See main text for full computational details.

operators. Calculations demonstrate the method’s correctness and that solvent screening of charge-charge
interactions are markedly different in nonlocal and local theories, even when the protein dielectric constant
is adjusted. Fast analytical models enable rapid visualization of electrostatic fields, and thus facilitates ef-
ficient exploration of the new model’s implications and qualitative differences from existing theories. The
BIE-eigenfunction strategy represents a novel alternative to matching potential expansions and may be use-
ful in other areas of mathematical physics. To illustrate the method’s generality, we have also derived the
solution to the Kirkwood two-boundary problem for local electrostatics, which has furnished many insight-
ful physical studies andmodel approximations even though proteins clearly take shapesmuchmore complex
than spheres.

The present work enables studies of the nonlocal model to be conducted rapidly for simple model sys-
tems, obviating the need for more complicated and slower numerical calculations [26, 27, 36, 65]. To encour-
age further tests of nonlocal models, we have made freely available our MATLAB implementation of the ana-
lytical approach [44]. As described in earlier work on nonlocal electrostatics, boundary conditions represent
a subtle issue that warrants detailed study [25, 27, 31], and fast calculations on spheres will allow a sim-
ple way to test improvements. Our results also provide a useful way to test numerical simulations of nonlocal
electrostatics on nontrivial systems, e.g. models of finite-sized solutes with complicated charge distributions.

Futureworkwill address thedevelopment of fast analytical approximations similar to recentGeneralized-
Born (GB)models [9] or BIE approximations [66]. Second-kind boundary-integral formulationsmay offer sub-
stantial advantages for such approximations [67], and Fasel et al. have recently presented a purely second-
kind formulationof thenonlocalmodel [31]. Anextensionof our approach to theFasel formulation is therefore
of significant interest. One extension to the present work might be to account for the fact that many proteins
can be reasonably well modeled using ellipsoids (see, for a recent example in electrostatic theory, [68]). It is
possible that one could use a similar approach to derive an analytical solution for ellipsoidal geometries as
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well; the eigendecompositions of the Laplace boundary-integral operators for ellipsoids are known, for in-
stance [13, 69, 70], though corresponding results for the Yukawa integral operators do not appear to have been
published. We also note that even for the sphere, computing the eigenvalues of the Yukawa integral opera-
tors is numerically challenging, and should motivate the development of improved algorithms. Recent work
on computing the ellipsoidal harmonics found similar challenges [71], and the present work has uncovered
a second compelling example of how molecular biophysics poses novel challenges for more fundamental
research in applied mathematics and numerical analysis.

Appendix A: Eigenvalues of the Laplace boundary-integral
operators for concentric spheres
We first address the single- and double-layer operators that map from the inner sphere (radius b) to the outer
(radius a). For the single-layer operator, let us expand a surface potential on the inner sphere in surface
harmonics, i.e.

ψSb =
∑︁
n,m

SbnmYmn (θ, ϕ). (56)

and also expand the potential field in the region outside that sphere

ψ =
∑︁
n,m

Vnmr−(n+1)Ymn (θ, ϕ). (57)

These two fields must agree on the surface r = b, and by orthogonality of the Ymn functions, we have

Vnm = Sbnmbn+1. (58)

A similar surface expansion holds for the fields on the outer concentric sphere

ψSa =
∑︁
n,m

SanmYmn (θ, ϕ), (59)

which may be matched to Eq. 57 to give
Vnm = an+1Sanm . (60)

Combining Eq. 58 with Eq. 60, we have

Sanm = b
n+1

an+1 S
b
nm (61)

Because the eigenvalue for the single-layer Laplace surface operator on the inner surface is b/(2n + 1), we
finally have that

λV
L
a,b
n =

(︂
b
a

)︂n+1 b
2n + 1 . (62)

We derive the double-layer potential operators using an alternative approach based on Green’s theorem.
Consider again the expansion in spherical harmonics of the potential outside b from Eq. 57, so that the radial
component of the electric field is

∂ψ
∂r =

∑︁
n,m

Vnm(−(n + 1))r−(n+2)Ymn (θ, ϕ), (63)

so the normal derivative of the potential at the inner surface b is

∂ψ
∂r |r=b =

∑︁
n,m

Vnm(−(n + 1))b−(n+2)Ymn (θ, ϕ). (64)

Green’s theorem allows us to write the potential at any point r with r = a > b as

ψ(r) = +
∫︁
b

∂G(r, r′)
∂n ψ(r′)dA′ −

∫︁
b

G(r, r′)∂ψ(r
′)

∂n dA′. (65)
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Using Eq. 30 and again relying on the orthogonality of the harmonics, we obtain

a−(n+1) = λK
L
a,b
n b−(n+1) − λV

L
a,b
n (−(n + 1))b−(n+2); (66)

substituting the known λV
L
a,b
n from Eq. 62 gives

a−(n+1) = λK
L

n b−(n+1) +
n + 1
2n + 1a

−(n+1) (67)

and finally

λK
L

n = n
2n + 1

(︂
b
a

)︂n+1
. (68)

This result may be checked in the limit as a → b, where Eq. 65 becomes

ψ(r) = 1
2ψ(r) +

∫︁
∂G(r, r′)
∂n ψ(r′)dA′ −

∫︁
G(r, r′)∂ψ(r

′)
∂n dA′. (69)

Analogous manipulations lead to the relation

a−(n+1) = 1
2a

−(n+1) + λKnmb−(n+1) +
n + 1
2n + 1a

−(n+1) (70)

and thus we recover the self-surface result that λK
L
n = −1

2(2n+1) . The eigenvalues for the operators that map from
the outer sphere to the inner one are obtained in very similar fashion using interior harmonics. For example,

ψ =
∑︁
n,m

VnmrnYmn (θ, ϕ), (71)

and equating coefficients as before
Vnm = 1

an S
a
nm = 1

bn S
a
nm (72)

so that we have for the single-layer
λV

L
b,a
n =

(︁a
b
)︁n a

2n + 1 . (73)

The eigenvalues presented for these operators can be verified analytically using Green’s theorem.

Appendix B: Explicit expressions for modal coeflcients
Returning to (45), we can write the matrix in a simplified form⎡⎢⎢⎢⎣

a b 0 0
c d e f
g h i j
0 0 k l

⎤⎥⎥⎥⎦ (74)

which has inverse

1
∆

⎡⎢⎢⎢⎣
�k − djk − ehl + dil bjk − bil bel − b� b� − bej
−fgk + cjk + egl − cil ail − ajk a� − ael aej − a�

chl − dgl bgl − ahl adl − bcl −bfg + a� + bcj − adj
dgk − chk ahk − bgk bck − adk beg − aeh − bci + adi

⎤⎥⎥⎥⎦ (75)

where

∆ = a(dil − djk − ehl + �k) + b(−cil + cjk + egl − fgk). (76)
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This can be multiplied by the original matrix to verify that it is indeed the inverse. Since the RHS in (45) has
a single nonzero component, our solution is given by

ϕ̃mol
∆

⎡⎢⎢⎢⎣
�k − djk − ehl + dil
−fgk + cjk + egl − cil

chl − dgl
dgk − chk

⎤⎥⎥⎥⎦ (77)

Plugging in the definitions from Sec. 3.1, we have

ϕ̃ib =
ϕ̃mol
∆i

(︁
− λV

L
b,a
n(i) ϵI,IIλ

VLa,b
n(i) (1/2 − λ

KY
n(i)|R=a) − ϵI,IIλ

VL
n(i)|R=bλ

VL
n(i)|R=a(1/2 − λ

KY
n(i)|R=a)

− λK
L
b,a
n(i) ϵI,IIλ

VLa,b
n(i) λ

VY
n(i)|R=a − ϵI,IIλ

VL
n(i)|R=b(1/2 + λ

KL
n(i)|R=a)λ

VY
n(i)|R=a

)︁
∂ϕ̃ib
∂n = ϕ̃mol∆i

(︁
− λV

L
b,a
n(i) λ

KLa,b
n(i) (1/2 − λ

KY
n(i)|R=a) − (1/2 − λ

KL
n(i)|R=b)λ

VL
n(i)|R=a(1/2 − λ

KY
n(i)|R=a)

− λK
L
b,a
n(i) λ

KLa,b
n(i) λ

VY
n(i)|R=a − (1/2 − λ

KL
n(i)|R=b)(1/2 + λ

KL
n(i)|R=a)λ

VY
n(i)|R=a

)︁
ϕ̃ia =

ϕ̃mol
∆i

(︁
(1/2 − λK

L

n(i)|R=b)ϵI,IIλ
VLa,b
n(i) λ

VY
n(i)|R=a + ϵI,IIλ

VL
n(i)|R=bλ

KLa,b
n(i) λ

VY
n(i)|R=a

)︁
∂ϕ̃ia
∂n = ϕ̃mol∆i

(︁
− ϵI,IIλV

L

n(i)|R=bλ
KLa,b
n(i) (1/2 − λ

KY
n(i)|R=a) − (1/2 − λ

KL
n(i)|R=b)ϵI,IIλ

VLa,b
n(i) (1/2 − λ

KY
n(i)|R=a)

)︁
where

∆i = (1/2 + λK
L

n(i)|R=b)
(︁
ϵI,IIλV

L

n(i)|R=b(1/2 + λ
KL
n(i)|R=a)λ

VY
n(i)|R=a + ϵI,IIλ

VL
n(i)|R=bλ

VL
n(i)|R=a(1/2 − λ

KY
n(i)|R=a)

− λK
L
b,a
n(i) ϵI,IIλ

VLa,b
n(i) λ

VY
n(i)|R=a − λ

VLb,a
n(i) ϵI,IIλ

VLa,b
n(i) (1/2 − λ

KY
n(i)|R=a)

)︁
− λV

L

n(i)|R=b
(︁
− (1/2 − λK

L

n(i)|R=b)(1/2 + λ
KL
n(i)|R=a)λ

VY
n(i)|R=a

− (1/2 − λK
L

n(i)|R=b)λ
VL
n(i)|R=a(1/2 − λ

KY
n(i)|R=a) − λ

KLb,a
n(i) λ

KLa,b
n(i) λ

VY
n(i)|R=a − λ

VLb,a
n(i) λ

KLa,b
n(i) (1/2 − λ

KY
n(i)|R=a)

)︁
.

In the case of nonlocal electrostatics, (54), we have⎡⎢⎣ a b c
d e 0
0 f g

⎤⎥⎦ (78)

which has inverse

1
∆

⎡⎢⎣ eg cf − bg −ce
−dg ag cd
df −af ae − bd

⎤⎥⎦ (79)

where

∆ = aeg − bdg + cdf . (80)

Plugging in the definitions from Sec. 3.2, we have

ϕ̃iII =
ξ̃i
∆i

(︂
−λV

L

n(i)

(︂
1
2 − λ

KL
n(i)

)︂)︂
∂ϕ̃iII
∂n = ξ̃i

∆i

(︂
−(12 + λK

L

n(i))
(︂
1
2 − λ

KL
n(i)

)︂)︂
Ψ̃ i = ξ̃i

∆i

(︂(︂
1
2 + λK

L

n(i)

)︂ ϵprotein
ϵ∞

λV
L

n(i)

)︂
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where

∆i = −
(︂
1
2 − λ

KYΛ
n(i)

)︂
λV

L

n(i)

(︂
1
2 − λ

KL
n(i)

)︂
−
(︂
−
ϵprotein
ϵ∞

λV
Y
Λ
n(i) −

ϵprotein
ϵwater

λV
DR
Λ
n(i)

)︂
(12 + λK

L

n(i))
(︂
1
2 − λ

KL
n(i)

)︂
+ ϵ∞
ϵwater

λK
DR
Λ
n(i) (

1
2 + λK

L

n(i))
ϵprotein
ϵ∞

λV
L

n(i)

using the definition of ξ̃i from (55).
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