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Abstract: Fluorescence microscopy is a critical tool in bio-
cellular research, enabling the visualization of biological tis-
sues and cellular structures. However, the inevitable aging
of microscopes can degrade their performance posing chal-
lenges for long-term scientific investigations. In this study,
we introduce uPIX, a personalized deep learning work-
flow based on a Generative Adversarial Network (GAN)
utilizing a Pix2Pix architecture. The network is trained
in a supervised manner to denoise images, optimize pre-
processing for binary segmentation, and compensate for
equipment aging. Our results, evaluated using standard
image quality and binary segmentation metrics, demon-
strate that yPIX outperforms popular deep learning archi-
tectures based on convolutional auto-encoder networks for
similar tasks. Additionally, our generative model effectively
rejuvenates older detectors to perform on par with newer
ones, not only by improving image quality but also by pre-
serving resolution in depth and maintaining a near-linear
response between original and generated images in terms of
pixel intensity (crucial for quantitative imaging). These find-
ings suggest that generative deep learning approaches can
significantly contribute to more sustainable, cost-effective
microscopy, fostering continued innovation and discovery
in biological research.
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1 Introduction

Microscopy is an indispensable tool in biological research,
enabling the visualization of structures at the cellular and
molecular levels. However, the performance of microscopes
degrades over time leading to diminished signal-to-noise
ratio (SNR), reduced resolution and other artifacts that
impair image quality. These issues necessitate frequent
maintenance that is generally not readily available, hard-
ware upgrade and eventually, replacement of expensive
microscopy equipment. In an era where sustainability and
cost-effectiveness are paramount, extending the functional
lifespan of existing microscopy systems is both economi-
cally and environmentally beneficial. The aging of micro-
scopes manifests in several ways, including decreased light
throughput, increased background noise, and deteriorating
optical alignment. These factors collectively reduce the SNR,
making it challenging to discern fine details and thus make
accurate quantitative measurements on images of biologi-
cal samples. Historically, image restoration in fluorescence
microscopy relied on techniques like deconvolution and
filtering.

Classical methods for image denoising share the com-
mon goal of reducing noise while preserving key image
features, such as edges and fine details. These approaches,
whether operating in the spatial or frequency domain,
employ techniques like thresholding, local averaging, or sta-
tistical assumptions to identify and mitigate noise. Notable
methods includes classical filtering (gaussian, median, low-
pass, Wiener,...) and more advanced like Non Local mean
denoising (NLM) [1], Total Variation denoising [2], Block-
Matching and 3D-filtering (BM3D) [3] and wavelet-based
denoising [4]-[6]. These approaches effectively balance
noise suppression with the preservation of crucial image
structures, ensuring enhanced image quality without com-
promising essential details. Through spatial or multi-scale
analysis, these techniques prioritize the retention of essen-
tial structures. However, despite their utility, these methods
often fall short in achieving the high performance required
for modern, high-resolution imaging tasks, where more
advanced approaches are necessary to fully restore and
enhance complex images.
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Point Spread Function (PSF)-based methods, such as
Richardson-Lucy deconvolution, have been widely used
to reduce noise and correct blur in microscopy images
[71-[10]. These methods work by reversing the effects of the
PSE, which describes how a point source oflight is spread out
by the optical system. However, they often require precise
knowledge of the PSF, which can be challenging to obtain
and may vary depending on the imaging system and con-
ditions. Additionally, the computational intensity of these
methods can limit their applicability in real-time imaging
scenarios, and the PSF information is sometimes expensive
or difficult to acquire, particularly when provided by equip-
ment manufacturers [11].

Recent advances have begun to merge traditional PSF-
based deconvolution with deep learning techniques. Instead
of treating AI and deconvolution as separate approaches,
researchers are now leveraging neural networks to accel-
erate the convergence of classical algorithms or refine
their initialization. For instance, deep learning models can
predict better initial conditions for deconvolution algo-
rithms, improving both stability and computational effi-
ciency [12]-[14]. Additionally, generative models, such as
GANs, have been employed to learn blur kernel distri-
butions, providing a more compact and effective prior
for blind image deblurring [15], [16]. Beyond these hybrid
approaches, some methods explicitly integrate physics-
based imaging model into deep learning frameworks to
better simulate real-world degradation and improve recon-
struction fidelity. Zhang et al. [17] proposed a confocal imag-
ing degradation model based on confocal imaging the-
ory, enabling the generation of synthetic low-resolution
images for training, thus eliminating the need for precise
image alignment. Xypakis et al. [18] proposed a physics-
informed deep neural network architecture that incorpo-
rates the Poisson probability distribution of photo detection
into the training loss function, achieving significant SNR
improvements for low-exposure microscopy data. These
hybrid approaches demonstrate a growing trend where Al
enhances rather than replaces conventional image restora-
tion methods, offering a more flexible and data-driven alter-
native to purely PSF-dependent techniques.

Building on these developments, Deep Learning has
emerged as a powerful standalone approach for image
restoration, offering end-to-end solutions that learn to
directly map degraded images to high-quality outputs. Con-
volutional neural networks (CNNs), Generative Adversarial
Networks (GANs), and more recently Diffusion models have
shown promising results in denoising, super-resolution,
and artifact removal compared to traditional methods [19].
For example, Content-Aware Image Restoration (CARE) [20]
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networks use a classical U-Net architecture in the context
of a convolutional auto-encoder to restore images by learn-
ing from pairs of low-quality and high-quality images, real
or synthetic. CellPose [21], [22], a generalist deep learn-
ing algorithm offers a robust image restoration capabili-
ties alongside its primary function of cell segmentation.
Cellpose3 [23], built on the same architecture, extends its
capabilities by enabling joint training of a denoiser and
segmenter networks. It includes specialized models for
denoising, deblurring and upsampling, tailored for both
cytoplasmic and nuclear channels. This flexibility allows it
to handle a wide range of image degradation issues and
offers an accurate segmentation of cells. Moreover, notable
results have been achieved with modified U-Net architec-
ture incorporating Residual Channel Attention Blocks, as
seen in RCAN [24], further enhancing restoration perfor-
mance. These approaches have proven effective in reduc-
ing noise and enhancing resolution without requiring PSF
information. Noise2Void [25], Noise2Noise [26] and more
recently Noise2Fast [27], are notable techniques that fur-
ther simplify the training process by eliminating the need
for training paired data in an unsupervised manner. The
W2S framework [28], [29] combines wavelet transforma-
tions together with CNNs to enhance both the resolution
and the contrast of fluorescent microscopy images. This
method leverages multi-scale information to improve image
quality. Similarly, the Deep-Z framework [30] enables vir-
tual refocusing in 3D fluorescence microscopy, significantly
extending the depth of field and correcting for optical aber-
rations. High-throughput imaging of 3D samples, such as
tumor spheroids and organoids has also benefited from
Deep Learning. Techniques that combine axial z-sweep
image acquisition with CNN-based restoration allow for
faster imaging with reduced photo-toxicity, crucial for live
imaging. These methods can generate high-quality 2D pro-
jections from low-quality z-sweep images enabling real-time
analysis with minimal exposure times.

The advent of diffusion models [31] has revolution-
ized the field of image generation. They have demon-
strated exceptional performance in tasks such as both
unconditional image generation [32], image restoration [33],
[34], image super-resolution [35], [36] and image denois-
ing [37], [38]. While these models have excelled in terms
of image quality metrics, they have largely been trained
on large general-purpose datasets, with few specifically
tailored to address the unique challenges of microscopy
image modalities. However, recent efforts have focused on
adapting diffusion models for microscopy tasks, includ-
ing synthetic dataset generation [39], super-resolution in
optical microscopy [40], and EMDiffuse [41], a model
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specifically trained on electron microscopy (EM) images,
which has shown promising results in denoising and reso-
lution enhancement tasks for electron microscopy imaging.

Despite these advancements, challenges remain in gen-
eralizing deep learning models across different imaging
conditions and microscopy setups. Our proposed workflow
leverages these advances to address both immediate and
long-term challenges in microscopy image restoration. In
contrast to the current state-of-the-art model based on UNET
architectures [42], our uPIX workflow leverages the use
of a conditional generative adversarial network (cGAN)
[43], more specifically the use of Pix2Pix network [44] to
efficiently tackle the classical denoising and segmentation
problematics. The conditional aspect of such a network
ensures that the model is trained on paired image data,
enforcing a direct mapping between noisy and clean images
to generate accurately denoised outputs. Moreover, our
approach allows us to tailor a highly specialized model by
implementing a precision-focused strategy ensuring that
our enhancements are optimally aligned with the specific
deficiency and operational context of the equipment leading
to superior image restoration, extended utility of the micro-
scope and ultimately doing quantitative biology.

2 Results

2.1 uPIX is built on a generative Pix2Pix
architecture

Image denoising is known to be one of the major problems
in the field of image analysis and deep Learning based
solutions have proven their superior capabilities in this
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task in comparison to traditional denoising algorithms. As
of today, the architecture based on convolutional autoen-
coder are considered as the state of the art to tackle this
problem. UNET and similar convolutional autoencoders
operate primarily through pixel-wise predictions, optimiz-
ing pixel-level accuracy using reconstruction loss functions.
While this approach ensures a good and fast overall image
reconstruction, it can struggle with preserving fine details
and textures, especially in denoising tasks. In this context,
we first based our approach on the use of a classical UNET
network working in combination with a classical pixel-
wise loss (mean squared error — MSE) and a perceptual
loss network (VGG16) to make our network aware of high
level perceptual and semantic differences between original
and predicted images. Unfortunately, even if we improved
slightly in image reconstruction quality, in comparison to
classical UNET networks used for such tasks, the results
were not satisfying (Supplementary Table 4). To address
these limitations, we chose to base our workflow on Pix2Pix
generative network (Figure 1). Unlike UNET, xPIX leverages
the cGAN architecture to produce high-quality and realistic
denoised images. This choice allows us to train a model that
is not only capable of tackling classical image challenges
like denoising but also able to address the specific defects
of particular hardware. By leveraging the flexibility of the
Pix2Pix architecture, ¢PIX can adapt to the unique charac-
teristics and imperfections of specific imaging equipment,
effectively building a specialized prosthesis for each device.
This adaptability ensures that our model can provide opti-
mized solutions tailored to the nuances of different hard-
ware, enhancing overall performance and image quality in
a way that traditional convolutional autoencoders cannot
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Figure 1: uPIX architecture is based on a Pix2Pix generative network. uPIX consists of two subnetworks: a generator, based on a UNet architecture

with an EfficientNet-b0 backbone, and a discriminator (PatchGAN). During
an image. This output is compared to the real clean image using a pixel-wi
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achieve. Our network introduces an adversarial loss that
encourages the network to generate images that are not only
accurate but also perceptually convincing and realistic. This
adversarial training helps preserve fine details and textures
that are often lost in pixel-wise approaches. The network is
composed of two subnetworks working together: a genera-
tor and a discriminator. The generator network is trained
to learn how to transform an input image to resemble a
reference image provided during the supervised training.
Classically this subnetwork architecture is based on a clas-
sical UNET network. The encoding part of the generator
has been chosen carefully as we wanted to keep a good
compromise between training/inference speed and perfor-
mance. We decided to choose a lightweight and performant
EfficientNet-b0 [45] as the backbone for this subnetwork. To
ensure that the training phase will be efficient and will not
collapse quickly, we decided to not use a pre-trained version
of this backbone to avoid at start a too big gap between
generator and discriminator capabilities. The discriminator
subnetwork is based on a PatchGAN network derived from
a classical convolutional neural network which has proven
its superior discrimination capabilities in such architec-
tures [46]. The main objective of the discriminator is to
assess whether the given images as input are generated or
real images. Through adversarial training [47], in a super-
vised manner, the generator and discriminator iteratively
improve their accuracy, leading to the generator becom-
ing increasingly accurate at producing images that closely
resemble the reference images. At the end of these steps, the
inference phase will only use the generator subnetwork for
image generation.

2.2 uPIX outperforms state-of-the-art
denoisers on CSBDeep denoising
benchmark dataset

Image denoising and restoration are central challenges in
the analysis of microscopy data. To assess the accuracy
of our workflow, we chose to use the CSBDeep Denoising
Dataset as a benchmark dataset to evaluate our approach
[20]. This dataset, derived from the Broad Bioimage Bench-
mark Collection [48], comprises pairs of clean reference
images containing cell nuclei and their corresponding arti-
ficially noised counterparts from the human U20S cell line.
The noising involves synthetically adding significant read-
out and shot noise, along with additional 2 X 2 pixel binning
to mimic acquisitions at very low light levels. To evaluate
our workflow comprehensively, we used a set of denoising
and image restoration quality metrics. We employed the
mean-squared error (MSE) as a measure of signal-to-noise
ratio by comparing the reference clean images to the images
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generated by uPIX from the noisy image. The Structural
Similarity Index (SSIM) was used to measure the preserva-
tion of overall object shapes.

We compared our approach, pPIX, against a range
of image denoising algorithms, including both traditional
non-deep learning-based methods and deep learning-based
models. The non-deep learning-based methods include Low-
Pass filtering, TVD [2], NLM [1], and BM3D [3]. For deep
learning-based approaches, we evaluated our pPIX along-
side CARE [20], the Residual Channel Attention Network
(RCAN) [24], and the “Denoise Nuclei” model from CellPose3
[23], which are all based on UNET-like architectures. To
ensure a fair comparison and minimize bias in generaliza-
tion, we trained both CARE, RCAN and yPIX from scratch
using the same dataset. However, for the Denoise Nuclei
model from CellPose3, we used the provided pre-trained
version, as there is currently no publicly available method
to train this denoiser from scratch on a custom dataset.

Finally, we evaluated these architectures and our
approach concurrently on the same test dataset consisting
of various nuclei images extracted from the original bench-
mark dataset and we averaged the metrics. As shown in
(Table 1) and (Table 2), our approach clearly outperforms
all compared methods, including both non-deep learning-
based and deep learning-based denoising algorithms, in
terms of signal-to-noise ratio and structural preservation.
For the best algorithms, CARE, we improved MSE by 51 %
and SSIM by almost 4 % (MSE: 117.68, SSIM: 0.94). This

Table 1: MSE and SSIM metrics for evaluating the quality of denoised
images. Mean Squared Error (MSE) and Structural Similarity Index (SSIM)
are used to assess the quality of denoised images. The performance of
HPIX is compared against both traditional non-deep learning-based
methods (Low-Pass Filter, Total Variation Denoising (TVD), Non-Local
Means (NLM), and Block Matching 3D (BM3D)) and deep learning-based
methods (CellPose3 Denoise Nuclei, Residual Channel Attention Network
(RCAN), and CARE). MSE and SSIM are computed between the noisy and
denoised images from the CSBDeep Denoising Benchmark Dataset test
set. For reference, the “Raw” row represents the metrics between the
original noisy image and the clean (ground truth) image. Bold values
means best scores in terms of MSE and SSIM.

MSE SSIM
Raw 2,434.03 0.491
Lowpass filter 887.64 0.688
TVD 749.18 0.733
NLM 741.06 0.742
BM3D 509.48 0.834
Denoise Nuclei (Cellpose3) 1,457.07 0.656
RCAN 505.86 0.825
CARE 241.26 0.90
UPIX 117.68 0.948




DE GRUYTER

G.Bonetal.. yPIX = 219

Table 2: Denoising results on the CSBDeep Benchmark Dataset, including #PIX. *Traditional non-deep learning-based denoising algorithms. **Deep

learning-based denoising algorithms, including our proposed method pPIX.

Raw Lowpass*

superiority can be attributed to several factors: the adver-
sarial process helps the generator produce more realistic
and high-quality images, the conditioning provides more
context-aware denoising capabilities, and the adversarial
loss, compared to pixel-wise loss, encourages the generation
of sharper and more structurally accurate images.

2.3 uPIX improves binary segmentation
quality when used as an image denoiser
in the preprocessing steps

Object segmentation is another fundamental task in image
analysis and a good preprocessing of images can greatly
enhance further binary segmentation performance. We
then wanted to assess how yPIX performs as the main
image denoiser in a segmentation workflow (Figure 2).
We chose to evaluate yPIX against both CARE and Cell-
pose3 “Denoise Nuclei” as preprocessing steps to enhance
image segmentation. As we did not have segmentation

ground truth included in the CSBDeep Denoising Dataset
and given its robustness and superior performance in seg-
menting nuclei, we relied on Stardist [49] as image seg-
mentey, using its pre-trained model “2D_versatile_fluo” to
infer binary segmentation from clean images which served
as the reference for perfect segmentation. Using the same
test dataset previously described, we assessed the impact
of different preprocessing methods on binary segmentation
performance using classical segmentation metrics: Inter-
section Over Union (IoU), Precision, Recall, and F1-score.
IoU measures the overlap between predicted and true seg-
mentations, offering a direct measurement of segmenta-
tion accuracy. In the context of binary segmentation, Pre-
cision and Recall are crucial for understanding the bal-
ance between over-segmentation and under-segmentation.
Precision indicates the proportion of true positive results
among all positive predictions, thereby reflecting the extent
of over-segmentation due to false positives. Recall indicates
the proportion of true positives among all actual positives,
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Figure 2: Workflow describing the evaluation process for denoising performance in binary segmentation. To assess the quality of binary
segmentation after image denoising by various softwares, pairs of noisy and clean images are used. The noisy images are processed through each of
the denoising algorithms: CARE, Denoise Nuclei, and ¢PIX (in blue). The denoised images are then fed into either the Stardist or CellPose3
segmentation models (purple). In parallel, the clean image is also processed by these segmentation models (purple). The resulting binary mask from
the clean image serves as the ground truth and is compared with the binary masks generated from the denoised images (orange). The IoU, Precision,

Recall, and F1-score metrics are then calculated for performance evaluation.

highlighting the degree of under-segmentation caused by
false negatives. The Fl-score, as the harmonic mean of Pre-
cision and Recall, provides a single metric that balances
both aspects, ensuring a robust evaluation of binary seg-
mentation performance. As shown in (Table 3) and (Table 4),
using uPIX as a preprocessing step for segmentation outper-
forms the other methods across all metrics, yielding the best
results in terms of IoU (0.861), Recall (0.903), and F1-score
(0.9253) on the test dataset. Although CARE achieved the
highest Precision score (0.9537), uPIX maintained a strong
balance with its high Recall. We then assessed whether
our approach could be generalized to other state-of-the-art
segmentation tools. We used the Cellpose3 segmenter as a
reference and employed CARE, Cellpose3 “Denoise Nuclei”,
and uPIX as preprocessing steps to benchmark segmen-
tation quality using the same metrics and test dataset. As
shown in (Table 3) and (Table 4), uPIX yielded again the
best overall results across the defined segmentation met-
rics (IoU: 0.861, Recall: 0.903, and F1-score: 0.9253). Addi-
tionally, switching from Cellpose3 “Denoise Nuclei” to 4PIX
within the Cellpose3 workflow improved the Fl-score by
nearly 3% meaning that the actual CellPose3 workflow
could be improved by using a trained yPIX as denoiser.
Consequently, #PIX is not only a strong candidate for pure

image denoising but also enhances performance when used
in conjunction with state-of-the-art models in the context of
binary image segmentation.

2.4 uPIX enables effective rejuvenation
of microscope detectors

A major challenge faced by all microscopy platforms is the
aging of equipment, which inevitably introduces acquisi-
tion artifacts, making it increasingly complex to analyze
acquired data. To demonstrate yPIX capabilities toward
the challenge of hardware senescence, we chose to simu-
late one specific case: detector rejuvenation. To this end,
since we based our architecture on a supervised approach,
we chose to simulate detector degradation by building a
dedicated dataset consisting of pairs of images acquired
simultaneously using an older Multi-Alkali detector [50]
and its newer and more performant counterpart using a
GaAsP detector [51]. We acquired this tailored dataset using
a biphoton system able to generate two images at the same
position within the sample as illustrated in (Figure 3). This
microscopy setup freed us from the tedious steps of image
re-alignment during the acquisition and the dataset pre-
processing steps. Furthermore, it allowed us to maintain
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Table 3: Segmentation metrics using Stardist and CellPose3 as Segmenter. Noisy images from the CSBDeep Benchmark Dataset were denoised using
CARE, Denoise Nuclei, and uPIX. The denoised images were then segmented using either StarDist or CellPose3. Segmentation metrics (IoU, Precision,
Recall, F1-score) were calculated by comparing the binary segmentations of clean and denoised images for both StarDist and CellPose3. Bold values

means best scores in terms of MSE and SSIM.

IoU Precision Recall F1-score

Stardist Raw 0.7441 0.9226 0.7936 0.8532
CARE (CSBDeep) 0.7895 0.9647 0.813 0.8824

Denoise Nuclei (Cellpose3) 0.801 0.9622 0.8273 0.8897

UPIX 0.8471 0.9597 0.8783 0.9172

CellPose3 Raw 0.7342 0.8967 0.802 0.8467
CARE (CSBDeep) 0.8032 0.9537 0.8358 0.8908

Denoise Nuclei (Cellpose3) 0.8167 0.9524 0.8514 0.8991

UPIX 0.861 0.9488 0.903 0.9253

Table 4: Binary segmentation results on the CSBDeep Benchmark Dataset. (Top) Three noisy input examples from the CSBDeep Dataset, along with
their denoised counterparts generated by CARE, Denoise Nuclei, and uPIX, followed by the ground truth. (Middle) Binary segmentation results
alongside the ground truth mask. (Bottom) Visual representation of segmentation differences: in white false positive, in black false negative and in

light gray true positive and dark gray true negative.

Noisy CARE Denoise Nuclei

a supervised learning context mandatory for our Pix2Pix
architecture. As we wanted to be as close as real use cases,
we decided to use hiological samples consisting of Gastru-
loids [52]. We acquired two complete stacks, one serving
as a training/validation set and the other one as a test
set (see Methods). We trained uPIX from scratch on this
training dataset taking as input the image acquired with
the Multi-Alkali detector and considering the correspond-
ing image acquired with the GaAsP detector as ground
truth. To conclude whether the detector rejuvenation was
effective, we decided to check for three different features
on image preservation: image quality, intensity preserva-
tion along the Z-axis, linear preservation of pixel intensity
level between the original and rejuvenated detector. We

used MSE and SSIM metrics between images acquired with
GaAsP detector and predicted images to assess the qual-
ity of the detector rejuvenation. We chose to compare our
approach only to CARE because, as of today, there is no
published way to train or fine tune a Cellpose3 “denoise
nuclei” model on its own dataset. As shown in (Table 5) and
(Supplementary Table 1), our approach greatly improves
SNR and the quality of structure restoration. Moreover, we
can see that yPIX successfully handled challenging restora-
tion tasks, such as delineating detected objects, managing
complex structures, addressing intense contrast variations
(both low and high) and reconstructing objects even in cases
where limited information was available. These results
demonstrate that our approach is effective and reliable for
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Figure 3: Schematic of a two-photon microscope optical path. Shown here are the two detection channels for the fluorescence signal generated by
two-photon absorption. The Non Descanned channel, positioned closest to the objective, is the most sensitive. The GaAsP detectors are new and
provide a reference signal optimized for learning. The detection path through the scan head is generally less efficient, even if the pinholes are
completely open to collect the scattered emission photons. Multi-Alkali detectors are functional but obsolete, over 15 years old, and will be used to
detect ground truth. The signals detected on both types of detectors are almost spatially aligned.

Table 5: Denoising results on Microscope Rejuvenation Test Dataset. Images acquired using the Multi-Alkali detector from different regions with
varying pixel intensities were processed by CARE and yPIX, and then compared to the original images obtained with the GaAsP detector.

Multi-Alkali CARE puPIX GaAsP

enhancing image quality by compensating the Multi-Alkali Moreover, as it is well known that the signal qual-
detector aging in generating images resembling to thoses ity diminishes along the Z-axis during a confocal acqui-
acquired with a GaAsP detector. sition due to light scattering, light absorption, refractive
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Figure 4: Evaluation of intensity and structural preservation along the Z-axis using the Microscope Rejuvenation Test stack. (A) MSE between
Multi-Alkali and GaAsP (blue), CARE and GaAsP (orange), uPIX and GaAsP (green) (B) SSIM between Multi-Alkali and GaAsP (blue), CARE and GaAsP

(orange), #PIX and GaAsP (green).

index mismatch, photo-bleaching and detector sensitivity,
we wanted to assess how yPIX compensates for these arti-
facts. To do so, we started by measuring these effects by
comparing the MSE between an older Multi-Alkali and a
newer GaAsP detector for every slice along the Z-axis of
the test stack. As shown in (Figure 4A), there is a quasi-
exponential difference in terms of MSE as we go deeper into
the stack along the Z-axis. This is explainable by the fact that
Multi-Alkali detectors are more prone to the signal intensity
attenuation effect compared to the newer GaAsP detectors.
We then compared our predicted images to GaAsP and we
see that the difference is far more prone than before and
quasi-linear in terms of MSE and SSIM (Figure 4B) as we
go down into the stack along the Z-axis. This means that
even if our approach is not able to abolish completely these
artifacts, our results in terms of signal intensity are very
close and resemble those we would have obtained using
GaAsP detectors (Supplementary Table 5).

We next aimed to determine whether the images gener-
ated by uPIX could be reliably used for quantitative imaging
analysis. To do this, we evaluated whether ¢PIX maintains
a consistent response at different levels of pixel intensity
when compared to images acquired using GaAsP detectors.

As shown in (Figure 5A), pixels ranging from 0 to nearly 60 %
of maximum intensity (representing approximately 95 % of
the total pixels in the test images) are restored with near-
perfect linearity by pPIX. In contrast (Figure 5B), shows
that this consistency is not maintained by CARE. For pixel
intensities greater than 60 % and the maximum (represent-
ing around 5 % of the image pixels), we observe moderate
deviations from perfect restoration. However, this concerns
only a small fraction of the pixels, most of which are sat-
urated and therefore contain limited or non-informative
data, making these deviations negligible for most practical
purposes.

These results suggest that using ¢PIX for detector reju-
venation opens the possibility for users to conduct quantita-
tive imaging in the same way as if they were using a GaAsP
detector directly.

3 Discussion

A common concern among microscope users is the validity
of AI generated images, as these are synthetic and may not
be suitable for further analysis. The rise of generative Al has
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Figure 5: Evaluation of signal linearity preservation using the Microscope Rejuvenation Test Dataset. (A) Mean intensity differences for pixel intensity
ranging from 0 (no intensity) to 100 (maximum intensity) between Multi-Alkali and uPIX (blue), Multi-Alkali and GaAsP (orange), GaAsP and uPIX
(green). The dashed line corespond to a perfect linearity. (B) Mean intensity differences for pixel intensity ranging from 0 (no intensity) to 100
(maximum intensity) between Multi-Alkali and CARE (blue), Multi-Alkali and GaAsP (orange), GaAsP and CARE (green). The dashed line corresponds to

a perfect linearity.
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underscored the need to expand the family of perceptual
metrics, focusing on human perception to validate such
images. The two most widely used perceptual metrics are
the Frechet Inception Distance (FID) and the Inception Score
(IS) [53], [54]. These metrics utilize a pre-trained Inception
network on the ImageNet 10 k dataset [55] and measure
the Wasserstein distance and KL-divergence, respectively,
between the embeddings of real and generated images.
While these metrics are effective for well-structured images,
they may be problematic in the context of image denois-
ing. They tend to prioritize structural conservation over
the preservation of overall distribution. Moreover, since
these metrics rely on features extracted from a network
pre-trained on a generalist images database, they may not be
suitable for microscopic images. Microscopic images often
contain subtle artifacts that may not align well with the
features learned by the Inception model. To our knowledge,
there is no perceptual metric specifically adapted to the
nature of microscopic images that can effectively capture
their unique feature space and accurately measure their
perceptual quality. In line with previous attempts to assess
image quality through human evaluation [56], we decided
to adopt a similar approach. We designed an experiment
involving 27 participants. These individuals were familiar
with biological imaging but had no specific knowledge of
the image categories or the methods used to generate them.
Each participant completed seven rounds of evaluation,
with each round consisting of four images: two generated

DE GRUYTER

by algorithms (xPIX and CARE) and two acquired through
real detectors (Multi-Alkali and GaAsP), representing four
distinct image categories. For each round, participants were
asked to rate each image on a scale from 1 to 4, where 1
indicated the image was highly suitable for analysis, and
4 indicated it was completely unsuitable. The ratings for
each image category were collected and their distributions
are shown in (Figure 6). We conducted a statistical analysis
between categories using the Wilcoxon non-parametric test.
The evaluation results revealed that, as expected, a newer
detector yields higher perceived image quality, as evidenced
by a statistically significant distinction in human percep-
tion between images acquired with the older Multi-Alkali
detector and those from the newer GaAsP detector (p —
value = 7.87 X 10~7). We then compared the older Multi-
Alkali images to both the CARE and uPIX generated images.
Interestingly, in terms of human perception, the Multi-Alkali
images and those enhanced by CARE were not judged to
be significantly different, indicating that the enhancements
applied by CARE do not improve the perceived usabil-
ity of the images for analysis (p — value = 0.6151). In con-
trast, uPIX images were perceived as more usable for
analysis when compared to Multi-Alkali (p — value = 6.63 X
10~1%) and remarkably as more usable than those obtained
from GaAsP detectors (p — value = 7.23 X 10%). From a
broader perspective, it appears that, despite its effective-
ness in enhancing images, CARE (built on a convolutional
autoencoder architecture) fails to convince users of its full

Human Ratings (%)

Multi-Alkali CARE HPIX

Rating
N 1 (Best)
- 2

3
4 (Worst)

GaAsP

Figure 6: Evaluation of image quality by human observers. Stacked bar plot illustrating the distribution of human ratings for four image acquisition
methods: Multi-Alkali, CARE, uPIX, and GaAsP. Each stacked bar represents the percentage of total ratings for each method, with the sum of ratings
normalized to 100 %. The ratings range from 1 (best: dark blue) to 4 (worst: light blue). The distribution reflects the overall quality perception across

the different image types based on human evaluations.
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applicability for image analysis. This is likely due to the
known tendency of such networks to introduce blurring
and smooth out structures [57]-[59]. In contrast, generative
approaches based on Pix2Pix networks aim to maintain the
visual coherence of textures and structures while reducing
noise. This leads to more realistic images that are better
evaluated by human observers, and perceived similarly to
real images captured by more advanced detectors.
Currently, the predominant paradigm for using Deep
Learning in image treatment and analysis revolves around
the use of U-Net networks, as seen in tools like CARE, Cell-
Pose3 or RCAN. The main advantages of these networks
include their ease of training and deployment by non-
specialist users, thanks to their training stability and the rel-
atively short training time required to achieve good-quality
results. This user-centered approach allows anyone to effi-
ciently train their own model from scratch using their own
dataset. However, we consider this approach unsustainable
as it operates at the end of the imaging pipeline without
addressing upstream factors such as hardware defects and
specificities. Our uPIX workflow proposes an alternative
paradigm, shifting from a user-centered to a hardware-
centered perspective for model development and training.
We envision that such a workflow should be developed over
the long term by microscopy platforms to directly address
hardware constraints and gradually build robust and flex-
ible models for personalized microscopy. While it is well
known that training GANs has disadvantages compared to
U-Nets such as longer training times (ranging from hours
to days), training instability that can lead to mode collapse,
and the challenge of determining an optimal stopping cri-
terion; the results we present in terms of image denois-
ing, segmentation, and hardware rejuvenation suggest that
investing effort in developing models tailored to specific
hardware by a deep learning specialist could be more bene-
ficial. These models could then be shared by many users, as
opposed to the current practice of many users developing
rather identical models for the same hardware. In the era
of frugal AI, we believe that our approach has the potential
to save significant resources, both in terms of user time
and global computational costs. Additionally, it is impor-
tant to recognize that the ground truth datasets provided
to uPIX are not of infinite quality and do not encompass
every possible microscope artifact requiring correction. As
the pix2pix architecture is based on a supervised learning
approach, the system is inherently limited by the quality
and variety of the images included in the training set. Con-
sequently, 4PIX cannot generate images of higher quality
than those contained in the dataset, implying that it does
not effectively correct hardware defects but rather learns
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to replicate them, producing images that closely resemble
the ground truth provided.

Our approach opens up a wide range of possibilities for
enhancing microscopy acquisition workflows and setups.
Live imaging applications that require high prediction rates
could particularly benefit from the use of yPIX. A major
limitation of live imaging is phototoxicity, caused by the pro-
longed use of lasers. By utilizing a yPIX model pre-trained
on a custom dataset with varying laser intensities, laser
power can be reduced, potentially extending the lifespan
of the samples being imaged and improving the image SNR.
While the adversarial training process of Pix2Pix networks
is time consuming, the inference stage is relatively fast, as
it only involves the network generator part, a lightweight
UNET network. Benchmarking performed on an Nvidia
A6000 GPU with 48 GB of VRAM revealed that 4PIX can
process 473 images of size 256 X 256 per second, 119 images
of size 512 x 512, and 31 images of size 1024 X 1024. These
results demonstrate that real-time image correction during
live imaging sessions is highly feasible, suggesting that such
models can be seamlessly integrated into existing micro-
scope setups. We have also begun exploring the application
of uPIX for post-acquisition correction of temperature and
oil refractive index mismatches.

We also explored whether an unsupervised approach
could yield better results. The primary limitation of yPIX
stems from the fact that Pix2Pix relies on a supervised
learning architecture, which requires paired ground truth
images registered in the same position for training. To
address this, we investigated the use of CycleGAN architec-
tures, which only require unpaired images under different
conditions, which makers it easier to construct a training
dataset. While the results were acceptable, the image quality
was noticeably lower compared to what we achieved with
Pix2Pix. We believe that this limitation could be mitigated
by developing a more robust and diverse dataset (Supple-
mentary Table 2).

While emerging models such as diffusion networks
and transformer architectures, particularly Visual Trans-
formers (ViT), hold great promise for image generation
and vision-related tasks, we remain cautious about apply-
ing diffusion models in our context. The main challenge is
that state-of-the-art diffusion models are typically trained
on large, general-purpose datasets with millions of images,
which does not align with the specialized datasets used in
microscopy. Furthermore, these models are rarely trained
in a supervised manner. Another concern is that for real-
time denoising applications, such as live imaging, the image
generation process in diffusion models is too slow due to the
sampling cycles required during inference. Despite these
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limitations, we investigated EM Diffuse [41], a supervised
diffusion model developed for electron microscopy, which
we retrained on our own datasets. We provide preliminary
results as a point of comparison (Supplementary Table 3).

In conclusion, our work introduces yPIX as an innova-
tive solution to the pressing challenges of microscopy image
denoising and restoration, effectively tackling issues aris-
ing from aging hardware and acquisition artifacts. Through
rigorous comparisons with established denoising methods
either non or deep learning-based, we have demonstrated
that uPIX significantly enhances image quality, preserves
structural integrity, and improves object segmentation accu-
racy. Our findings indicate that yPIX excels in rejuvenat-
ing images captured by older detectors, effectively bridging
the gap to newer technologies while compensating for arti-
facts associated with light absorption along the Z-axis and
maintaining a quasi-linear relationship in pixel intensity
between the original and rejuvenated detector. By adopting
a hardware-centered paradigm for model development, we
emphasize the importance of creating specialized solutions
tailored to specific microscopy setups, promoting a sustain-
able approach to image analysis that reduces computational
burdens on users. Furthermore, our research underscores
the transformative potential of ¢PIX in microscopy work-
flows, enabling researchers to confidently analyze synthetic
images that closely mimic those obtained from advanced
detectors. This work paves the way for future advancements
and developments in generative Al for microscopy plat-
forms, ultimately supporting the pursuit of more accurate
and reliable imaging outcomes.

4 Materials and methods

4.1 Microscope setups

Fluorescence imaging was performed on a Zeiss LSM510
confocal scanning microscope (CLSM) equipped for two-
photon imaging. The excitation laser is a Spectra Physics
Mai Tai infrared tunable laser, used at 900 nm for the scope
of these experiments. The scan head is mounted on a Zeiss
Axiovert200M stand. We used a Plan-Apochromat 20x/0.75
Numerical Aperture objective. The room is well stabilized
and controlled at a temperature of 21 °C (+1 °C). The stand
and sample environment was isolated in a black-painted
incubation chamber, providing light isolation to prevent
external signal pollution. The heating unit is not on, but
the presence of the chamber still further helps with the
temperature stability of the sample environment. Two beam
paths were exploited for fluorescence detection. First, the
more efficient non-descanned (NDD) beam path using two
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specially integrated Hamamatsu GaAsP detectors (new inte-
gration work in 2021 by ALPhANOV company). The detec-
tion range is set by filters from [500/550] nm for the green
channel (the red channel was acquired but not used for the
training). Second is the descanned configuration, using the
internal Multi-Alkali PMT old detector of the scan head after
the pinhole was fully opened. Filter sets of the internal beam
path are chosen to fit a detection range as close as possible
to the range of the NDD configuration of [500/550] nm. The
system driving the acquisition software is Zeiss Efficient
Navigation (ZEN) version 2009. To generate data without
acquiring the same area, we use the tiling option with the
overlap set to 0 %.

4.2 Two photons imaging

One-color two-photon imaging of immunostained samples
was performed on an inverted Zeiss LSM510 confocal as
described above. Multiposition imaging was used to auto-
matically acquire image Z stacks on multiple gastruloids
mounted on the same sample slide. The sampling parame-
ters remain the same for all samples (pixel width 0.62 pm,
voxel depth 1.2 pm), with 114 identical sections acquired
sequentially on the GaAsP and Multi-Alkali detectors, reach-
ing a depth in Z of 137 pm. The images were acquired with
the full field-of-view (318 pm). The power of laser excitation
and gains of detectors are optimized to exploit detector
dynamics (8 bits) while avoiding any saturated pixels.

4.3 Microscope rejuvenation dataset

4.3.1 Sample preparation

Gastruloids were generated using the protocol described
previously in [52], from a H2B-GFP mouse embryonic stem
cells line (a generous gift from Kat Hadjantonakis). Briefly,
200 cells were seeded and aggregated for 48 h in low-
adherence 96-well plates (Costar ref: 7007) and subse-
quently pulsed with the Wnt agonist Chiron, which was
washed out after 24 h, i.e.at 72h of aggregate culture.
We imaged 96 h old gastruloids, which exhibited polarized
morphologies.

4.3.2 Dataset construction

As a result, we acquired 10 stacks of size 512 X 512 pixels
with depth varying from 22 to 130 slices. Among those, we
used 8 stacks to train/validate our model and two stacks
to test the model. For the preparation of training and val-
idation data, we tiled images into smaller regions of size
256 X 256 pixels with an overlap of 64 pixels to ensure
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comprehensive coverage. Employing a reflect mode for tile
border padding helped mitigate any potential blank spaces
resulting from the overlapping procedure. Furthermore, to
standardize image intensity distributions, we applied per-
centile normalization between 1 and 99 %, resulting in pixel
values ranging from —1 to 1. During the training phase, we
implemented data augmentation using the Albumentations
[60] Python library. We decided to include transformations
consistent with the biological objects used. We then used
shift scale rotate, elastic transformation, optical distorsion,
randomrotate90 and horizontal/vertical flip.

4.4 Objectives

4.41 GAN objectives

GANs are generative models that learn a mapping from a
random noise vector z to an output image y using a genera-
tor network G, which can be either an encoder-decoder or a
U-Net:

G(z) -y

The generator G is trained to produce outputs that
are indistinguishable from real images by an adversarially
trained discriminator D, which aims to correctly distinguish
real images from generated ones. The standard GAN objec-
tive is:

Lsan(G, D) = E,[log D(y)] + E,[log(1 — D(G(2)))].

In contrast, conditional GANS (cGANSs) learn to map
an observed condition x and a random noise vector z to a
corresponding output y:

G(x,z) >y
The cGAN objective is given by:
L.an(G,D) = [Ex7y[log D(x, y)]
+ E, ,[log(1 — D(x, G(x, 2)))]

Pix2Pix is a special case of cGANs where the goal is to
condition the output image to resemble the input image as
closely as possible, eliminating the need for the noise vector
z. In this case, the generator learns a direct mapping from
the input image to the output image:

Gx)—>y

To enhance the similarity between the generated image
and the ground truth, a L; reconstruction loss is incor-
porated. This loss encourages the generator to produce
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outputs that closely resemble the target image by mini-
mizing the absolute differences between the correspond-
ing pixel values, thereby preserving structural details and
reducing large deviations in pixel intensities. To control the
trade-off between adversarial loss and reconstruction loss,
a weighting factor A is introduced. The objective function of
Pix2Pix can be written as:

Loiapix(G. D) = E, y[log D(x, y)] + E,[log(1 — D(x, G(x)))]
+ A(Egyllly — GOOIl4)

Finally, the full Pix2Pix objective can be formulated as
a Min-Max optimization problem, which defines the adver-
sarial game between the generator G and the discriminator
D, where G* represents the optimal generator that solves
this Min-Max problem:

(G,D)

. _ .
G* =arg memgxﬁpinpiX

4.4.2 uPIX objectives

Our architecture is a variant of the classical Pix2Pix that
introduces several key modifications to improve perfor-
mance. First, rather than using a single balancing hyper-
parameter A, we introduce two distinct weight parameters,
w; and w,, to independently regulate the contributions of
adversarial loss and reconstruction loss, respectively. Sec-
ond, we replace the L, loss with an L, loss, which has been
shown to provide better results in terms of image generation
quality in our setup. Third, as the discriminator in uPIX is
a PatchGAN, which operates by classifying local patches of
theimage, rather than the entire image, we defined the 4PIX
objective function as:

N
1
[“,upiX(G’D) = wl([EX’y N & 10g D(Xiayi)]
1 N
+E, N log(1— D(x;, G(xi)))] >
i=1

+ 1w, (Eyy [Ily — GOOI3])

where D(x;,y;) and D(x;,G(x;)) are the discriminator
PatchGAN’s outputs for the i-th patch of the real image y
given the input image x and the generated image G(x) given
the input image x, respectively, and N is the number of
patches in the image. Finally, the full 4PIX objective can be
formulated as:

G" =arg mGin max L ,pix(G, D)
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4.5 Losses

4.5.1 Reconstruction loss for image generation
(generator loss)

The Mean Squared Error (MSE) quantifies the average
squared difference between the pixel values of the real and
generated images. Given two images, Y (real) and ¥ (gener-
ated), each of dimensions H X W, the MSE is computed as:

w
yl] yl]
j=1

™M=

MSE(Y, ¥) = L
HW 4

i

|l
—
.

where y; ; represents the pixel intensity of ¥ at spatial loca-
tion (i, ), and J; ; denotes the corresponding pixel intensity
inY. Alower MSE value indicates that the generated image Y
is closer to the real image Y in terms of pixel-wise similarity.

4.5.2 Discriminator loss for patch classification

The Binary Cross-Entropy (BCE) measures the difference
between the predicted probability that a given image patch
is real and the true label (real or fake) of that patch. Given
a patch with true label p € {0,1}, where p =1 indicates a
real patch and p = 0 indicates a fake patch, and the pre-
dicted probability p, the BCE loss is computed as:

BCE(p, p) = —[p log(p) + (1 — p)log(1 — p)]

4.5.3 Adversarial loss for uPIX network

The adversariallossis derived from the ¢ PIX objective func-
tion, which combines both discriminator and reconstruc-
tion losses, and the user chosen parameters w; and w;

uPIX loss(Y, ¥) = w, - MSE(Y, ¥) + w, - BCE(p, p)

4.6 Metrics

4.6.1 Evaluation metrics for image generation

We evaluated the performance of our image generation
using two common metrics: MSE (described above) and
Structural Similarity Index (SSIM).

SSIM measures the perceptual similarity between the
real and generated images by considering luminance, con-
trast, structure and is computed as follows:

SSIM(Y, ¥) =
(uzy + o+ Cl)(af, +ol+0)
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where Y and ¥ represent the real and generated images,
respectively. The terms uy and u; are the mean pixel inten-
sities of ¥ and ¥, while 012, and ag represent their variances.

The covariance between Y and ¥ is given by 64, and C; and
C, are small constants to stabilize the division.

SSIM provides a more perceptually relevant measure
of image quality, as it accounts for structural information,
which is often more aligned with human visual perception
compared to pixel-wise differences captured by MSE.

4.6.2 Evaluation metrics for image segmentation

Intersection Over Union (IoU) is a common metric used to
evaluate the performance of segmentation models.

Given two binary segmentation masks, S;,..q (predicted)
from a generated image and Sy (ground truth) from a real
image, where each pixel is either 0 (background) or 1 (fore-
ground), the IoU is defined as:

card({(i, ) | Sprea(i, j) = 1 and Sy (i, j) = 1})
card ({(i, /) | Spreali, J) = 101 Sy (i, j) = 1})

IOU(Spred’ Sgt) =

The IoU value ranges from 0 to 1, and a higher IoU score
indicates that the model segmentation S,.q more closely
matches the ground truth Sg;.

Precision measures the
predictions.

Given two binary segmentation masks, S,,..q (predicted)
from a generated image and Sy (ground truth) from a real
image, where each pixel is either 0 (background) or 1 (fore-
ground), precision is defined as follows:

accuracy of positive

card({(, /) | Sprea(i, /) = 1 and Sy (i, j) = 1})

Precision(Syreq. Sg) = card({(i. ) | Syrealis ) = 1})

Recall quantifies the model’s ability to identify all rele-
vant positive instances.

Given two binary segmentation masks, .4 (predicted)
from a generated image and S, (ground truth) from a real
image, where each pixel is either 0 (background) or 1 (fore-
ground), recall is defined as:

card({(i, /) | Sprea(i, ) = 1and Sy (i, ) = 1})
card({(i. ) | S4(i. ) =1})

Recall(Syyeqs Sgt) =

The Fl-score is the harmonic mean of Precision and
Recall, providing a single metric that balances both aspects.
Given two binary segmentation masks, S,.q (predicted)
from a generated image and S, (ground truth) from a real
image, the Fl-score is defined as:

Precision(Syreq, Sgr) X Recall(Spreqs Sgr)

F1 — score(S, eq, Sot) = 2 X —
(Sprea- Sgt) Precision(Syyeq, Sg) + Recall(Syreq» Sgr)
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4.7 uPIX architecture

Based on Pix2Pix, our architecture consists of a gener-
ator and a discriminator. The generator follows a U-Net
architecture with an EfficientNet-B0O backbone [45], imple-
mented using the TensorFlow Segmentation Model library
[61], while the discriminator employs a PatchGAN classifier
[44], [62].

4.7.1 Generator encoder

The encoder of our U-Net generator is based on the Effi-
cientNet architecture, which is optimized for both accu-
racy and computational efficiency. EfficientNet employs a
multi-objective neural architecture search to balance model
accuracy with floating-point operations per second (FLOPS).
The encoder is composed of several stages, each utiliz-
ing Mobile Inverted Bottleneck Convolutions (MBConv) [63]
with varying kernel sizes, enabling the model to efficiently
capture hierarchical features. These blocks integrate three
key components: the expansion layer, depthwise separa-
ble convolution [64], and the squeeze-and-excitation (SE)
module [65]. The expansion layer increases the number of
channels before processing, allowing the network to learn
richer representations. Depthwise separable convolution
reduces computational cost by applying spatial convolu-
tions independently to each input channel, followed by a
pointwise 1X 1 convolution to fuse channel information.
The SE module dynamically recalibrates feature maps by
adaptively weighting channels based on their importance.
Starting with an initial convolutional layer, the architecture
sequentially applies MBConv blocks with different dilation
factors and depths, progressively reducing spatial resolu-
tion while expanding the number of channels. This progres-
sive structure is specifically designed to maximize perfor-
mance while minimizing computational cost. Furthermore,
the integration of squeeze-and-excitation optimization in
every MBConv block enhances the model’s capacity to focus
on the most salient features, allowing the encoder to learn
rich, discriminative feature representations. yPIX uses an
EfficientNet-BO backbone consisting of 7 stacked MBConv
blocks with varying expansion factors and convolution ker-
nel sizes. Additionally, we opted for a non-pretrained ver-
sion of EfficientNet-B0 in the generator. This decision helps
maintain a balanced training dynamic between the gener-
ator and the discriminator, preventing a situation where
a pretrained generator might overpower the discriminator
due to its stronger initial performance, which could hinder
effective adversarial learning [47].
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4.7.2 Generator decoder

The decoder part of our U-Net generator follows a progres-
sive upsampling approach to restore the spatial resolution
of feature maps. It consists of five upsampling stages fol-
lowed by two consecutive 3 X 3 convolutional layers with
ReLU activation. At each stage, the upsampled feature maps
are concatened with skip connections from the encoder,
allowing network to recover fine-grained spatial details that
where lost in the downsampling process. This concatena-
tion is performed along the channel axis to preserve mul-
tiscale contextual information. The number of filters used
at each decoding stage follow the sequence (256, 128, 64, 32,
16) ensuring a gradual reduction in feature complexity as
spatial resolution increases. The final layer of the decoder
applies a 3 X 3 convolution with a single output channel
(for grayscale image generation) and a hyperbolic tangent
activation function. This ensures that the output pixel val-
ues are mapped to the [-1,1] range. This choice ensures that
the generated images are consistent with the normalized
pixel values of real images, where the pixel values are
centered around zero. By maintaining this symmetry, the
model avoids biases that could arise from a non-centered
range, improving training stability and enabling smoother
convergence in the adversarial learning process [44], [66].

4.7.3 Discriminator

The discriminator in our architecture is based on a con-
volutional PatchGAN model, which distinguishes hetween
real and generated image patches. The core idea behind
PatchGAN is to classify patches of the input images as either
real (from the true target image) or fake (from the generated
image), rather than evaluating the entire image as a whole.
While alternative patch sizes such as1x 1and 70 x 70 could
have been considered, original results on Pix2Pix [44] have
shown that smaller patch sizes, such as 1 X 1, focus primar-
ily on color diversity but lack spatial consistency, making
them less effective for capturing detailed textures. On the
other hand, larger patch sizes, like 70 X 70, tend to enforce
sharper outputs, but they may introduce unrealistic arti-
facts due to the mismatch in scale between local and global
image features. Based on these insights, we opted for a patch
size of 16 X 16, as it strikes a balance between capturing
fine-grained details and avoiding overly localized artifacts.
The input to the discriminator consists of image pairs: a real
image and a generated image provided by the generator.
These two are concatenated along the channel axis and
then passed through a series of convolutional layers, each
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designed to progressively extract more abstract features
from the image. Finally, the output is passed through a
sigmoid activation function, which gives a probability score
for each patch, indicating whether it is real or fake. The
discriminator is trained using the BCE loss, which compares
the predicted patch labels with the ground truth.

4.8 Denoising algorithms on CSBDeep
benchmark dataset

To comprehensively evaluate our approach, we compared
uPIX against several established denoising algorithms,
including both non-deep learning-based and deep learning-
based methods.

For non-deep learning-based denoising, we applied
NLM using Python scikit-image restoration package, with
a patch size of 7, a patch distance of 11 and a smoothing
factor of 100. BM3D was implemented via the Python bm3d
package using a standard noise standard deviation of 800
for optimal noise reduction. For the Low-pass filtering, we
applied a Fourier Transform-based low pass filter using the
scipy fftpack library. A cutoff frequency of 0.1 was used to
mask out high-frequency components. For Total Variation
Denoising (TVD), we utilized the denoise_tv_chambolle func-
tion from the scikit-image restorationlibrary. The method
applies a regularization parameter, weight, to control the
strength of the denoising process (weight was set to 1,000).

For deep learning-based denoising, we used the pre-
trained “Denoise Nuclei” model provided in the Cellpose3
distribution. For RCAN, we used a popular PyTorch imple-
mentation [67]. The model was trained for 10 epochs with
a learning rate of 1e* and a batch size of 4 on an A40-
48 GPU. The training was conducted using the MSE loss
function with default parameters for the network architec-
ture, including 64 feature maps, 10 residual groups, and
20 residual channel attention blocks. The CARE model was
trained using the Python cshdeep package using the default
parameters [68].

4.9 uPIX training parameters and inference

Although we rely on the well-known Pix2Pix architecture,
we have developed unique training strategies. Since deter-
mining optimal stopping criteria for generative adversar-
ial networks is challenging, we implemented a custom
early stopping method. At the end of each epoch, the
ratio between the MSE and the SSIM was evaluated on
the validation set. If this ratio reached a new minimum,
the model was saved, and training continued for a set
number of epochs defined by the patience hyperparame-
ter (set to 20 by default). If no improvement was observed
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within the patience period, training was halted. Moreover,
adaptive learning rate scheduling has been introduced for
both adversarial and discriminator losses. If the validation
performance does not improve for a specified number of
epochs (patience), set to 20 by default, the learning rate is
reduced by a factor of 10 %, with a minimum learning rate
of 1e75 to ensure stable training.

All models we developed were trained using Adam
Optimizer, an initial learning rate of 1e=% and 8, = 0.8 for
both generator and discriminator for faster initial conver-
gence. We empirically chose a loss weight imbalance of 10
between BCE and MSE and a batch size of 128. We trained
our models for a maximum of 100 epochs or until the early
stoping is triggered. Our models were trained on a NVIDIA
A6000 GPU with 48 GB of memory. Depending of the dataset
size, the training time takes from 5 h (CSBDeep dataset) to
7 h (our rejuvenation dataset) to converge.

At inference, only the generator component is used and
the pixel range of the generated images was remapped to
[0, 255] for consistency with the original input image format.

4.10 uPIX software

The complete uPIX software package is based on Tensor-
flow 2.14. The source code, pre-trained models, installation
instructions, and detailed usage guidelines, is available on
our GitLab repository: https://gitlab.lis-lab.fr/sicomp/mupix.
We provide dedicated use cases for both inference and
training, along with ready-to-use demonstration notebooks
to facilitate experimentation. To further support users, we
have included video tutorials covering installation, model
deployment, inference and training procedures. In addition,
a reproducibility notebook is provided, allowing users to
replicate the key results presented in this study.
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