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Abstract: Fluorescence microscopy is a critical tool in bio-

cellular research, enabling the visualization of biological tis-

sues and cellular structures. However, the inevitable aging

of microscopes can degrade their performance posing chal-

lenges for long-term scientific investigations. In this study,

we introduce 𝜇PIX, a personalized deep learning work-

flow based on a Generative Adversarial Network (GAN)

utilizing a Pix2Pix architecture. The network is trained

in a supervised manner to denoise images, optimize pre-

processing for binary segmentation, and compensate for

equipment aging. Our results, evaluated using standard

image quality and binary segmentation metrics, demon-

strate that 𝜇PIX outperforms popular deep learning archi-

tectures based on convolutional auto-encoder networks for

similar tasks. Additionally, our generative model effectively

rejuvenates older detectors to perform on par with newer

ones, not only by improving image quality but also by pre-

serving resolution in depth and maintaining a near-linear

response between original and generated images in terms of

pixel intensity (crucial for quantitative imaging). These find-

ings suggest that generative deep learning approaches can

significantly contribute to more sustainable, cost-effective

microscopy, fostering continued innovation and discovery

in biological research.
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1 Introduction

Microscopy is an indispensable tool in biological research,

enabling the visualization of structures at the cellular and

molecular levels. However, the performance of microscopes

degrades over time leading to diminished signal-to-noise

ratio (SNR), reduced resolution and other artifacts that

impair image quality. These issues necessitate frequent

maintenance that is generally not readily available, hard-

ware upgrade and eventually, replacement of expensive

microscopy equipment. In an era where sustainability and

cost-effectiveness are paramount, extending the functional

lifespan of existing microscopy systems is both economi-

cally and environmentally beneficial. The aging of micro-

scopes manifests in several ways, including decreased light

throughput, increased background noise, and deteriorating

optical alignment. These factors collectively reduce the SNR,

making it challenging to discern fine details and thus make

accurate quantitative measurements on images of biologi-

cal samples. Historically, image restoration in fluorescence

microscopy relied on techniques like deconvolution and

filtering.

Classical methods for image denoising share the com-

mon goal of reducing noise while preserving key image

features, such as edges and fine details. These approaches,

whether operating in the spatial or frequency domain,

employ techniques like thresholding, local averaging, or sta-

tistical assumptions to identify and mitigate noise. Notable

methods includes classical filtering (gaussian, median, low-

pass, Wiener,. . . ) and more advanced like Non Local mean

denoising (NLM) [1], Total Variation denoising [2], Block-

Matching and 3D-filtering (BM3D) [3] and wavelet-based

denoising [4]–[6]. These approaches effectively balance

noise suppression with the preservation of crucial image

structures, ensuring enhanced image quality without com-

promising essential details. Through spatial or multi-scale

analysis, these techniques prioritize the retention of essen-

tial structures. However, despite their utility, these methods

often fall short in achieving the high performance required

for modern, high-resolution imaging tasks, where more

advanced approaches are necessary to fully restore and

enhance complex images.
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Point Spread Function (PSF)-based methods, such as

Richardson-Lucy deconvolution, have been widely used

to reduce noise and correct blur in microscopy images

[7]–[10]. These methods work by reversing the effects of the

PSF,whichdescribes howapoint source of light is spreadout

by the optical system. However, they often require precise

knowledge of the PSF, which can be challenging to obtain

and may vary depending on the imaging system and con-

ditions. Additionally, the computational intensity of these

methods can limit their applicability in real-time imaging

scenarios, and the PSF information is sometimes expensive

or difficult to acquire, particularly when provided by equip-

ment manufacturers [11].

Recent advances have begun to merge traditional PSF-

based deconvolutionwith deep learning techniques. Instead

of treating AI and deconvolution as separate approaches,

researchers are now leveraging neural networks to accel-

erate the convergence of classical algorithms or refine

their initialization. For instance, deep learning models can

predict better initial conditions for deconvolution algo-

rithms, improving both stability and computational effi-

ciency [12]–[14]. Additionally, generative models, such as

GANs, have been employed to learn blur kernel distri-

butions, providing a more compact and effective prior

for blind image deblurring [15], [16]. Beyond these hybrid

approaches, some methods explicitly integrate physics-

based imaging model into deep learning frameworks to

better simulate real-world degradation and improve recon-

struction fidelity. Zhang et al. [17] proposed a confocal imag-

ing degradation model based on confocal imaging the-

ory, enabling the generation of synthetic low-resolution

images for training, thus eliminating the need for precise

image alignment. Xypakis et al. [18] proposed a physics-

informed deep neural network architecture that incorpo-

rates the Poisson probability distribution of photo detection

into the training loss function, achieving significant SNR

improvements for low-exposure microscopy data. These

hybrid approaches demonstrate a growing trend where AI

enhances rather than replaces conventional image restora-

tionmethods, offering amore flexible and data-driven alter-

native to purely PSF-dependent techniques.

Building on these developments, Deep Learning has

emerged as a powerful standalone approach for image

restoration, offering end-to-end solutions that learn to

directly map degraded images to high-quality outputs. Con-

volutional neural networks (CNNs), Generative Adversarial

Networks (GANs), and more recently Diffusion models have

shown promising results in denoising, super-resolution,

and artifact removal compared to traditional methods [19].

For example, Content-Aware Image Restoration (CARE) [20]

networks use a classical U-Net architecture in the context

of a convolutional auto-encoder to restore images by learn-

ing from pairs of low-quality and high-quality images, real

or synthetic. CellPose [21], [22], a generalist deep learn-

ing algorithm offers a robust image restoration capabili-

ties alongside its primary function of cell segmentation.

Cellpose3 [23], built on the same architecture, extends its

capabilities by enabling joint training of a denoiser and

segmenter networks. It includes specialized models for

denoising, deblurring and upsampling, tailored for both

cytoplasmic and nuclear channels. This flexibility allows it

to handle a wide range of image degradation issues and

offers an accurate segmentation of cells. Moreover, notable

results have been achieved with modified U-Net architec-

ture incorporating Residual Channel Attention Blocks, as

seen in RCAN [24], further enhancing restoration perfor-

mance. These approaches have proven effective in reduc-

ing noise and enhancing resolution without requiring PSF

information. Noise2Void [25], Noise2Noise [26] and more

recently Noise2Fast [27], are notable techniques that fur-

ther simplify the training process by eliminating the need

for training paired data in an unsupervised manner. The

W2S framework [28], [29] combines wavelet transforma-

tions together with CNNs to enhance both the resolution

and the contrast of fluorescent microscopy images. This

method leveragesmulti-scale information to improve image

quality. Similarly, the Deep-Z framework [30] enables vir-

tual refocusing in 3D fluorescence microscopy, significantly

extending the depth of field and correcting for optical aber-

rations. High-throughput imaging of 3D samples, such as

tumor spheroids and organoids has also benefited from

Deep Learning. Techniques that combine axial z-sweep

image acquisition with CNN-based restoration allow for

faster imaging with reduced photo-toxicity, crucial for live

imaging. These methods can generate high-quality 2D pro-

jections from low-quality z-sweep images enabling real-time

analysis with minimal exposure times.

The advent of diffusion models [31] has revolution-

ized the field of image generation. They have demon-

strated exceptional performance in tasks such as both

unconditional image generation [32], image restoration [33],

[34], image super-resolution [35], [36] and image denois-

ing [37], [38]. While these models have excelled in terms

of image quality metrics, they have largely been trained

on large general-purpose datasets, with few specifically

tailored to address the unique challenges of microscopy

image modalities. However, recent efforts have focused on

adapting diffusion models for microscopy tasks, includ-

ing synthetic dataset generation [39], super-resolution in

optical microscopy [40], and EMDiffuse [41], a model
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specifically trained on electron microscopy (EM) images,

which has shown promising results in denoising and reso-

lution enhancement tasks for electron microscopy imaging.

Despite these advancements, challenges remain in gen-

eralizing deep learning models across different imaging

conditions and microscopy setups. Our proposed workflow

leverages these advances to address both immediate and

long-term challenges in microscopy image restoration. In

contrast to the current state-of-the-artmodel based onUNET

architectures [42], our 𝜇PIX workflow leverages the use

of a conditional generative adversarial network (cGAN)

[43], more specifically the use of Pix2Pix network [44] to

efficiently tackle the classical denoising and segmentation

problematics. The conditional aspect of such a network

ensures that the model is trained on paired image data,

enforcing a direct mapping between noisy and clean images

to generate accurately denoised outputs. Moreover, our

approach allows us to tailor a highly specialized model by

implementing a precision-focused strategy ensuring that

our enhancements are optimally aligned with the specific

deficiency and operational context of the equipment leading

to superior image restoration, extended utility of the micro-

scope and ultimately doing quantitative biology.

2 Results

2.1 𝝁PIX is built on a generative Pix2Pix
architecture

Image denoising is known to be one of the major problems

in the field of image analysis and deep Learning based

solutions have proven their superior capabilities in this

task in comparison to traditional denoising algorithms. As

of today, the architecture based on convolutional autoen-

coder are considered as the state of the art to tackle this

problem. UNET and similar convolutional autoencoders

operate primarily through pixel-wise predictions, optimiz-

ing pixel-level accuracy using reconstruction loss functions.

While this approach ensures a good and fast overall image

reconstruction, it can struggle with preserving fine details

and textures, especially in denoising tasks. In this context,

we first based our approach on the use of a classical UNET

network working in combination with a classical pixel-

wise loss (mean squared error – MSE) and a perceptual

loss network (VGG16) to make our network aware of high

level perceptual and semantic differences between original

and predicted images. Unfortunately, even if we improved

slightly in image reconstruction quality, in comparison to

classical UNET networks used for such tasks, the results

were not satisfying (Supplementary Table 4). To address

these limitations, we chose to base our workflow on Pix2Pix

generative network (Figure 1). Unlike UNET, 𝜇PIX leverages

the cGAN architecture to produce high-quality and realistic

denoised images. This choice allows us to train a model that

is not only capable of tackling classical image challenges

like denoising but also able to address the specific defects

of particular hardware. By leveraging the flexibility of the

Pix2Pix architecture, 𝜇PIX can adapt to the unique charac-

teristics and imperfections of specific imaging equipment,

effectively building a specialized prosthesis for each device.

This adaptability ensures that our model can provide opti-

mized solutions tailored to the nuances of different hard-

ware, enhancing overall performance and image quality in

a way that traditional convolutional autoencoders cannot

Figure 1: 𝜇PIX architecture is based on a Pix2Pix generative network. 𝜇PIX consists of two subnetworks: a generator, based on a UNet architecture

with an EfficientNet-b0 backbone, and a discriminator (PatchGAN). During supervised training, a noisy image is input to the generator, which generate

an image. This output is compared to the real clean image using a pixel-wise loss function (MSE). Pairs of real and generated images are then passed

to the discriminator, which classifies them as real or fake using a binary cross-entropy loss (BCE). Both subnetworks are progressively refined through

adversarial loss during training. In the inference phase, only the trained generator is used to generate clean images.
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achieve. Our network introduces an adversarial loss that

encourages the network to generate images that are not only

accurate but also perceptually convincing and realistic. This

adversarial training helps preserve fine details and textures

that are often lost in pixel-wise approaches. The network is

composed of two subnetworks working together: a genera-

tor and a discriminator. The generator network is trained

to learn how to transform an input image to resemble a

reference image provided during the supervised training.

Classically this subnetwork architecture is based on a clas-

sical UNET network. The encoding part of the generator

has been chosen carefully as we wanted to keep a good

compromise between training/inference speed and perfor-

mance. We decided to choose a lightweight and performant

EfficientNet-b0 [45] as the backbone for this subnetwork. To

ensure that the training phase will be efficient and will not

collapse quickly, we decided to not use a pre-trained version

of this backbone to avoid at start a too big gap between

generator and discriminator capabilities. The discriminator

subnetwork is based on a PatchGAN network derived from

a classical convolutional neural network which has proven

its superior discrimination capabilities in such architec-

tures [46]. The main objective of the discriminator is to

assess whether the given images as input are generated or

real images. Through adversarial training [47], in a super-

vised manner, the generator and discriminator iteratively

improve their accuracy, leading to the generator becom-

ing increasingly accurate at producing images that closely

resemble the reference images. At the end of these steps, the

inference phase will only use the generator subnetwork for

image generation.

2.2 𝝁PIX outperforms state-of-the-art
denoisers on CSBDeep denoising
benchmark dataset

Image denoising and restoration are central challenges in

the analysis of microscopy data. To assess the accuracy

of our workflow, we chose to use the CSBDeep Denoising

Dataset as a benchmark dataset to evaluate our approach

[20]. This dataset, derived from the Broad Bioimage Bench-

mark Collection [48], comprises pairs of clean reference

images containing cell nuclei and their corresponding arti-

ficially noised counterparts from the human U20S cell line.

The noising involves synthetically adding significant read-

out and shot noise, along with additional 2× 2 pixel binning

to mimic acquisitions at very low light levels. To evaluate

our workflow comprehensively, we used a set of denoising

and image restoration quality metrics. We employed the

mean-squared error (MSE) as a measure of signal-to-noise

ratio by comparing the reference clean images to the images

generated by 𝜇PIX from the noisy image. The Structural

Similarity Index (SSIM) was used to measure the preserva-

tion of overall object shapes.

We compared our approach, μPIX, against a range

of image denoising algorithms, including both traditional

non-deep learning-based methods and deep learning-based

models. The non-deep learning-basedmethods include Low-

Pass filtering, TVD [2], NLM [1], and BM3D [3]. For deep

learning-based approaches, we evaluated our μPIX along-

side CARE [20], the Residual Channel Attention Network

(RCAN) [24], and the “Denoise Nuclei” model from CellPose3

[23], which are all based on UNET-like architectures. To

ensure a fair comparison and minimize bias in generaliza-

tion, we trained both CARE, RCAN and 𝜇PIX from scratch

using the same dataset. However, for the Denoise Nuclei

model from CellPose3, we used the provided pre-trained

version, as there is currently no publicly available method

to train this denoiser from scratch on a custom dataset.

Finally, we evaluated these architectures and our

approach concurrently on the same test dataset consisting

of various nuclei images extracted from the original bench-

mark dataset and we averaged the metrics. As shown in

(Table 1) and (Table 2), our approach clearly outperforms

all compared methods, including both non-deep learning-

based and deep learning-based denoising algorithms, in

terms of signal-to-noise ratio and structural preservation.

For the best algorithms, CARE, we improved MSE by 51 %

and SSIM by almost 4 % (MSE: 117.68, SSIM: 0.94). This

Table 1:MSE and SSIM metrics for evaluating the quality of denoised

images. Mean Squared Error (MSE) and Structural Similarity Index (SSIM)

are used to assess the quality of denoised images. The performance of

𝜇PIX is compared against both traditional non-deep learning-based

methods (Low-Pass Filter, Total Variation Denoising (TVD), Non-Local

Means (NLM), and Block Matching 3D (BM3D)) and deep learning-based

methods (CellPose3 Denoise Nuclei, Residual Channel Attention Network

(RCAN), and CARE). MSE and SSIM are computed between the noisy and

denoised images from the CSBDeep Denoising Benchmark Dataset test

set. For reference, the “Raw” row represents the metrics between the

original noisy image and the clean (ground truth) image. Bold values

means best scores in terms of MSE and SSIM.

MSE SSIM

Raw 2,434.03 0.491

Lowpass filter 887.64 0.688

TVD 749.18 0.733

NLM 741.06 0.742

BM3D 509.48 0.834

Denoise Nuclei (Cellpose3) 1,457.07 0.656

RCAN 505.86 0.825

CARE 241.26 0.90

𝜇PIX . .
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Table 2: Denoising results on the CSBDeep Benchmark Dataset, including 𝜇PIX . ∗Traditional non-deep learning-based denoising algorithms. ∗∗Deep

learning-based denoising algorithms, including our proposed method 𝜇PIX .

superiority can be attributed to several factors: the adver-

sarial process helps the generator produce more realistic

and high-quality images, the conditioning provides more

context-aware denoising capabilities, and the adversarial

loss, compared to pixel-wise loss, encourages the generation

of sharper and more structurally accurate images.

2.3 𝝁PIX improves binary segmentation
quality when used as an image denoiser
in the preprocessing steps

Object segmentation is another fundamental task in image

analysis and a good preprocessing of images can greatly

enhance further binary segmentation performance. We

then wanted to assess how 𝜇PIX performs as the main

image denoiser in a segmentation workflow (Figure 2).

We chose to evaluate 𝜇PIX against both CARE and Cell-

pose3 “Denoise Nuclei” as preprocessing steps to enhance

image segmentation. As we did not have segmentation

ground truth included in the CSBDeep Denoising Dataset

and given its robustness and superior performance in seg-

menting nuclei, we relied on Stardist [49] as image seg-

menter, using its pre-trained model “2D_versatile_fluo” to

infer binary segmentation from clean images which served

as the reference for perfect segmentation. Using the same

test dataset previously described, we assessed the impact

of different preprocessing methods on binary segmentation

performance using classical segmentation metrics: Inter-

section Over Union (IoU), Precision, Recall, and F1-score.

IoU measures the overlap between predicted and true seg-

mentations, offering a direct measurement of segmenta-

tion accuracy. In the context of binary segmentation, Pre-

cision and Recall are crucial for understanding the bal-

ance between over-segmentation and under-segmentation.

Precision indicates the proportion of true positive results

among all positive predictions, thereby reflecting the extent

of over-segmentation due to false positives. Recall indicates

the proportion of true positives among all actual positives,
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Figure 2: Workflow describing the evaluation process for denoising performance in binary segmentation. To assess the quality of binary

segmentation after image denoising by various softwares, pairs of noisy and clean images are used. The noisy images are processed through each of

the denoising algorithms: CARE, Denoise Nuclei, and 𝜇PIX (in blue). The denoised images are then fed into either the Stardist or CellPose3

segmentation models (purple). In parallel, the clean image is also processed by these segmentation models (purple). The resulting binary mask from

the clean image serves as the ground truth and is compared with the binary masks generated from the denoised images (orange). The IoU, Precision,

Recall, and F1-score metrics are then calculated for performance evaluation.

highlighting the degree of under-segmentation caused by

false negatives. The F1-score, as the harmonic mean of Pre-

cision and Recall, provides a single metric that balances

both aspects, ensuring a robust evaluation of binary seg-

mentation performance. As shown in (Table 3) and (Table 4),

using𝜇PIX as a preprocessing step for segmentation outper-

forms the othermethods across all metrics, yielding the best

results in terms of IoU (0.861), Recall (0.903), and F1-score

(0.9253) on the test dataset. Although CARE achieved the

highest Precision score (0.9537), 𝜇PIX maintained a strong

balance with its high Recall. We then assessed whether

our approach could be generalized to other state-of-the-art

segmentation tools. We used the Cellpose3 segmenter as a

reference and employed CARE, Cellpose3 “Denoise Nuclei”,

and 𝜇PIX as preprocessing steps to benchmark segmen-

tation quality using the same metrics and test dataset. As

shown in (Table 3) and (Table 4), 𝜇PIX yielded again the

best overall results across the defined segmentation met-

rics (IoU: 0.861, Recall: 0.903, and F1-score: 0.9253). Addi-

tionally, switching from Cellpose3 “Denoise Nuclei” to 𝜇PIX

within the Cellpose3 workflow improved the F1-score by

nearly 3 % meaning that the actual CellPose3 workflow

could be improved by using a trained 𝜇PIX as denoiser.

Consequently, 𝜇PIX is not only a strong candidate for pure

image denoising but also enhances performance when used

in conjunction with state-of-the-art models in the context of

binary image segmentation.

2.4 𝝁PIX enables effective rejuvenation
of microscope detectors

A major challenge faced by all microscopy platforms is the

aging of equipment, which inevitably introduces acquisi-

tion artifacts, making it increasingly complex to analyze

acquired data. To demonstrate 𝜇PIX capabilities toward

the challenge of hardware senescence, we chose to simu-

late one specific case: detector rejuvenation. To this end,

since we based our architecture on a supervised approach,

we chose to simulate detector degradation by building a

dedicated dataset consisting of pairs of images acquired

simultaneously using an older Multi-Alkali detector [50]

and its newer and more performant counterpart using a

GaAsP detector [51]. We acquired this tailored dataset using

a biphoton system able to generate two images at the same

position within the sample as illustrated in (Figure 3). This

microscopy setup freed us from the tedious steps of image

re-alignment during the acquisition and the dataset pre-

processing steps. Furthermore, it allowed us to maintain
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Table 3: Segmentation metrics using Stardist and CellPose3 as Segmenter. Noisy images from the CSBDeep Benchmark Dataset were denoised using

CARE, Denoise Nuclei, and 𝜇PIX . The denoised images were then segmented using either StarDist or CellPose3. Segmentation metrics (IoU, Precision,

Recall, F1-score) were calculated by comparing the binary segmentations of clean and denoised images for both StarDist and CellPose3. Bold values

means best scores in terms of MSE and SSIM.

IoU Precision Recall F1-score

Stardist Raw 0.7441 0.9226 0.7936 0.8532

CARE (CSBDeep) 0.7895 . 0.813 0.8824

Denoise Nuclei (Cellpose3) 0.801 0.9622 0.8273 0.8897

𝜇PIX . 0.9597 . .

CellPose3 Raw 0.7342 0.8967 0.802 0.8467

CARE (CSBDeep) 0.8032 . 0.8358 0.8908

Denoise Nuclei (Cellpose3) 0.8167 0.9524 0.8514 0.8991

𝜇PIX . 0.9488 . .

Table 4: Binary segmentation results on the CSBDeep Benchmark Dataset. (Top) Three noisy input examples from the CSBDeep Dataset, along with

their denoised counterparts generated by CARE, Denoise Nuclei, and 𝜇PIX , followed by the ground truth. (Middle) Binary segmentation results

alongside the ground truth mask. (Bottom) Visual representation of segmentation differences: in white false positive, in black false negative and in

light gray true positive and dark gray true negative.

a supervised learning context mandatory for our Pix2Pix

architecture. As we wanted to be as close as real use cases,

we decided to use biological samples consisting of Gastru-

loids [52]. We acquired two complete stacks, one serving

as a training/validation set and the other one as a test

set (see Methods). We trained 𝜇PIX from scratch on this

training dataset taking as input the image acquired with

the Multi-Alkali detector and considering the correspond-

ing image acquired with the GaAsP detector as ground

truth. To conclude whether the detector rejuvenation was

effective, we decided to check for three different features

on image preservation: image quality, intensity preserva-

tion along the Z-axis, linear preservation of pixel intensity

level between the original and rejuvenated detector. We

used MSE and SSIM metrics between images acquired with

GaAsP detector and predicted images to assess the qual-

ity of the detector rejuvenation. We chose to compare our

approach only to CARE because, as of today, there is no

published way to train or fine tune a Cellpose3 “denoise

nuclei” model on its own dataset. As shown in (Table 5) and

(Supplementary Table 1), our approach greatly improves

SNR and the quality of structure restoration. Moreover, we

can see that 𝜇PIX successfully handled challenging restora-

tion tasks, such as delineating detected objects, managing

complex structures, addressing intense contrast variations

(both low and high) and reconstructing objects even in cases

where limited information was available. These results

demonstrate that our approach is effective and reliable for
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Figure 3: Schematic of a two-photon microscope optical path. Shown here are the two detection channels for the fluorescence signal generated by

two-photon absorption. The Non Descanned channel, positioned closest to the objective, is the most sensitive. The GaAsP detectors are new and

provide a reference signal optimized for learning. The detection path through the scan head is generally less efficient, even if the pinholes are

completely open to collect the scattered emission photons. Multi-Alkali detectors are functional but obsolete, over 15 years old, and will be used to

detect ground truth. The signals detected on both types of detectors are almost spatially aligned.

Table 5: Denoising results on Microscope Rejuvenation Test Dataset. Images acquired using the Multi-Alkali detector from different regions with

varying pixel intensities were processed by CARE and 𝜇PIX , and then compared to the original images obtained with the GaAsP detector.

enhancing image quality by compensating the Multi-Alkali

detector aging in generating images resembling to thoses

acquired with a GaAsP detector.

Moreover, as it is well known that the signal qual-

ity diminishes along the Z-axis during a confocal acqui-

sition due to light scattering, light absorption, refractive
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Figure 4: Evaluation of intensity and structural preservation along the Z-axis using the Microscope Rejuvenation Test stack. (A) MSE between

Multi-Alkali and GaAsP (blue), CARE and GaAsP (orange), 𝜇PIX and GaAsP (green) (B) SSIM between Multi-Alkali and GaAsP (blue), CARE and GaAsP

(orange), 𝜇PIX and GaAsP (green).

index mismatch, photo-bleaching and detector sensitivity,

we wanted to assess how 𝜇PIX compensates for these arti-

facts. To do so, we started by measuring these effects by

comparing the MSE between an older Multi-Alkali and a

newer GaAsP detector for every slice along the Z-axis of

the test stack. As shown in (Figure 4A), there is a quasi-

exponential difference in terms of MSE as we go deeper into

the stack along the Z-axis. This is explainable by the fact that

Multi-Alkali detectors aremore prone to the signal intensity

attenuation effect compared to the newer GaAsP detectors.

We then compared our predicted images to GaAsP and we

see that the difference is far more prone than before and

quasi-linear in terms of MSE and SSIM (Figure 4B) as we

go down into the stack along the Z-axis. This means that

even if our approach is not able to abolish completely these

artifacts, our results in terms of signal intensity are very

close and resemble those we would have obtained using

GaAsP detectors (Supplementary Table 5).

We next aimed to determinewhether the images gener-

ated by𝜇PIX could be reliably used for quantitative imaging

analysis. To do this, we evaluated whether 𝜇PIX maintains

a consistent response at different levels of pixel intensity

when compared to images acquired using GaAsP detectors.

As shown in (Figure 5A), pixels ranging from0 tonearly 60 %

of maximum intensity (representing approximately 95 % of

the total pixels in the test images) are restored with near-

perfect linearity by 𝜇PIX. In contrast (Figure 5B), shows

that this consistency is not maintained by CARE. For pixel

intensities greater than 60 % and the maximum (represent-

ing around 5 % of the image pixels), we observe moderate

deviations from perfect restoration. However, this concerns

only a small fraction of the pixels, most of which are sat-

urated and therefore contain limited or non-informative

data, making these deviations negligible for most practical

purposes.

These results suggest that using 𝜇PIX for detector reju-

venation opens the possibility for users to conduct quantita-

tive imaging in the same way as if they were using a GaAsP

detector directly.

3 Discussion

A common concern among microscope users is the validity

of AI generated images, as these are synthetic and may not

be suitable for further analysis. The rise of generative AI has

Figure 5: Evaluation of signal linearity preservation using the Microscope Rejuvenation Test Dataset. (A) Mean intensity differences for pixel intensity

ranging from 0 (no intensity) to 100 (maximum intensity) between Multi-Alkali and 𝜇PIX (blue), Multi-Alkali and GaAsP (orange), GaAsP and 𝜇PIX

(green). The dashed line corespond to a perfect linearity. (B) Mean intensity differences for pixel intensity ranging from 0 (no intensity) to 100

(maximum intensity) between Multi-Alkali and CARE (blue), Multi-Alkali and GaAsP (orange), GaAsP and CARE (green). The dashed line corresponds to

a perfect linearity.



224 — G. Bon et al.: 𝜇PIX

underscored the need to expand the family of perceptual

metrics, focusing on human perception to validate such

images. The two most widely used perceptual metrics are

the Frechet InceptionDistance (FID) and the Inception Score

(IS) [53], [54]. These metrics utilize a pre-trained Inception

network on the ImageNet 10 k dataset [55] and measure

the Wasserstein distance and KL-divergence, respectively,

between the embeddings of real and generated images.

While thesemetrics are effective forwell-structured images,

they may be problematic in the context of image denois-

ing. They tend to prioritize structural conservation over

the preservation of overall distribution. Moreover, since

these metrics rely on features extracted from a network

pre-trained ona generalist images database, theymaynot be

suitable for microscopic images. Microscopic images often

contain subtle artifacts that may not align well with the

features learned by the Inception model. To our knowledge,

there is no perceptual metric specifically adapted to the

nature of microscopic images that can effectively capture

their unique feature space and accurately measure their

perceptual quality. In line with previous attempts to assess

image quality through human evaluation [56], we decided

to adopt a similar approach. We designed an experiment

involving 27 participants. These individuals were familiar

with biological imaging but had no specific knowledge of

the image categories or the methods used to generate them.

Each participant completed seven rounds of evaluation,

with each round consisting of four images: two generated

by algorithms (𝜇PIX and CARE) and two acquired through

real detectors (Multi-Alkali and GaAsP), representing four

distinct image categories. For each round, participants were

asked to rate each image on a scale from 1 to 4, where 1

indicated the image was highly suitable for analysis, and

4 indicated it was completely unsuitable. The ratings for

each image category were collected and their distributions

are shown in (Figure 6). We conducted a statistical analysis

between categories using theWilcoxon non-parametric test.

The evaluation results revealed that, as expected, a newer

detector yields higher perceived image quality, as evidenced

by a statistically significant distinction in human percep-

tion between images acquired with the older Multi-Alkali

detector and those from the newer GaAsP detector (p−
value = 7.87 × 10−7). We then compared the older Multi-

Alkali images to both the CARE and 𝜇PIX generated images.

Interestingly, in terms of humanperception, theMulti-Alkali

images and those enhanced by CARE were not judged to

be significantly different, indicating that the enhancements

applied by CARE do not improve the perceived usabil-

ity of the images for analysis (p− value = 0.6151). In con-

trast, 𝜇PIX images were perceived as more usable for

analysiswhen compared toMulti-Alkali (p− value = 6.63 ×
10−10) and remarkably as more usable than those obtained

from GaAsP detectors (p− value = 7.23 × 10−3). From a

broader perspective, it appears that, despite its effective-

ness in enhancing images, CARE (built on a convolutional

autoencoder architecture) fails to convince users of its full

Figure 6: Evaluation of image quality by human observers. Stacked bar plot illustrating the distribution of human ratings for four image acquisition

methods: Multi-Alkali, CARE, 𝜇PIX , and GaAsP. Each stacked bar represents the percentage of total ratings for each method, with the sum of ratings

normalized to 100 %. The ratings range from 1 (best: dark blue) to 4 (worst: light blue). The distribution reflects the overall quality perception across

the different image types based on human evaluations.
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applicability for image analysis. This is likely due to the

known tendency of such networks to introduce blurring

and smooth out structures [57]–[59]. In contrast, generative

approaches based on Pix2Pix networks aim to maintain the

visual coherence of textures and structures while reducing

noise. This leads to more realistic images that are better

evaluated by human observers, and perceived similarly to

real images captured by more advanced detectors.

Currently, the predominant paradigm for using Deep

Learning in image treatment and analysis revolves around

the use of U-Net networks, as seen in tools like CARE, Cell-

Pose3 or RCAN. The main advantages of these networks

include their ease of training and deployment by non-

specialist users, thanks to their training stability and the rel-

atively short training time required to achieve good-quality

results. This user-centered approach allows anyone to effi-

ciently train their own model from scratch using their own

dataset. However, we consider this approach unsustainable

as it operates at the end of the imaging pipeline without

addressing upstream factors such as hardware defects and

specificities. Our 𝜇PIX workflow proposes an alternative

paradigm, shifting from a user-centered to a hardware-

centered perspective for model development and training.

We envision that such aworkflow should be developed over

the long term by microscopy platforms to directly address

hardware constraints and gradually build robust and flex-

ible models for personalized microscopy. While it is well

known that training GANs has disadvantages compared to

U-Nets such as longer training times (ranging from hours

to days), training instability that can lead to mode collapse,

and the challenge of determining an optimal stopping cri-

terion; the results we present in terms of image denois-

ing, segmentation, and hardware rejuvenation suggest that

investing effort in developing models tailored to specific

hardware by a deep learning specialist could be more bene-

ficial. These models could then be shared by many users, as

opposed to the current practice of many users developing

rather identical models for the same hardware. In the era

of frugal AI, we believe that our approach has the potential

to save significant resources, both in terms of user time

and global computational costs. Additionally, it is impor-

tant to recognize that the ground truth datasets provided

to 𝜇PIX are not of infinite quality and do not encompass

every possible microscope artifact requiring correction. As

the pix2pix architecture is based on a supervised learning

approach, the system is inherently limited by the quality

and variety of the images included in the training set. Con-

sequently, 𝜇PIX cannot generate images of higher quality

than those contained in the dataset, implying that it does

not effectively correct hardware defects but rather learns

to replicate them, producing images that closely resemble

the ground truth provided.

Our approach opens up a wide range of possibilities for

enhancing microscopy acquisition workflows and setups.

Live imaging applications that require high prediction rates

could particularly benefit from the use of 𝜇PIX. A major

limitation of live imaging is phototoxicity, caused by the pro-

longed use of lasers. By utilizing a 𝜇PIX model pre-trained

on a custom dataset with varying laser intensities, laser

power can be reduced, potentially extending the lifespan

of the samples being imaged and improving the image SNR.

While the adversarial training process of Pix2Pix networks

is time consuming, the inference stage is relatively fast, as

it only involves the network generator part, a lightweight

UNET network. Benchmarking performed on an Nvidia

A6000 GPU with 48 GB of VRAM revealed that 𝜇PIX can

process 473 images of size 256 × 256 per second, 119 images

of size 512 × 512, and 31 images of size 1024 × 1024. These

results demonstrate that real-time image correction during

live imaging sessions is highly feasible, suggesting that such

models can be seamlessly integrated into existing micro-

scope setups. We have also begun exploring the application

of 𝜇PIX for post-acquisition correction of temperature and

oil refractive index mismatches.

We also explored whether an unsupervised approach

could yield better results. The primary limitation of 𝜇PIX

stems from the fact that Pix2Pix relies on a supervised

learning architecture, which requires paired ground truth

images registered in the same position for training. To

address this, we investigated the use of CycleGAN architec-

tures, which only require unpaired images under different

conditions, which makers it easier to construct a training

dataset.While the resultswere acceptable, the image quality

was noticeably lower compared to what we achieved with

Pix2Pix. We believe that this limitation could be mitigated

by developing a more robust and diverse dataset (Supple-

mentary Table 2).

While emerging models such as diffusion networks

and transformer architectures, particularly Visual Trans-

formers (ViT), hold great promise for image generation

and vision-related tasks, we remain cautious about apply-

ing diffusion models in our context. The main challenge is

that state-of-the-art diffusion models are typically trained

on large, general-purpose datasets with millions of images,

which does not align with the specialized datasets used in

microscopy. Furthermore, these models are rarely trained

in a supervised manner. Another concern is that for real-

time denoising applications, such as live imaging, the image

generation process in diffusionmodels is too slow due to the

sampling cycles required during inference. Despite these
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limitations, we investigated EM Diffuse [41], a supervised

diffusion model developed for electron microscopy, which

we retrained on our own datasets. We provide preliminary

results as a point of comparison (Supplementary Table 3).

In conclusion, our work introduces 𝜇PIX as an innova-

tive solution to the pressing challenges of microscopy image

denoising and restoration, effectively tackling issues aris-

ing from aging hardware and acquisition artifacts. Through

rigorous comparisons with established denoising methods

either non or deep learning-based, we have demonstrated

that 𝜇PIX significantly enhances image quality, preserves

structural integrity, and improves object segmentation accu-

racy. Our findings indicate that 𝜇PIX excels in rejuvenat-

ing images captured by older detectors, effectively bridging

the gap to newer technologies while compensating for arti-

facts associated with light absorption along the Z-axis and

maintaining a quasi-linear relationship in pixel intensity

between the original and rejuvenated detector. By adopting

a hardware-centered paradigm for model development, we

emphasize the importance of creating specialized solutions

tailored to specific microscopy setups, promoting a sustain-

able approach to image analysis that reduces computational

burdens on users. Furthermore, our research underscores

the transformative potential of 𝜇PIX in microscopy work-

flows, enabling researchers to confidently analyze synthetic

images that closely mimic those obtained from advanced

detectors. Thiswork paves theway for future advancements

and developments in generative AI for microscopy plat-

forms, ultimately supporting the pursuit of more accurate

and reliable imaging outcomes.

4 Materials and methods

4.1 Microscope setups

Fluorescence imaging was performed on a Zeiss LSM510

confocal scanning microscope (CLSM) equipped for two-

photon imaging. The excitation laser is a Spectra Physics

Mai Tai infrared tunable laser, used at 900 nm for the scope

of these experiments. The scan head is mounted on a Zeiss

Axiovert200M stand. We used a Plan-Apochromat 20×/0.75
Numerical Aperture objective. The room is well stabilized

and controlled at a temperature of 21 ◦C (±1 ◦C). The stand

and sample environment was isolated in a black-painted

incubation chamber, providing light isolation to prevent

external signal pollution. The heating unit is not on, but

the presence of the chamber still further helps with the

temperature stability of the sample environment. Twobeam

paths were exploited for fluorescence detection. First, the

more efficient non-descanned (NDD) beam path using two

specially integrated Hamamatsu GaAsP detectors (new inte-

gration work in 2021 by ALPhANOV company). The detec-

tion range is set by filters from [500/550] nm for the green

channel (the red channel was acquired but not used for the

training). Second is the descanned configuration, using the

internalMulti-Alkali PMT old detector of the scan head after

the pinholewas fully opened. Filter sets of the internal beam

path are chosen to fit a detection range as close as possible

to the range of the NDD configuration of [500/550] nm. The

system driving the acquisition software is Zeiss Efficient

Navigation (ZEN) version 2009. To generate data without

acquiring the same area, we use the tiling option with the

overlap set to 0 %.

4.2 Two photons imaging

One-color two-photon imaging of immunostained samples

was performed on an inverted Zeiss LSM510 confocal as

described above. Multiposition imaging was used to auto-

matically acquire image Z stacks on multiple gastruloids

mounted on the same sample slide. The sampling parame-

ters remain the same for all samples (pixel width 0.62 μm,
voxel depth 1.2 μm), with 114 identical sections acquired

sequentially on the GaAsP andMulti-Alkali detectors, reach-

ing a depth in Z of 137 μm. The images were acquired with
the full field-of-view (318 μm). The power of laser excitation
and gains of detectors are optimized to exploit detector

dynamics (8 bits) while avoiding any saturated pixels.

4.3 Microscope rejuvenation dataset

4.3.1 Sample preparation

Gastruloids were generated using the protocol described

previously in [52], from a H2B-GFP mouse embryonic stem

cells line (a generous gift from Kat Hadjantonakis). Briefly,

200 cells were seeded and aggregated for 48 h in low-

adherence 96-well plates (Costar ref: 7007) and subse-

quently pulsed with the Wnt agonist Chiron, which was

washed out after 24 h, i.e. at 72 h of aggregate culture.

We imaged 96 h old gastruloids, which exhibited polarized

morphologies.

4.3.2 Dataset construction

As a result, we acquired 10 stacks of size 512 × 512 pixels

with depth varying from 22 to 130 slices. Among those, we

used 8 stacks to train/validate our model and two stacks

to test the model. For the preparation of training and val-

idation data, we tiled images into smaller regions of size

256 × 256 pixels with an overlap of 64 pixels to ensure
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comprehensive coverage. Employing a reflect mode for tile

border padding helped mitigate any potential blank spaces

resulting from the overlapping procedure. Furthermore, to

standardize image intensity distributions, we applied per-

centile normalization between 1 and 99 %, resulting in pixel

values ranging from −1 to 1. During the training phase, we
implemented data augmentation using the Albumentations

[60] Python library. We decided to include transformations

consistent with the biological objects used. We then used

shift scale rotate, elastic transformation, optical distorsion,

randomrotate90 and horizontal/vertical flip.

4.4 Objectives

4.4.1 GAN objectives

GANs are generative models that learn a mapping from a

random noise vector z to an output image y using a genera-

tor network G, which can be either an encoder-decoder or a

U-Net:

G(z)→ y

The generator G is trained to produce outputs that

are indistinguishable from real images by an adversarially

trained discriminatorD, which aims to correctly distinguish

real images from generated ones. The standard GAN objec-

tive is:

GAN(G,D) = 𝔼y[log D(y)]+ 𝔼z[log(1− D(G(z)))].

In contrast, conditional GANs (cGANs) learn to map

an observed condition x and a random noise vector z to a

corresponding output y:

G(x, z)→ y

The cGAN objective is given by:

cGAN(G,D) = 𝔼x,y[log D(x, y)]

+ 𝔼x,z[log(1− D(x,G(x, z)))]

Pix2Pix is a special case of cGANs where the goal is to

condition the output image to resemble the input image as

closely as possible, eliminating the need for the noise vector

z. In this case, the generator learns a direct mapping from

the input image to the output image:

G(x)→ y

To enhance the similarity between the generated image

and the ground truth, a L1 reconstruction loss is incor-

porated. This loss encourages the generator to produce

outputs that closely resemble the target image by mini-

mizing the absolute differences between the correspond-

ing pixel values, thereby preserving structural details and

reducing large deviations in pixel intensities. To control the

trade-off between adversarial loss and reconstruction loss,

a weighting factor 𝜆 is introduced. The objective function of

Pix2Pix can be written as:

pix2pix(G,D) = 𝔼x,y[log D(x, y)]+ 𝔼x[log(1− D(x,G(x)))]

+ 𝜆
(
𝔼x,y[‖y− G(x)‖1])

Finally, the full Pix2Pix objective can be formulated as

a Min-Max optimization problem, which defines the adver-

sarial game between the generator G and the discriminator

D, where G∗ represents the optimal generator that solves

this Min-Max problem:

G∗ = argmin
G
max
D

pix2pix(G,D)

4.4.2 𝝁PIX objectives

Our architecture is a variant of the classical Pix2Pix that

introduces several key modifications to improve perfor-

mance. First, rather than using a single balancing hyper-

parameter 𝜆, we introduce two distinct weight parameters,

𝑤1 and 𝑤2, to independently regulate the contributions of

adversarial loss and reconstruction loss, respectively. Sec-

ond, we replace the L1 loss with an L2 loss, which has been

shown to provide better results in terms of image generation

quality in our setup. Third, as the discriminator in 𝜇PIX is

a PatchGAN, which operates by classifying local patches of

the image, rather than the entire image,we defined the𝜇PIX

objective function as:


𝜇pix(G,D) = 𝑤1

(
𝔼x,y

[
1

N

N∑
i=1

log D(xi, yi )

]

+ 𝔼x

[
1

N

N∑
i=1

log
(
1− D(xi,G(xi ))

)])

+𝑤2

(
𝔼x,y

[‖y− G(x)‖2
2

])
where D(xi, yi) and D(xi,G(xi)) are the discriminator

PatchGAN’s outputs for the i-th patch of the real image y

given the input image x and the generated image G(x) given

the input image x, respectively, and N is the number of

patches in the image. Finally, the full 𝜇PIX objective can be

formulated as:

G∗ = argmin
G

max
D


𝜇pix(G,D)
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4.5 Losses

4.5.1 Reconstruction loss for image generation

(generator loss)

The Mean Squared Error (MSE) quantifies the average

squared difference between the pixel values of the real and

generated images. Given two images, Y (real) and Ŷ (gener-

ated), each of dimensions H ×W , the MSE is computed as:

MSE(Y , Ŷ ) = 1

HW

H∑
i=1

W∑
j=1

(
yi, j − ŷi, j

)2
where yi, j represents the pixel intensity of Y at spatial loca-

tion (i, j), and ŷi, j denotes the corresponding pixel intensity

in Ŷ . A lowerMSEvalue indicates that the generated image Ŷ

is closer to the real image Y in terms of pixel-wise similarity.

4.5.2 Discriminator loss for patch classification

The Binary Cross-Entropy (BCE) measures the difference

between the predicted probability that a given image patch

is real and the true label (real or fake) of that patch. Given

a patch with true label p ∈ {0, 1}, where p = 1 indicates a

real patch and p = 0 indicates a fake patch, and the pre-

dicted probability p̂, the BCE loss is computed as:

BCE( p, p̂) = −
[
p log(p̂)+ (1− p) log(1− p̂)

]
4.5.3 Adversarial loss for 𝝁PIX network

The adversarial loss is derived from the𝜇PIX objective func-

tion, which combines both discriminator and reconstruc-

tion losses, and the user chosen parameters𝑤1 and𝑤2:

𝜇PIX_loss(Y , Ŷ ) = 𝑤1 ⋅MSE(Y , Ŷ )+𝑤2 ⋅ BCE( p, p̂)

4.6 Metrics

4.6.1 Evaluation metrics for image generation

We evaluated the performance of our image generation

using two common metrics: MSE (described above) and

Structural Similarity Index (SSIM).

SSIM measures the perceptual similarity between the

real and generated images by considering luminance, con-

trast, structure and is computed as follows:

SSIM(Y , Ŷ ) = (2𝜇Y𝜇Ŷ + C1 )(2𝜎YŶ + C2 )(
𝜇
2
Y
+ 𝜇

2

Ŷ
+ C1

)
(𝜎2

Y
+ 𝜎

2

Ŷ
+ C2 )

where Y and Ŷ represent the real and generated images,

respectively. The terms 𝜇Y and 𝜇Ŷ are the mean pixel inten-

sities of Y and Ŷ , while 𝜎2
Y
and 𝜎2

Ŷ
represent their variances.

The covariance between Y and Ŷ is given by 𝜎YŶ , and C1 and

C2 are small constants to stabilize the division.

SSIM provides a more perceptually relevant measure

of image quality, as it accounts for structural information,

which is often more aligned with human visual perception

compared to pixel-wise differences captured by MSE.

4.6.2 Evaluation metrics for image segmentation

Intersection Over Union (IoU) is a common metric used to

evaluate the performance of segmentation models.

Given two binary segmentationmasks, Spred (predicted)

from a generated image and Sgt (ground truth) from a real

image, where each pixel is either 0 (background) or 1 (fore-

ground), the IoU is defined as:

IoU(Spred, Sgt ) =
card

(
{(i, j) ∣ Spred(i, j) = 1 and Sgt(i, j) = 1}

)
card

(
{(i, j) ∣ Spred(i, j) = 1 or Sgt(i, j) = 1}

)
The IoU value ranges from 0 to 1, and a higher IoU score

indicates that the model segmentation Spred more closely

matches the ground truth Sgt.

Precision measures the accuracy of positive

predictions.

Given two binary segmentationmasks, Spred (predicted)

from a generated image and Sgt (ground truth) from a real

image, where each pixel is either 0 (background) or 1 (fore-

ground), precision is defined as follows:

Precision(Spred, Sgt ) =
card

(
{(i, j) ∣ Spred(i, j) = 1 and Sgt(i, j) = 1}

)
card

(
{(i, j) ∣ Spred(i, j) = 1}

)
Recall quantifies the model’s ability to identify all rele-

vant positive instances.

Given two binary segmentationmasks, Spred (predicted)

from a generated image and Sgt (ground truth) from a real

image, where each pixel is either 0 (background) or 1 (fore-

ground), recall is defined as:

Recall(Spred, Sgt ) =
card

(
{(i, j) ∣ Spred(i, j) = 1 and Sgt(i, j) = 1}

)
card

(
{(i, j) ∣ Sgt(i, j) = 1}

)
The F1-score is the harmonic mean of Precision and

Recall, providing a single metric that balances both aspects.

Given two binary segmentation masks, Spred (predicted)

from a generated image and Sgt (ground truth) from a real

image, the F1-score is defined as:

F1− score(Spred, Sgt ) = 2 ×
Precision(Spred, Sgt ) × Recall(Spred, Sgt )

Precision(Spred, Sgt )+ Recall(Spred, Sgt )



G. Bon et al.: 𝜇PIX — 229

4.7 𝝁PIX architecture

Based on Pix2Pix, our architecture consists of a gener-

ator and a discriminator. The generator follows a U-Net

architecture with an EfficientNet-B0 backbone [45], imple-

mented using the TensorFlow Segmentation Model library

[61], while the discriminator employs a PatchGAN classifier

[44], [62].

4.7.1 Generator encoder

The encoder of our U-Net generator is based on the Effi-

cientNet architecture, which is optimized for both accu-

racy and computational efficiency. EfficientNet employs a

multi-objective neural architecture search to balancemodel

accuracywith floating-point operations per second (FLOPS).

The encoder is composed of several stages, each utiliz-

ing Mobile Inverted Bottleneck Convolutions (MBConv) [63]

with varying kernel sizes, enabling the model to efficiently

capture hierarchical features. These blocks integrate three

key components: the expansion layer, depthwise separa-

ble convolution [64], and the squeeze-and-excitation (SE)

module [65]. The expansion layer increases the number of

channels before processing, allowing the network to learn

richer representations. Depthwise separable convolution

reduces computational cost by applying spatial convolu-

tions independently to each input channel, followed by a

pointwise 1 × 1 convolution to fuse channel information.

The SE module dynamically recalibrates feature maps by

adaptively weighting channels based on their importance.

Starting with an initial convolutional layer, the architecture

sequentially applies MBConv blocks with different dilation

factors and depths, progressively reducing spatial resolu-

tion while expanding the number of channels. This progres-

sive structure is specifically designed to maximize perfor-

mance while minimizing computational cost. Furthermore,

the integration of squeeze-and-excitation optimization in

every MBConv block enhances the model’s capacity to focus

on the most salient features, allowing the encoder to learn

rich, discriminative feature representations. 𝜇PIX uses an

EfficientNet-B0 backbone consisting of 7 stacked MBConv

blocks with varying expansion factors and convolution ker-

nel sizes. Additionally, we opted for a non-pretrained ver-

sion of EfficientNet-B0 in the generator. This decision helps

maintain a balanced training dynamic between the gener-

ator and the discriminator, preventing a situation where

a pretrained generator might overpower the discriminator

due to its stronger initial performance, which could hinder

effective adversarial learning [47].

4.7.2 Generator decoder

The decoder part of our U-Net generator follows a progres-

sive upsampling approach to restore the spatial resolution

of feature maps. It consists of five upsampling stages fol-

lowed by two consecutive 3 × 3 convolutional layers with

ReLU activation. At each stage, the upsampled feature maps

are concatened with skip connections from the encoder,

allowing network to recover fine-grained spatial details that

where lost in the downsampling process. This concatena-

tion is performed along the channel axis to preserve mul-

tiscale contextual information. The number of filters used

at each decoding stage follow the sequence (256, 128, 64, 32,

16) ensuring a gradual reduction in feature complexity as

spatial resolution increases. The final layer of the decoder

applies a 3 × 3 convolution with a single output channel

(for grayscale image generation) and a hyperbolic tangent

activation function. This ensures that the output pixel val-

ues are mapped to the [-1,1] range. This choice ensures that

the generated images are consistent with the normalized

pixel values of real images, where the pixel values are

centered around zero. By maintaining this symmetry, the

model avoids biases that could arise from a non-centered

range, improving training stability and enabling smoother

convergence in the adversarial learning process [44], [66].

4.7.3 Discriminator

The discriminator in our architecture is based on a con-

volutional PatchGAN model, which distinguishes between

real and generated image patches. The core idea behind

PatchGAN is to classify patches of the input images as either

real (from the true target image) or fake (from the generated

image), rather than evaluating the entire image as a whole.

While alternative patch sizes such as 1 × 1 and 70 × 70 could

have been considered, original results on Pix2Pix [44] have

shown that smaller patch sizes, such as 1 × 1, focus primar-

ily on color diversity but lack spatial consistency, making

them less effective for capturing detailed textures. On the

other hand, larger patch sizes, like 70 × 70, tend to enforce

sharper outputs, but they may introduce unrealistic arti-

facts due to the mismatch in scale between local and global

image features. Based on these insights, we opted for a patch

size of 16 × 16, as it strikes a balance between capturing

fine-grained details and avoiding overly localized artifacts.

The input to the discriminator consists of image pairs: a real

image and a generated image provided by the generator.

These two are concatenated along the channel axis and

then passed through a series of convolutional layers, each
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designed to progressively extract more abstract features

from the image. Finally, the output is passed through a

sigmoid activation function, which gives a probability score

for each patch, indicating whether it is real or fake. The

discriminator is trained using the BCE loss, which compares

the predicted patch labels with the ground truth.

4.8 Denoising algorithms on CSBDeep
benchmark dataset

To comprehensively evaluate our approach, we compared

𝜇PIX against several established denoising algorithms,

including both non-deep learning-based and deep learning-

based methods.

For non-deep learning-based denoising, we applied

NLM using Python scikit-image restoration package, with

a patch size of 7, a patch distance of 11 and a smoothing

factor of 100. BM3D was implemented via the Python bm3d

package using a standard noise standard deviation of 800

for optimal noise reduction. For the Low-pass filtering, we

applied a Fourier Transform-based low pass filter using the

scipy fftpack library. A cutoff frequency of 0.1 was used to

mask out high-frequency components. For Total Variation

Denoising (TVD), we utilized the denoise_tv_chambolle func-

tion from the scikit-image restorationlibrary. The method

applies a regularization parameter, weight, to control the

strength of the denoising process (weight was set to 1,000).

For deep learning-based denoising, we used the pre-

trained “Denoise Nuclei” model provided in the Cellpose3

distribution. For RCAN, we used a popular PyTorch imple-

mentation [67]. The model was trained for 10 epochs with

a learning rate of 1e−4 and a batch size of 4 on an A40-

48 GPU. The training was conducted using the MSE loss

function with default parameters for the network architec-

ture, including 64 feature maps, 10 residual groups, and

20 residual channel attention blocks. The CARE model was

trained using the Python csbdeep package using the default

parameters [68].

4.9 𝝁PIX training parameters and inference

Although we rely on the well-known Pix2Pix architecture,

we have developed unique training strategies. Since deter-

mining optimal stopping criteria for generative adversar-

ial networks is challenging, we implemented a custom

early stopping method. At the end of each epoch, the

ratio between the MSE and the SSIM was evaluated on

the validation set. If this ratio reached a new minimum,

the model was saved, and training continued for a set

number of epochs defined by the patience hyperparame-

ter (set to 20 by default). If no improvement was observed

within the patience period, training was halted. Moreover,

adaptive learning rate scheduling has been introduced for

both adversarial and discriminator losses. If the validation

performance does not improve for a specified number of

epochs (patience), set to 20 by default, the learning rate is

reduced by a factor of 10 %, with a minimum learning rate

of 1e−5 to ensure stable training.

All models we developed were trained using Adam

Optimizer, an initial learning rate of 1e−2 and 𝛽1 = 0.8 for

both generator and discriminator for faster initial conver-

gence. We empirically chose a loss weight imbalance of 10

between BCE and MSE and a batch size of 128. We trained

our models for a maximum of 100 epochs or until the early

stoping is triggered. Our models were trained on a NVIDIA

A6000 GPU with 48 GB of memory. Depending of the dataset

size, the training time takes from 5 h (CSBDeep dataset) to

7 h (our rejuvenation dataset) to converge.

At inference, only the generator component is used and

the pixel range of the generated images was remapped to

[0, 255] for consistencywith the original input image format.

4.10 𝝁PIX software

The complete 𝜇PIX software package is based on Tensor-

flow 2.14. The source code, pre-trained models, installation

instructions, and detailed usage guidelines, is available on

ourGitLab repository: https://gitlab.lis-lab.fr/sicomp/mupix.

We provide dedicated use cases for both inference and

training, along with ready-to-use demonstration notebooks

to facilitate experimentation. To further support users, we

have included video tutorials covering installation, model

deployment, inference and training procedures. In addition,

a reproducibility notebook is provided, allowing users to

replicate the key results presented in this study.
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