Home Cyberbullying and Peer Influences in Online and Offline Contexts
Article
Licensed
Unlicensed Requires Authentication

Cyberbullying and Peer Influences in Online and Offline Contexts

Investigating Virtual Unstructured Socializing with Peers, Classroom Exposure to Cyberbullies and Their Combined Impact
  • Thalia Hirsch EMAIL logo
Published/Copyright: May 14, 2025

Abstract

Investigating the impact of peer influence on delinquency perpetration poses new challenges due to the emergence of online platforms, which provide new opportunities for connecting with peers and engaging in delinquent activities. This study investigates the impact of peer influences on cyberbullying, employing two sociological frameworks: the opportunity perspective with the Routine Activity Approach of General Deviance (Osgood et al. 1996) and the normative approach, specifically the Differential Association Theory (Sutherland 1939, 1947). Drawing on data from a representative student survey conducted in 2015 by the Criminological Research Institute of Lower Saxony (N = 10,638), we examine the impact of unstructured socializing with peers in the online context and associations with delinquent peers within the classroom context on the perpetration of cyberbullying by calculating logistic regression models. Furthermore, we model interaction effects and conduct graphical analyses of predicted margins to determine whether delinquent peer associations in the classroom context moderate the relationship between virtual unstructured socializing with peers and cyberbullying perpetration. Our findings provide evidence that aligns with both the opportunity perspective and the normative approach, as significant effects of virtual unstructured socializing with peers and offline exposure to virtual peer delinquency were separately and simultaneously identifiable. The data analysis did not reveal a statistically significant moderating effect of cyberbullies within the classroom environment on the relationship between virtual unstructured socializing with peers and cyberbullying perpetration. The implications of these findings for further research studies are discussed.

Zusammenfassung

Mit der Verbreitung und zunehmenden Bedeutung sozialer Online-Netzwerke und virtueller Kommunikationstools in den letzten Jahrzehnten haben sich für Jugendliche neue Möglichkeiten zur Vernetzung mit Gleichaltrigen und zur Ausübung von delinquentem Verhalten ergeben. Diese Entwicklung erfordert eine eingehende wissenschaftliche Erforschung. Die vorliegende Studie untersucht den Einfluss von Gleichaltrigen auf Cybermobbing und greift dabei auf zwei soziologische Rahmenwerke zurück: die Gelegenheitsperspektive, worunter auch der Routineaktivitätsansatz und seine Weiterentwicklung durch Osgood et al. (1996) zu zählen sind, und den normativen Ansatz, auf welchem die Differentielle Assoziations-Theorie basiert (Sutherland 1939, 1947). Unter Verwendung von Daten aus einer repräsentativen Schülerbefragung, die 2015 vom Kriminologischen Forschungsinstitut Niedersachsens durchgeführt wurde (N = 10.638), untersuchen wir die Einflüsse unstrukturierter Sozialisierung mit Gleichaltrigen im Online-Kontext und von delinquenten Gleichaltrigen im Klassenkontext, indem wir logistische Regressionsmodelle berechnen. Darüber hinaus modellieren wir Interaktionseffekte und führen grafische Analysen durch, um zu prüfen, ob der Kontakt mit delinquenten Gleichaltrigen im Klassenkontext den Zusammenhang zwischen virtuellem unstrukturiertem Sozialisieren und Cybermobbing moderiert. Unsere Ergebnisse unterstreichen die Relevanz sowohl der Gelegenheitsperspektive als auch des normativen Ansatzes, da wir signifikante Effekte des virtuellen unstrukturierten Sozialisierens mit Gleichaltrigen und des Kontakts mit Cybermobbern in der Schulklasse identifizieren konnten. Die Datenanalyse ergab keinen statistisch signifikanten moderierenden Effekt von delinquenten Gleichaltrigen im Klassenkontext auf die Beziehung zwischen virtueller unstrukturierter Sozialisierung mit Gleichaltrigen und Cybermobbing. Die Implikationen dieser Ergebnisse für weitere Forschungsstudien werden diskutiert.

References

Areepattamannil, S., & Khine, M. S. (2017). Early adolescents’ use of information and communication technologies (ICTs) for social communication in 20 countries: Examining the roles of ICT-related behavioral and motivational characteristics. Computers in Human Behavior (73), 263–272. doi: 10.1016/j.chb.2017.03.05810.1016/j.chb.2017.03.058Search in Google Scholar

Araujo, T., Wonneberger, A., Neijens, P., de Vreese, C. (2017). How Much Time Do You Spend Online? Understanding and Improving the Accuracy of Self-Reported Measures of Internet Use. Communication Methods and Measures 11(3), 173–190. doi: 10.1080/19312458.2017.1317337.10.1080/19312458.2017.1317337Search in Google Scholar

Agnew, R. (1991). The interactive effects of peer variables on delinquency. Criminology 29, 47–72. doi: 10.1111/j.1745–9125.1991.tb01089.x.10.1111/j.1745-9125.1991.tb01058.xSearch in Google Scholar

Akers, R. L. (1998). Social Learning and Social Structure: A General Theory of Crime and Deviance. Boston: Northeastern University Press. doi: 10.4324/9781315129587.10.4324/9781315129587Search in Google Scholar

Akers, R. L., & Burgess, Robert L. (1966). A differential association-reinforcement theory of criminal behavior. Social Problems 14(2): 128–147. doi: 10.2307/798722.10.1525/sp.1966.14.2.03a00020Search in Google Scholar

Akers, R. L., & Jensen, Gary F. (2003). Social Learning Theory and the Explanation of Crime: A Guide for the New Century. New Brunswick, N. J.: Transaction Publishers. doi: 10.4324/9781315129594.10.4324/9781315129594Search in Google Scholar

Ang, R. P. (2015). Adolescent cyberbullying: A review of characteristics, prevention and intervention strategies. Aggression and Violent Behavior 25: 35–42. doi: 10.1016/j.avb.2015.05.011.10.1016/j.avb.2015.07.011Search in Google Scholar

Bandura, A. (1977). Social learning theory. Englewood Cliffs, NJ: Prentice Hall.Search in Google Scholar

Baier, D., Krenz, M. & Bergmann, M. C. (2016). Verbreitung und Einflussfaktoren des Cyberbullyings. Ergebnisse einer Repräsentativbefragung in Niedersachsen. Zeitschrift für Soziologie der Erziehung und Sozialisation 36(3), 229–247. doi: 10.1007/s11614-015-0120-y.Search in Google Scholar

Baier, D. & Pfeiffer, C. (2014). Elterliches Erziehungshandeln im Geschlechtervergleich. In T. Mößle, D. Baier, & C. Pfeiffer (Eds.): Die Krise der Jungen. Phänomenbeschreibung und Erklärungsansätze. Baden-Baden: Nomos Verlag, 113–144.10.5771/9783845258560_113Search in Google Scholar

Bauer, G. (2010). Graphische Darstellung regressionsanalytischer Ergebnisse. doi: 10.1007/978-3-531-92038-2_34.10.1007/978-3-531-92038-2_34Search in Google Scholar

Bennett, S., Maton, K., & Kervin, L. (2008). The ‘digital natives’ debate: A critical review of the evidence. British Journal of Educational Technology, 39(5), 775–786. doi: 10.1111/j.1467-8535.2007.00793.x.10.1111/j.1467-8535.2007.00793.xSearch in Google Scholar

Bergmann, M. C., & Baier, D. (2016). Erfahrungen von Jugendlichen mit Cybergrooming. Schülerbefragung – Jugenddelinquenz. Rechtspsychologie, 2(2), 172–189. doi: 10.5771/2364-8991-2016-2-172.10.5771/2365-1083-2016-2-172Search in Google Scholar

Bergmann, M. C., & Baier, D. (2018). Prevalence and correlates of cyberbullying perpetration. Findings from a German representative student survey. International Journal of Environmental Research and Public Health, 15(2), 274. doi: 10.3390/ijerph15020274.10.3390/ijerph15020274Search in Google Scholar

Bergmann, M. C., Baier, D., Rehbein, F., & Mößle, T. (2017). Jugendliche in Niedersachsen. Ergebnisse des Niedersachsensurveys 2013 und 2015. doi: 10.15496/publikation-27357. Zugegriffen: 11. April 2023.Search in Google Scholar

Berry, W. D., DeMeritt, J. H. R., & Esarey, J. (2010). Testing for interaction in binary logit and probit regression: Addressing standard errors and assumptions. Political Science Research and Methods 3(1), 111–123. doi: 10.1017/S2049847010000043.Search in Google Scholar

boyd, d. (2014). It’s Complicated: The Social Lives of Networked Teens. Yale University Press.Search in Google Scholar

Bunders, D. J., & Weerman, F. M. (2020). Social media and delinquency: Exploring the relation between online and offline interaction with friends and online and offline delinquency. Kriminologie 2(2): 283–309. doi: 10.18716/ojs/krimoj/2020.2.11.Search in Google Scholar

Bundesministerium für Familie, Senioren, Frauen und Jugend (2017). JIM-Studie 2017: Jugend, Information, (Multi-) Media. https://www.mpfs.de/fileadmin/files/Studien/JIM/2017/JIM_2017.pdf. Zugegriffen: 21. Januar 2023.Search in Google Scholar

Cohen, L., & Felson, M. (1979). Social change and crime rate trends: A Routine Activity Approach. American Sociological Review 44: 588–608. doi: 10.2307/2094589.10.2307/2094589Search in Google Scholar

Defoe, I. N., van Gelder, JL., Ribeaud, D., & Eisner, M. (2021). The Co-development of Friends’ Delinquency with Adolescents’ Delinquency and Short-term Mindsets: The Moderating Role of Co-Offending. J Youth Adolescence 50, 1601–1615. doi: 10.1007/s10964-021-01417-z10.1007/s10964-021-01417-zSearch in Google Scholar

Einspänner-Pflock, J., & Reichmann, W. (2014). » Digitale Sozialität « und die » synthetische Situation « – Konzeptionen mediatisierter Interaktion. In Krotz, F., Despotović, C., Kruse, MM. (Eds.) Die Mediatisierung sozialer Welten. Medien • Kultur • Kommunikation. Wiesbaden: Springer VS. doi: 10.1007/978-3-658-04077-2_3.10.1007/978-3-658-04077-2_3Search in Google Scholar

Fletcher, A. C., Steinberg, L., & Williams-Wheeler, M. (2004). Parental influences on adolescent problem behavior: Revisiting Stattin and Kerr. Child Development 75(3), 781–796. doi: 10.1111/j.1467-8624.2004.00711.x.10.1111/j.1467-8624.2004.00706.xSearch in Google Scholar

Gallupe, O., Mclevey, J., & Brown, S. (2019). Selection and Influence: A Meta-Analysis of the Association Between Peer and Personal Offending. Journal of Quantitative Criminology, 35, 313–335. doi: 10.1007/s10940-018-9384-y.10.1007/s10940-018-9384-ySearch in Google Scholar

Gapski, H., Schneider, A., & Tekster, T. (2009). Internet-Devianz. Strukturierung des Themenfeldes „Abweichendes Verhalten“ im Kontext der Internetnutzung. Landesanstalt für Medien Nordrhein-Westfalen, Düsseldorf. https://www.lfm-nrw.de/fileadmin/lfm-nrw/Pressemeldungen/lfm_devianzstudie_260309.pdf. Zugegriffen: 11. April 2023.Search in Google Scholar

Gelman, A., & Hill, J. (2006). Data Analysis Using Regression and Multi-level/Hierarchical Models (Analytical Methods for Social Research): Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511790942.10.1017/CBO9780511790942Search in Google Scholar

Gold, M. (1970). Delinquent Behavior in an American City. Belmont, CA: Brooks/Cole. doi: 10.1177/001112877101700114.10.1177/001112877101700114Search in Google Scholar

Gottfredson, M. R., & Hirschi, T. (1990). A General Theory of Crime. Stanford, CA: Stanford University Press.10.1515/9781503621794Search in Google Scholar

Green, K., & Banerjee, S. (2009). Examining unsupervised time with peers and the role of association with delinquent peers on adolescent smoking. Nicotine & Tobacco Research 11(4): 371–380. doi: 10.1093/ntr/ntn036.10.1093/ntr/ntp003Search in Google Scholar

Haynie, D. L. (2001). Delinquent peers revisited: Does network structure matter? American Journal of Sociology 106(4), 1013–1057. doi: 10.1086/321297.Search in Google Scholar

Haynie, D. L., & D. Osgood, W. (2005). Reconsidering peers and delinquency: How do peers matter? American Journal of Sociology 106: 1013–1057. doi: 10.1086/321297.10.1086/320298Search in Google Scholar

Hinduja, S., & Ingram, J. (2009). Social learning theory and music piracy: the differential role of online and offline peer influences. Criminal Justice Studies, 22, 405–420. doi: 10.1080/14786010903358125.10.1080/14786010903358125Search in Google Scholar

Hinduja, S., & Patchin, J. W. (2013). Social influences on cyberbullying behaviors among middle and high school students. Journal of Youth and Adolescence, 42, 711–722. doi: 10.1007/s10964-012-9863-8.10.1007/s10964-012-9902-4Search in Google Scholar

Hirschi, T. (1969). Causes of delinquency. Berkeley, Calif: University of California Press.Search in Google Scholar

Hoeben, E. M., & Weerman, F. (2016). Why is involvement in unstructured socializing related to adolescent delinquency? Criminology, 54(2), 242–281. doi: 10.1111/1745-9125.12092.10.1111/1745-9125.12105Search in Google Scholar

Hoeben, E. M., Meldrum, R. C., Walker, D., & Young, J. T. N. (2016). The role of peer delinquency and unstructured socializing in explaining delinquency and substance use: A state-of-the-art review. Journal of Criminal Justice, 47, 108–122. doi: 10.1016/j.jcrimjus.2016.09.001.10.1016/j.jcrimjus.2016.08.001Search in Google Scholar

Holt, T., Bossler, A., & May, D. (2011). Low Self-Control, Deviant Peer Associations, and Juvenile Cyberdeviance. American Journal of Criminal Justice, 37, 1–18. doi: 10.1007/s12103-011-9117-3.10.1007/s12103-011-9117-3Search in Google Scholar

Institut für Demoskopie Allensbach (2018). JIM-Studie 2018: Jugend, Information, (Multi-) Media. https://www.mpfs.de/fileadmin/files/Studien/JIM/2018/Studie/JIM2018_Gesamt.pdf. Zugegriffen: 21.05.2023.Search in Google Scholar

Jackson, P. W. (1968). Life in Classrooms. Holt, Rinehart and Winston.Search in Google Scholar

Lalayants, M., Prince, D. J. (2014). Delinquency, depression, and substance use disorder among child welfare-involved adolescent females. Child Abuse & Neglect, 38 (4), 797–807. doi: 10.1016/j.chiabu.2013.08.00810.1016/j.chiabu.2013.08.008Search in Google Scholar

Leal, W. E., Boccio, C. M., & Jackson, D. B. (2022). The interplay between virtual socializing, unstructured socializing, and delinquency. Crime & Delinquency, 0(0), 1894–1918. doi: 10.1177/00111287221083898.10.1177/00111287221083898Search in Google Scholar

Lee, S., Hyojong S., & Jeong H. P. (2021). Exploring Risk and Protective Factors for Cyberbullying and Their Interplay: Evidence from a Sample of South Korean College Students. International Journal of Environmental Research and Public Health, 18(24), 13415. doi: 10.3390/ijerph182413415.10.3390/ijerph182413415Search in Google Scholar

Lee, S. J., Song, J. H., & Park, H. S. (2021). The Role of Peer Influence in Cyberbullying Perpetration: A Meta-Analysis. Computers in Human Behavior, 114.Search in Google Scholar

Livingstone, S. (2008). Taking risky opportunities in youthful content creation: Teenagers’ use of social networking sites for intimacy, privacy and self-expression. New Media & Society, 10(3), 393–411.10.1177/1461444808089415Search in Google Scholar

Maimon, D. & Browning, C. R. (2010): Unstructured socializing, collective efficacy, and violent behavior among urban youth. Criminology, 48, 443–474. doi: 10.1111/j.1745-9125.2010.00189.x.10.1111/j.1745-9125.2010.00192.xSearch in Google Scholar

Marwick, A. E., & boyd, d. (2011). To See and Be Seen: Celebrity Practice on Twitter. Convergence, 17(2), 139–158.10.1177/1354856510394539Search in Google Scholar

Matsueda, R. L., & Anderson, K. (1998). The dynamics of delinquent peers and delinquent behavior. Criminology, 36, 269–308. doi: 10.1111/j.1745-9125.1998.tb01248.x.10.1111/j.1745-9125.1998.tb01249.xSearch in Google Scholar

Matsueda, R. L. (2001). Differential association theory. Encyclopedia of criminology and deviant behavior, 1, 125–130.Search in Google Scholar

McCuddy, T. (2018). Online Socialization and Delinquency: Expanding the Study of Peer Influence in Criminology. Dissertation. https://irl.umsl.edu/cgi/viewcontent.cgi?article=1742&context=dissertation. Zugegriffen: 19. Februar 2023.Search in Google Scholar

McCuddy, T. (2020). Peer delinquency among digital Natives: The cyber context as a source of peer influence. Journal of Research in Crime and Delinquency, 58(3), 306–342. doi: 10.1177/00224278211011432.10.1177/0022427820959694Search in Google Scholar

McGloin, J. M., & O’Neill Shermer, L. (2009). Self-control and deviant peer network structure. Journal of Research in Crime and Delinquency, 46, 35–72. doi: 10.1177/0022427808326016.10.1177/0022427808326585Search in Google Scholar

Medienpädagogischer Forschungsverbund Südwest (2015). JIM-Studie 2015 – Jugend, Information, (Multi-) Media. https://www.mpfs.de/fileadmin/files/Studien/JIM/2015/JIM_Studie_2015.pdf. Zugegriffen: 18.10.2023.Search in Google Scholar

Medienpädagogischer Forschungsverbund Südwest (2020). JIM-Studie 2020 – Jugend, Information, (Multi-) Media. https://www.mpfs.de/fileadmin/files/Studien/JIM/2020/JIM-Studie-2020_Web_final.pdf. Zugegriffen: 18.10.2023.Search in Google Scholar

Meldrum, R. C., & Clark, J. (2015). Adolescent virtual time spent socializing with peers, substance use, and delinquency. Crime & Delinquency, 61(8), 1104–1126. doi: 10.1177/0011128713499495.10.1177/0011128713492499Search in Google Scholar

Mood, C. (2010). Logistic Regression: Why we cannot do what we think we can do, and what we can do about it. European Sociological Review. European Sociological Review, 26(1), 67-82. doi: 10.1093/esr/jcp006.10.1093/esr/jcp006Search in Google Scholar

Norton, E. C., Wang, H., & Ai, C. (2004). Computing interaction effects and standard errors in logit and probit models. The Stata Journal, 4(2), 154–167.10.1177/1536867X0400400206Search in Google Scholar

Oberwittler, D. (2014). Peers, Gangs, and Violence: The Role of Social Networks in Juvenile Offending and Victimization. In J. Morizot & L. Kazemian (Eds.), The Development of Criminal and Antisocial Behavior (pp. 221–243). Springer.Search in Google Scholar

Oberwittler, D. (2014). Situative, interaktive und individuelle Bedingungen. In W. Melzer, D. Hermann, U. Sandfuchs, M. Schäfer, W. Schubarth & P. Daschner (Eds.): Handbuch Aggression, Gewalt und Kriminalität bei Kindern und Jugendlichen. Bad Heilbrunn: Verlag Julius Klinkhard, 88–92.Search in Google Scholar

Oberwittler, D., & Gerstner, D. A. (2014). Interpreting interaction effects in logistic regression analysis. An empirical investigation using a German crime victimization survey. Journal of Quantitative Criminology, 30(2), 293–315. doi: 10.1007/s10940-013-9187-4.Search in Google Scholar

Oberwittler, D., Blank, T., Köllisch, T., & Naplava, T. (2001). Soziale Lebenslagen und Delinquenz von Jugendlichen. Ergebnisse der MPI-Schulbefragung 1999 in Freiburg und Köln. Freiburg i.Br.: edition iuscrim. https://pure.mpg.de/rest/items/item_2636410_9/component/file_3011831/content. Zugegriffen: 19. Februar 2023Search in Google Scholar

Osgood, D. W., Meldrum, R. C., Walker, D., & Young, J. T. (2005). Peer Association and Delinquency: A Reexamination of the Selection and Socialization Issues. Criminology, 43(1), 59–86.Search in Google Scholar

Osgood, D. W., Wilson, J. K., O’Malley, P. M., Bachman, J. G., & Johnston, L. D. (1996). Routine activities and individual deviant behavior. American Sociological Review, 61(4), 635-655. doi: 10.2307/2094585.10.2307/2096397Search in Google Scholar

Osgood, D. W., & Anderson, A. L. (2005): Unstructured Socializing and rates of delinquency. Criminology, 43(3), 439–466. doi: 10.1111/j.1745-9125.2005.00010.x.10.1111/j.1745-9125.2004.tb00528.xSearch in Google Scholar

Pallant, J. (2002). SPSS Survival Manual. A Step by Step Guide to Data Analysis Using IBM SPSS. London: Routledge.Search in Google Scholar

Pratt, T. C., Cullen, F. T., Sellers, C. S., Winfree Jr., T., Madensen, T. D., Daigle, L. E., Fearn, N. E., & Gau, J. M. (2010). The Empirical Status of Social Learning Theory: A Meta-Analysis. Justice Quarterly, 27(6), 765–802.10.1080/07418820903379610Search in Google Scholar

Sato, H., Kawahara, J. (2011). Selective bias in retrospective self-reports of negative mood states. Anxiety Stress Coping, 24(4), 359–67. doi: 10.1080/10615806.2010.543132.10.1080/10615806.2010.543132Search in Google Scholar

Schrape, J., & Siri, J. (2019). Facebook und andere soziale Medien. In N. Baur & J. Blasius (Eds.): Handbuch Methoden der empirischen Sozialforschung. Wiesbaden: Springer, 1053–1063.10.1007/978-3-658-21308-4_75Search in Google Scholar

Sutherland, Edwin H. (1939): Principles of Criminology. Philadelphia: Lippincott.Search in Google Scholar

Sutherland, Edwin H. (1947): Criminology. Philadelphia: Lippincott.Search in Google Scholar

Svensson, M., & Oberwittler, D. (2010). It’s not the time they spend, it’s what they do: The interaction between delinquent friends and unstructured routine activity on delinquency. Findings from two countries. In Journal of Criminal Justice 38: 1006–1014. doi: 10.1016/j.jcrimjus.2010.09.015.10.1016/j.jcrimjus.2010.07.002Search in Google Scholar

Thorlindsson, T., & Bernburg, J. (2006). Peer groups and substance use: Examining the direct and interactive effect of leisure activity. Adolescence, 41, 321–39.Search in Google Scholar

Urban, D., Mayerl, J., & Wahl, A. (2016). Regressionsanalyse bei fehlenden Variablenwerten (missing values): Imputation oder Nicht-Imputation? Eine Anleitung für die Regressionspraxis mit SPSS. In Schriftenreihe des Instituts für Sozialwissenschaften der Universität Stuttgart, No. 44. https://www.sowi.uni-stuttgart.de/dokumente/forschung/siss/SISS44.pdf. Zugegriffen: 29. April 2023.Search in Google Scholar

Yang, J., Wang, N., Gao, L., & Xingchao, W. (2021). Deviant Peer Affiliation and Adolescents’ Cyberbullying Perpetration: Online Disinhibition and Perceived Social Support as Moderators. Children and Youth Services Review. 127. doi: 10.1016/j.childyouth.2021.106066.10.1016/j.childyouth.2021.106066Search in Google Scholar

Ward, J. T., & Brown, C. N. (2015). Social Learning Theory and Social Crime. In James D. Wright (Eds.): International Encyclopedia of the Social & Behavioral Sciences. Amsterdam: Elsevier, 409–414.10.1016/B978-0-08-097086-8.45066-XSearch in Google Scholar

Ward, J., & Forney, M. (2020). Unpacking within- and between-person effects of unstructured socializing and differential association on solo- and co-offending. Journal of Criminal Justice, 70. 101720. doi: 10.1016/j.jcrimjus.2020.101720.10.1016/j.jcrimjus.2020.101720Search in Google Scholar

Warr, M. (2002). Companions in Crime: The Social Aspects of Criminal Conduct. Cambridge University Press.10.1017/CBO9780511803956Search in Google Scholar

Weerman, F. M., Bernasco, W., Bruinsma, G. J. N., & Pauwels, L. J. R. (2015). When is spending time with peers related to delinquency? The importance of where, what, and with whom. Crime & Delinquency 61(10), 1386–1413. doi: 10.1177/0011128712459307.10.1177/0011128713478129Search in Google Scholar

Windzio, M. (2013). Räumliche Diffusion expressiver Delinquenz in Schulen und Stadtbezirken. Theorien der sozialen Ansteckung und ein empirisches Beispiel von Graffiti-Delikten. In Dietrich Oberwittler, Susann Rabold und Dirk Baier (Eds.): Städtische Armutsquartiere. Kriminelle Lebenswelten.10.1007/978-3-531-93244-6_7Search in Google Scholar

Yang, X., Wang, Z., Gao, L., & Xingchao, S. (2021). Cyberbullying Among Adolescents: The Role of Social Influence and Peer Norms. Journal of Adolescence, 90, 12–22.Search in Google Scholar

Appendix

A Items (own translations)

A.1 Empathy: 1. “It depresses me when I see someone being laughed at.”; 2. “I get very upset when I see someone crying.”; 3. “I often feel compassion for people who are worse off than I am.”; 4. “I feel sorry for students who are often teased.”

A.2 Risk seeking: 1. “I like to test my limits by doing something dangerous.”; 2. “I like to take risks simply because it’s fun.”; 3. “Sometimes I think it’s exciting to do things that can put me in danger.”; 4. “Excitement and adventure are more important to me than safety.”

A.3 Violent media consumption: 1. horror movie 16+; 2. horror movie 18+; 3. erotic movies 16+; 4. porn movies 18+; 5. other movies 18+

A.4 Parental monitoring: 1. “My mother/father knew exactly where I was in my free time.”; 2. “My mother/father paid attention to when I was home in the evening.”; 3. “My mother/father has been inquiring about who I am friends with.”

A.5 Unstructured socializing with peers: “On an ordinary school day or ordinary weekend day, how long do you spend doing the following activities? Hanging out with friends outside.”

B Tables

Table B.1:

Bivariate correlations (Pearson correlation coefficient r)

1.

2.

3 

4.

5.

6.

7.

8.

9.

1.

1.00

2.

-0.06***

1.00

3.

-0.09***

0.39***

1.00

4.

0.11***

-0.15***

-0.14***

1.00

5.

0.13***

-0.48***

-0.30***

0.37***

1.00

6.

-0.07***

-0.17***

0.24***

-0.14***

-0.19***

1.00

7.

0.07***

0.03**

-0.06***

0.21***

0.20***

-0.07***

1.00

8.

0.06***

0.18***

0.02***

0.15***

0.15***

-0.05***

0.36***

1.00

9.

0.04***

-0.01

-0.03*

0.02

0.03**

-0.01

0.02*

0.02**

1.00

Numbering: 1. cyberbullying, 2. female 3. empathy 4. risk seeking, 5. violent media consumption, 6. parental monitoring, 7. USWP, 8. VUSWP, 9. OEVPD, Source: Kriminologisches Forschungsinstitut Niedersachsen, student survey 2015 Hanover.

Table B.2:

Empty model

Explained variance at

Odds Ratios

ICC (%)

…. individual level

3.29

90,88

… school level

0.33

9,12

Total variance

3.62

100

LR-Test

22.70***

Observations

10,607

Notes: ICC = intraclass correlation Intpoints: 7. *** p < 0.001. Source: Kriminologisches Forschungsinstitut Niedersachsen, student survey 2015 Hanover.

Online erschienen: 2025-05-14
Erschienen im Druck: 2025-07-30

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mks-2024-0027/html
Scroll to top button