SYNTHESIS AND CHARACTERISATION OF SOME ANTIMONY(III) DERIVATIVES OF THE SCHIFF BASE DERIVED FROM SALICYLALDEHYDE AND 2-AMINOTHIOPHENOL

Maya Shankar Singh* and K. Prasada Rao

Inorganic and Organometallic Chemistry Laboratory, School of Studies in Chemistry, Vikram University, Ujjain (M.P.) 456 010, India

ABSTRACT

Some antimony(III) derivatives of Schiff base derived from salicylaldehyde and 2-aminothiophenol have been synthesised by the reactions of antimony trichloride with N-(salicylidene) - o - mercaptoaniline in desired molar ratios. These derivatives have been characterised by elemental analysis, molecular weights, conductivity measurements, IR and (¹H and ¹³C) NMR spectral studies.

INTRODUCTION

Complexes of the title ligand with organotin(IV)¹ have earlier been prepared and characterised from our laboratory. In continuation of our studies on antimony(III) derivatives², we report here the synthesis and characterisation of some new complexes of antimony(III).

RESULT AND DISCUSSION

Dichloro, chlorobis and tris antimony(III) derivatives of N-(salicylidene) - o - mercaptoaniline have been synthesised by the reactions of antimony trichloride with the sodium salt of N-(salicylidene) - o - mercaptoaniline in 1:1, 1:2 and 1:3 molar ratios, respectively.

SbCl₃ + n
$$\stackrel{\text{H}}{\longrightarrow}$$
 $\stackrel{\text{H}}{\longrightarrow}$ $\stackrel{\text{$

Furthermore, a monochloroantimony(III) derivative of N-(salicylidene) - o - mercaptoaniline has been prepared by the reaction of $SbCl_3$ with the disodium salt of N-(salicylidene) - o - mercaptoaniline in a 1:1 molar ratio.

This article is dedicated to (late) Dr. R.J. Rao, S.S. in Chemistry, Vikram University, Ujjain.

All these new antimony(III) complexes were prepared by refluxing the reactants in benzene for about 3-4 hours. The desired product could be isolated by evaporation of the solvent under reduced pressure, after filtering off the precipitated sodium chloride. These were further purified by crystallisation from benzene-petroleum ether ($40^{\circ}-60^{\circ}$) mixture. All there compounds are more or less soluble in common organic solvents like CHCl₃, CCl₄, C₆H₆, DMF, DMSO etc. Conductive measurements in DMF have been made at room temperature using Digisum Electronic Conductivity Bridge. Molar conductance values (below than 55 ohm⁻¹ cm⁻² mole⁻¹) reveal the non-electrolytic³ nature of the complexes. Molecular weight determination in CHCl₃ solution shows monomeric nature of these complexes.

IR Spectral Data

The infrared spectra of these complexes have been recorded in the 4000-200 cm⁻¹ range on a Perkin-Elmer 377 spectrophotometer, using KBr pellets.

The ligand exhibits a v(OH) band at 3100 cm⁻¹ of the intramolecularly hydrogen bonded phenolic OH. The complex 4 do not show this band indicating a deprotonation of the hydroxy group. The Schiff base exhibits a v(SH) band around 2500 cm⁻¹.^{4.5} This band disappears in all the complexes indicating deprotonation and consequent coordination of the sulphur atom to antimony.^{6.9} A v(C=N) (azomethine) band is found around 1620-1640 cm⁻¹ in the ligand. In the complexes this band shifts by 35 cm⁻¹ to lower wave numbers indicating coordination of the azomethine nitrogen to the central metal atom.¹⁰ The ligand exhibits a band between 1295 and 1305 cm⁻¹ due to (C-C-O).^{11 12} In the complex 4, this band shifts to higher energy by 5-15 cm⁻¹ indicating the coordination of the phenolic oxygen.¹³ The v(C-S) in the ligand occurs between 700-790 cm⁻¹. In the complexes, this band shifts to higher energy by 30-40 cm⁻¹ which is indicative of coordination of the sulphur.^{9 14} Bands of medium and weak intensities in the region 600-440 cm⁻¹ may be due to Sb-O stretching vibrations. Bands observed at ~ 330 cm⁻¹ can be ascribed to Sb-S.⁶

NMR Spectral Data

The ^1H NMR spectra of these complexes have been recorded in CDCI $_3$ and the values of observed chemical shifts are listed in the experimental section. The ^1H NMR spectra show characteristic resonance of corresponding ligand protons. The ^1H NMR spectra of all the complexes except 4 show a signal at δ 11.5 ppm of the -OH proton of salicylaldehyde group. The spectrum of the complex 4 does not exhibit this signal suggesting deprotonation of this -OH group. 10 A complex pattern due to the protons of the phenyl group has been observed in the region at δ 6.4-8.0 ppm. The signal due to the azomethine proton appears at δ 4.25 ppm. 10

 ^{13}C NMR spectra of all the compounds have been recorded in CDCl3. The aromatic carbon resonances of these derivatives were assigned by using incremental rules for aromatic substitution. 15 The C-1 and C-1' carbons exhibit signals in the characteristic region downfield at δ 163.17 and δ 162.53 ppm respectively. This is in agreement with the earlier work on corresponding derivative of organotin(IV)1. The azomethine carbon also absorbs as expected at δ 151.77 ppm, like the other Schiff base derivatives of antimony(III). 6,10

Compound 1. Sb [SC_sH₄N=C(H)C_sH₄OH] Cl₂

151.48, C-7; 117.72, C-6; 131.83, C-5; 122.37, C-4; 132.47, C-3; 119.83, C-2; 162.69, C-1; 119.47, C-6'; 133.35, C-5'; 121.43, C-4'; 133.73, C-3'; 119.48, C-2'; 161.27, C-1'.

Compound 2. Sb [SC_eH_AN=C(H)C_eH_AOH], CI

151.61, C-7; 117.66, C-6; 131.94, C-5; 122.42, C-4; 132.51, C-3; 119.72, C-2; 162.45, C-1; 119.42, C-6; 133.20, C-5; 121.12, C-4; 133.54, C-3; 119.27, C-2; 161.33, C-1;

Compound 3. Sb [SC_eH₄N=C(H)C_eH₄OH],

151.77, C-7; 117.80, C-6; 131.60, C-5; 122.10, C-4; 132.64, C-3; 119.64, C-2; 162.75, C-1; 119.21, C-6'; 133.47, C-5'; 121.51, C-4'; 133.64, C-3'; 119.53, C-2'; 161.12, C-1'.

Compound 4. Sb [SC₆H₄N=C(H)C₆H₄O] CI

151.57, C-7; 117.58, C-6; 132.16, C-5; 122.57, C-4; 132.30, C-3; 119.96, C-2; 163.17, C-1; 119.23, C-6; 130.21, C-5; 121.22, C-4; 131.35, C-3; 119.96, C-2; 162.53, C-1;

Thus above studies indicate a bidentate mode of attachment of the ligand to the metal atom, which leads to a distorted octahedral geometry if the presence of the stereochemically active lone pair is also considered in the capping position in tris derivative (c)¹⁶, while bis derivative have octahedral geometry with the lone pair occupying a axial position (b)¹⁷ and monoderivatives possess trigonal bipyramidal geometry with the lone pair in equatorial position (a,d).¹⁸

$$(a)$$

$$(b)$$

$$(a)$$

$$(b)$$

$$(c)$$

$$(d)$$

EXPERIMENTAL

Precautions were taken to exclude moisture throughout the experiments. All the chemicals used were of reagent grade. All the solvents used were dried by standard methods. ¹⁹ SbCl₃ was purified by distillation (78°/10mm). The ligand was synthesised as reported earlier. ¹ Antimony, sulphur and nitrogen were determined iodometrically, gravimetrically and by Kjeldahl's method, respectively. ¹⁹ IR spectra were recorded on a Perkin-Elmer model 377 spectrophotometer. The ¹H NMR spectra were recorded on a Perkin-Elmer R-32 using TMS as an internal reference and ¹³C NMR on JEOL FX-90 using TMS as an external standard.

Reaction between antimony trichloride and sodium salt of N-(salicylidine) - o - mercaptoaniline in a 1:1 molar ratio :

0.11g, (4.60 m mole) of sodium metal and 15 ml of isopropanol were taken in a round bottom flask (fitted with a dried and cooled water condenser and guard tube) and refluxed for about half an hour till a clear solution of sodium isopropoxide was obtained. After cooling, 1.06 g. (4.60 m mole) of N-(salicylidine) - o - mercaptoaniline was added and the mixtur was refluxed for an hour again. 1.00 g, (4.60 m mole) of antimony trichloride in benzene was added and the mixture was further refluxed for 2-3 hours to ensure the completion of the reaction. The desired product 1.5 g (88%) was isolated by evaporation of the solvent under reduced pressure, after filtering off the precipitated sodium chloride. The product was further purified by crystallisation using a benzene-petroleum ether (40°-60°) mixture.

All other antimony(III) derivatives of N-(salicylidine) - o - mercaptoaniline were synthesised similarly. The pertinent data for this compound and other derivatives are listed below.

Compound 1. Sb [SC₆H₄N=C(H)C₆H₄OH] Cl₂

Yield 88%; Mol. Wt. [F(C)]: 436(421); Orange solid; M.P. 177-179°C.

Analysis [% F(C)]: Sb, 28.26 (29.05); N, 3.10(3.34); S, 7.32(7.09); Cl, 16.00 (16.95).

IR (cm⁻¹): vOH, 3160; vC=N, 1590; vSb-S, 332; Sb-N, 435.

¹H NMR (δppm) 11.5, S, 1H (OH); 6.8-8.0, m, 8H (Ph); 4.25, S, 1H (=CH).

Compound 2. Sb [SC₆H₄N=C(H)C₆H₄OH]₂ CI

Yield 81%; Mol. Wt. [F(C)]: 627(613.5); Orange solid; M.P. 164-166°C. Analysis [% F(C)]: Sb, 17.59 (19.84); N, 4.23(4.56); S, 10.16(10.43); Cl, 5.59 (5.79). IR (cm⁻¹): vOH, 3140; vC=N, 1580; vSb-S, 335; vSb-N, 440. ¹H NMR (8ppm) 11.5, S, 2H (OH); 6.75-7.90, m, 8H (Ph); 4.26, S, 1H (=CH).

Compound 3. Sb [SC₆H₄N=C(H)C₆H₄OH],

Yield 85%; Mol. Wt. [F(C)]: 821(806); Orange solid; M.P. 158-160°C. Analysis [% F(C)]: Sb, 14.65 (15.10); N, 4.89(5.21); S, 11.18(11.92) IR (cm⁻¹): vOH, 3020; vC=N, 1610; vSb-S, 330; vSb-N, 415. ¹H NMR (δppm) 11.4, S, 3H (OH); 6.5-7.8, m, 8H (Ph); 4.25, S, 1H (=CH).

Compound 4. Sb [SC_sH₄N=C(H)C_sH₄O] CI

Yield 78%; Mol. Wt. [F(C)]: 395(384.5); Orange solid; M.P. 194-196°C. Analysis [% F(C)]: Sb, 28.98(31.68); N, 3.10(3.63); S, 8.10(8.32); Cl, 8.91 (9.23). IR (cm⁻¹): vC=N, 1610; vSb-S, 328; vSb-O, 600-440; vSb-N ~ 450. ¹H NMR (δ ppm): 6.6-7.5, m, 8H (Ph); 4.24, S, 1H (=CH).

ACKNOWLEDGEMENT

Financial assistance from All India Council for Technical Education, New Delhi is gratefully acknowledged.

REFERENCES

- 1. R.J. Rao and Harish B. Wankhade, Main Group Met. Chem., 19, 4 (1996).
- R.J. Rao, M.S. Singh and K. Prasada Rao, Natl. Acad. Sci., India, 19, 193 (1996).
- 3. W.L. Greary, Coord. Chem. Roy., 13, 47 (1971).
- 4. K. Nag and D.S. Joardar, Can. J. Chem., 54, 2827 (1976) Inorg Chim Acta, 17, 111 (1976).
- 5. S.K. Singh, Y.P. Singh, A.K. Rai and R.C. Mehrotra, *Polyhedron*, 8, 633 (1989).
- 6. Kiran Singh, P.K. Sharma and S.N. Dubey, *Indian J. Chem.*, **33A**, 266 (1994).
- 7. J. Otera and R. Okawara, J. Organomet Chem., 11, 299 (1968).
- 8. T.B. Brill and N.C. Champbell, *Inorg. Chem.*, **12**, 1884 (1973).
- 9. Shailendra K. Singh, Yashpal Singh, Augnesh K. Rai and R.C. Mehrotra, *Indian J. Chem.*, **29B**, 876 (1990).
- 10. I.U. Khan, S.K. Shrivastava and S.C. Shrivastava, *Indian J. Chem.*, 26A, 238 (1987).
- 11. P.S. Prabhu and S.S. Dodwad, *J. Indian Chem. Soc.*, **60**, 724 (1983).
- 12. V.J. Raju, V. Ranabaoca, B.B. Kumar and M.C. Ganorker, *J. Indian Chem. Soc.*, **60**, 724 (1983).
- 13. S. Bharadwaj, M.N. Ansari and M.C. Jain, *Indian J. Chem.*, **28A**, 81 (1989).
- 14. L. Birladeanu, *Infrared Spectroscopy Organic Sulphur Compounds* (Willey interscience, New York), **291**, (1966).
- 15. H.O. Kalinowaski, S. Berger and S. Braun, *Carbon NMR Spectroscopy*, (J. Wiley, Chichester), **313** (1988).
- 16. Suman Sharma, Rakesh Bohra and R.C. Mehrotra, *Indian J. Chem.*, **32A**, 59 (1993).
- 17. Sushil K. Pandey, Ghanshyam Shrivastava and R.C. Mchrotra, J. Indian Chem. Soc., 66, 558 (1989).
- 18. R. Karra, Y.P. Singh and A.K. Rai, *Indian J. Chem.*, **32A**, 78 (1993).
- 19. B.S. Furniss, A.J. Hannford, P.W.G. Smith and A.R. Tatchell, "Vogel's Text book of Practical Organic Chemistry" 5th edn., Longmans, London (1989).

Received: May 12, 1997 - Accepted: May 23, 1997 - Accepted in revised camera-ready format: July 23, 1997

