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Abstract: Supercapacitors, owing to their high power den-
sity and rapid charge–discharge capabilities, have gained

significant attention as energy storage devices in various
applications. In the context of electrochemical supercapaci-
tors, this article provides a comprehensive review of the pro-
duction and electrochemical performance of binary metal
oxide (BMO) and reduced graphene oxide (rGO) composite
materials. The synthesis processes and synergistic benefits of
BMO–rGO composites, with an emphasis on how they per-
form better than separate parts in terms of specific capaci-
tance and cycle stability, are discussed. The potential of
BMO–rGO composites as high-performance electrode mate-
rials for supercapacitors is highlighted in this research. In the
context of electrochemical supercapacitors, this work pro-
vides a comprehensive review of the production and electro-
chemical performance of binary transitionmetal oxide (TMO)
and rGO composite materials. Composite materials with
enhanced electrochemical characteristics that are appro-
priate for supercapacitor applications are the primary
novelty, which is the synergistic combination of rGO with
a variety of TMOs. Compared to individual TMOs or other
carbonaceous materials, these composites demonstrate
enhanced specific capacitance, energy density, power den-
sity, cyclic stability, and rate capability. The synthesis pro-
cesses and synergistic benefits of BMO–rGO composites are
discussed, with an emphasis on their superior performance
in specific capacitance and cycle stability compared to indi-
vidual components. This research highlights the potential of
BMO–rGO composites as high-performance electrode mate-
rials for supercapacitors, showcasing their enhanced specific
capacitance, improved charge storage capacity, increased
power density, excellent cycling stability, and overall dur-
ability even after numerous charge–discharge cycles.
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BMO/rGO
composites

binary metal oxide/reduced graphene
oxide composites

BMOs Binary metal oxides
BTMOs Binary transition metal oxides
CNT Carbon nanotube
Co3O4 Cobalt oxide
CoFe2O4 Cobalt ferrite
Cu2O3 Copper oxide
CuO Copper oxide
CV Cyclic voltammetry
DEG Diethylene glycol
DI Deionized
DMF Dimethylformamide
EDLC Electrochemical double-layer

capacitor
ESS Energy storage system
F·cm−2 Farad per square centimetre
FeSO4·7H2O Iron(II) sulphate heptahydrate
GO Graphene oxide
H2SO4 Sulphuric acid
HH Hydrazine hydrate
HNO3 Nitric acid
HSC Hybrid supercapacitor
KOH Potassium hydroxide
mA·cm−2 Milliampere per square centimetre
MEV Mega electron volt
MnO2 Manganese dioxide
MPa Megapascal
mS·cm−1 Millisiemens per centimetre
NaNO3 Sodium nitrate
NF Nickel foam
Ni3S2 Nickel sulphide
NiCo2O4 Nickel cobaltite
NiFe2O4 Nickel ferrite
NMP N-Methyl-2-pyrrolidone
PANI Polyaniline
PEDOT Poly(3,4-ethylenedioxythiophene)
Ppy Polypyrrole
PVP Polyvinylpyrrolidone
rGO Reduced graphene oxide
RUO2 Ruthenium dioxide
SE Specific energy
SP Specific power
SEM Scanning electron microscopy
THF Tetrahydrofuran
TiO2 Titanium dioxide
TMO Transition metal oxide
V2O5 Vanadium pentoxide
W·kg−1 Watt per kilogram

Wh·kg−1 Watt-hour per kilogram
XRD X-ray diffraction
ZnO Zinc oxide

1 Introduction

With the widespread utilization of non-renewable fossil
fuels and increasing concerns about global warming, the
composition of the world’s energy consumption is chan-
ging dramatically. The growth of environmentally friendly
energy is currently prioritized over conventional fossil
fuels [1,2]. Batteries, capacitors, and supercapacitors play
a crucial role in the sustainable utilization of renewable
energy sources by enabling the efficient storage of sustain-
able energy reserves for future uses. The most common
kind of energy storage is a rechargeable battery, which
stores energy by transferring charge between its electrodes
via a redox process [3]. Batteries may be used as a steady
power source for a short time, but they have a variety of
drawbacks, including low power density, a limited life
term, spark hazards, negative environmental effects, etc.
[4]. The development of sustainable, clean, and green
sources of energy has been prompted by ecological risks,
high prices, and the diminishing supply of fossil fuels. Bat-
teries and supercapacitors are the chosen superior choices
to address the issue of using these renewable energy
sources [5,6]. When it comes to energy storage systems
(ESSs), power system operations are essential for reducing
the intermittent nature of renewable energy supply and
boosting system stability [7]. Thus far, interest has been
shown in using supercapacitors and batteries, the two pri-
mary categories of electrochemical energy storage devices,
for future energy storage applications. Because of their two
outstanding qualities, long-term cycle stability, and high
power output, supercapacitors are regarded as a fast-
growing new technology [8–10]. Nevertheless, compared
to batteries, supercapacitors’ potential future application
is limited by their reduced energy content [11]. Supercapa-
citors, also known as power capacitors or ultracapacitors,
are a type of green energy storage technology. This is due
to the materials typically employed as the electrode and
electrolyte in a supercapacitor [12]. Moreover, biowaste
materials like coconut shells, eggshells, dead leaves, etc.,
can be used to create supercapacitors. In this regard, the
supercapacitor also offers a productive and long-lasting
alternative to recycle these bio-wastes, therefore reducing
environmental contamination. It produces significantly
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more specific energy (SE) than standard capacitors and
relatively more specific power (SP) than batteries. It is
intended to fill the gap between capacitors and batteries
as a result. In addition, it has a longer lifespan and uses less
energy than rechargeable batteries. Owing to these bene-
fits, supercapacitors have received a lot of interest from
researchers in a variety of industries and are anticipated to
eventually replace batteries [13,14]. Current challenges in
supercapacitor technology include low energy density and
high cost. Future prospects involve increasing energy den-
sity, improving cycling stability, and integrating superca-
pacitors into renewable energy systems to reduce carbon
emissions. The potential environmental impacts of super-
capacitor materials include resource depletion, energy
consumption during production, and waste generation.

Additionally, numerous strategies have been suggested
to mitigate the possible adverse environmental effects of
supercapacitor materials through sustainable synthesis
methods, as an outcome of the synthesis techniques as
well as material choices as stated following.

First, green synthesis methods, as the environmental
impact of supercapacitor material production can be sub-
stantially reduced by employing green synthesis methods,
such as hydrothermal, sol–gel, or microwave-assisted synth-
esis. These methods typically employ water as a solvent and
moderate reaction conditions, thereby reducing waste gen-
eration as well as energy consumption.

Second, sustainable and biodegradable precursors, as
the implementation of sustainable and biodegradable pre-
cursors into the synthesis process may further enhance
sustainability. For instance, using biowaste-derived carbon
sources or natural polymers as starting materials reduces
dependence on fossil fuels and minimizes environmental
impact.

Afterwards, recyclable materials, as the choice of recycl-
able materials for electrode synthesis can facilitate the
recovery of materials and reuse, thus reducing waste for-
mation and resource consumption. Materials such as metal
oxides and reduced graphene oxide (rGO) are commonly
recycled or repurposed in subsequent synthesis processes.

Fourth, energy efficiency, as it is imperative to opti-
mize synthesis parameters in order to reduce energy con-
sumption and achieve sustainability. In order to minimize
energy consumption and preserve product quality, it is
crucial to meticulously control process parameters, including
temperature, pressure, and reaction time.

Fifth, life cycle assessment (LCA), as the identification
of potential environmental hazards and the optimization
of processes can be facilitated by conducting a comprehen-
sive LCA of supercapacitor materials. LCA assesses the
environmental impact of materials from the extraction of

primary materials to their disposal at the end of their
lifecycle, thereby facilitating the development of rational
choices and informed decision-making that mitigate the
overall environmental impact.

Next, nontoxic solvents and additives, as the eco-pro-
file of supercapacitor materials can be enhanced by sub-
stituting toxic solvents and additives with environmentally
benign alternatives. Sustainable alternatives that mitigate
environmental hazards throughout production and use
include nontoxic binders and water-based electrolytes.

Finally, renewable energy sources, as the transition to
renewable energy sources for synthesis methods, including
solar or wind power, reduce greenhouse gas emissions and
dependence on non-renewable resources, which aligns
with sustainable development objectives.

In addition, sustainable synthesis methods can mitigate
these impacts by using eco-friendly precursors, reducing
energy consumption, and promoting recycling. Initially,
the production process, as the environmental implica-
tions of the manufacturing of supercapacitor materials,
particularly those that involve metals and metal oxides, is
a concern. Energy-intensive apparatus and potentially
hazardous compounds may be employed in processes
such as solvothermal synthesis, hydrothermal synthesis,
and chemical reduction. The procurement of basic mate-
rials, including metal precursors and graphene oxide
(GO), may also raise concerns regarding resource deple-
tion and mining practices. Next, during operation, as
supercapacitors are frequently regarded as environmen-
tally benign in comparison to batteries due to their
absence of toxic heavy metals such as cadmium or lead.
Nevertheless, the environmental impact of these devices
during their operation is significantly influenced by the
energy sources that are employed for powering them. The
operation of these devices may result in indirect green-
house gas emissions if the energy utilized for charging is
derived from fossil fuels. Finally, disposal, in order to pre-
vent environmental damage, supercapacitors may require
appropriate disposal at the end of their lifecycle. Somemate-
rials, such as graphene, are relatively inert and have the
potential for recycling. However, others, such as metal
oxides, may present challenges in terms of appropriate dis-
posal due to their potential to discharge hazardous sub-
stances into the environment if not handled properly.

H. I. Becker, born in 1957, used porous carbon elec-
trodes to create a low-voltage capacitor [15,16]. The electric
double-layer charge storage method was initially used in
this energy storage device [17]. In 1966, Standard Oil of
Ohio patents their supercapacitor concept. In 1971, NEC
finally began to market the technology as a backup power
source for computer memory under the moniker
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“supercapacitor” [18,19]. After that, this field underwent a
revolution, and several studies were conducted to enhance
the functionality of the devices. Several businesses quickly
entered the race to build supercapacitors, including Max-
well Technologies, NEC, Panasonic, ELNA, and others [20].
A high-capacitance hybrid supercapacitor (HSC) with carbon
electrodes was created by FDK in 2007. The Kyoto Protocol
and the Paris Climate Agreement set a 2060 deadline for
reducing all emissions into the atmosphere resulting from
the use of fossil fuels for energy. There will need to be a
significant change in how energy is harnessed and used
worldwide for this aim to become a reality. This goal can
only be reached by integrating more energy sources that are
renewable like wind, solar, and others. Thus, it is essential
that fossil fuel-powered and nuclear power facilities be
replaced [21–28]. Materials for carbon electrodes are a
description of the most crucial electrode materials [29,30].
Together with certain novel materials that are available, the
carbon materials are fully reviewed. In the contemporary
nanoscale regime, nanotechnology has grown in signifi-
cance and is used widely in industries including biology,
computing, and sensors. This is a substance that has
attracted a lot of interest recently due to its possible use
in energy storage technology. rGO offers a few benefits
over other materials when used as an electrode in a super-
capacitor. Because rGO has a wide surface area, it has a big
electrical charge storage capacity. Because supercapacitors
are designed to swiftly store and release electrical energy,
this makes them the perfect material for use in them.
Because of its great electrical conductivity, the supercapa-
citor can be charged and discharged quickly. This material
may be employed in a number of contexts because of its
great stability and ability to endure several charging and
discharging cycles without degrading. Overall, the perfor-
mance and efficiency of these energy storage technologies
might be greatly increased by using rGO as an electrode in
supercapacitors [31,32].

In addition, the specific capacitance values obtained
experimentally for various rGO-transition metal oxide (TMO)
composites, such as rGO–MnO2, rGO–Co3O4, and rGO–TiO2,
demonstrate that the incorporation of rGO with TMOs results
in an increase in specific capacitance.

In terms of enhanced energy and power density, the
composites exhibit superior energy and power density,
which is crucial for high-performance supercapacitors due
to their ability to facilitate efficient energy storage as well as
rapid charge–discharge cycles. In terms of enhanced cyclic
stability, several rGO–TMO composites demonstrate excep-
tional cyclic stability, with minimal capacitance degradation
even after thousands of charge–discharge cycles, which
underscores their long-term reliability and durability. In

terms of high rate capability, the composites are well-suited
for applications that necessitate accelerated energy delivery,
as they maintain a substantial capacitance at high current
densities. In terms of novel electrode architectures, the uti-
lization of rGO–TMO composites to fabricate flexible, 3D, or
hierarchical electrode architectures provides adaptability
and versatility for a variety of supercapacitor designs,
such as wearable devices as well as flexible systems. In
terms of synergistic effects, combining rGO with TMOs
induces synergistic effects that strengthen the overall per-
formance, electrochemical activity, and electron/ion trans-
port in comparison to the individual components.

Moreover, the synergistic interactions between rGO
and TMOs, as well as pseudocapacitive as well as double-
layer capacitance effects, are the specific mechanisms that
contribute to the enhanced electrochemical characteristics
properties of rGO–TMO composites. Within the electrode
materials, efficient charge transfer and ion diffusion are
facilitated by factors such as the unique structural charac-
teristics, high surface area, and conductivity of rGO. The
rGO provides a conductive matrix and inhibits the agglom-
eration of TMO nanoparticles, thereby enhancing their
electrochemical performance, while TMOs contribute to
pseudocapacitance through redox reactions.

Furthermore, in the realm of energy storage technol-
ogies, supercapacitors have emerged as promising devices
due to their high power density and rapid charge–discharge
capabilities, making them ideal for various applications.
This article delves into the realm of electrochemical super-
capacitors, focusing on the synthesis and electrochemical
performance of binary transition metal oxide (BTMO) and
rGO composite materials. By exploring the production pro-
cesses and synergistic advantages of binary metal oxide
(BMO)-rGO composites, this study sheds light on how these
composites surpass individual components in terms of spe-
cific capacitance and cycle stability. The research under-
scores the potential of BMO-rGO composites as superior
electrode materials for supercapacitors, showcasing their
enhanced specific capacitance, improved charge storage
capacity, increased power density, exceptional cycling sta-
bility, and sustained durability even after extensive charge–
discharge cycles.

Composite materials with enhanced electrochemical
characteristics that are appropriate for supercapacitor
applications are the primary novelty, which is the syner-
gistic combination of rGO with a variety of TMOs. Compared
to individual TMOs or other carbonaceous materials, these
composites demonstrate enhanced specific capacitance,
energy density, power density, cyclic stability, and rate
capability. The synthesis processes and synergistic bene-
fits of BMO-rGO composites are discussed, with an
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emphasis on their superior performance in specific capa-
citance and cycle stability compared to individual compo-
nents. This research highlights the potential of BMO-rGO
composites as high-performance electrode materials for
supercapacitors, showcasing their enhanced specific capaci-
tance, improved charge storage capacity, increased power
density, excellent cycling stability, and overall durability
even after numerous charge–discharge cycles.

1.1 Supercapacitors

A supercapacitor comprises two electrodes separated by an
ion-permeable layer termed a separator, yet electrically
coupled by an electrolyte. A substance called the electro-
lyte contains both positive and negative ions [33,34]. To link
the two electrodes with the electronic circuit, a thin metallic
layer known as a collector is put on their outer surfaces and
a separator allows ions to move between the electrodes
while maintaining their electrical isolation. Supercapacitors
may be divided into three groups based on their high-energy
storage mechanisms: electrostatic double-layer capacitors
(EDLCs), hybrid capacitors, and pseudocapacitors [35]. In
EDLCs, ions from the electrolyte adsorb to the surface owing
to electrostatic attraction, storing the charges and gener-
ating two charged layers (double layer). The essential cri-
teria for EDLC electrodes are large surface area, good
conductivity, and quick charge/discharge rates. These mate-
rials come in a variety of shapes and sizes, including powders,
tubes, composites, aerogels, and sheets. They are nontoxic,
have a large surface area, and have adjustable porosity and
strong electrical conductivity. Carbon-based electrode mate-
rials are typically used to create EDLCs. Through quick and
reversible oxidation and reduction processes, pseudocapa-
citors store charges. The extra charges that are transmitted
within the prescribed potential, pseudocapacitors exhibit
larger capacitance than EDLC-type gadgets, but they often
have lower cycle lives owing to active material deterioration
brought on by Faradaic reactions. Due to their quick rever-
sible low cost, redox reaction, metal oxides, and simple
processing, conductive polymers can be utilized as pseudoca-
pacitive electrode materials [36]. However, despite these
benefits, pseudocapacitive electrode materials’ inherent
low energy density has been a barrier to their ability to
surpass batteries for broad commercial applications
[37–39]. However, because of their lesser energy density
when compared to batteries, ultracapacitors are mostly
employed as backup power sources to support batteries in
electric cars [40]. Other than electric vehicles, supercapaci-
tors are employed in drills that supercapacitors are used by

astronauts to repair the International Space Station while
they are on spacewalks [41–43]. Additionally, the emergence
of next-generation flexible, wearable electronics, and por-
table optoelectronics devices necessitates miniaturized ESS
with distinct advantages of light weight and flexibility
[44–49]. As a result, there is a massive push to the incre-
ment of the energy density of supercapacitor technologies,
currently 5–35% when compared with Li-ion batteries, that
can be further used for industrial purposes. Asymmetrical
supercapacitors (ASCs) are supercapacitors that, in con-
trast to conventional supercapacitors, have two electrodes
that are different from one another: a cathode that func-
tions as a battery-type Faradaic energy source and an
anode that functions as a capacitor power source. When
aqueous electrolytes are utilized, the operational voltage of
a symmetric supercapacitor is often restricted to less than
1.0 V due to the thermodynamic breakdown potential of
water molecules. Nevertheless, by utilizing organic electro-
lytes, the operating voltage may be increased above 2.5 V.
For certain uses, however, these organic electrolytes might
be poisonous and not environmentally friendly. Hence,
using two distinct electrode materials for the anode and
the cathode is a practical way to increase the operating
voltage for aqueous electrolytes. Because of the greater
operating voltage, ASCs were able to reach a higher energy
density. The energy density termed as E [50–54] is given by

=E CV1/2 2

The specific capacitance termed as C of a super-capa-
citor can be increased by enhancing the inherent proper-
ties, such as electrical conductivity, chemical stability, and
porosity of the electrode materials, as well as low-dimen-
sional nanostructures (sheets, nanorods, foams, quantum
dots, etc.), and electrode designs.

1.2 Graphene and its derivatives

Due to its distinct structure and features, graphene of sp2

hybridized carbon atoms has shown considerable potential
in a number of applications [55,56]. It is semi-metallic in
composition and has a bond length of 1.42 C–C. Many scien-
tific and technical investigations have been prompted by
the special features of graphene [57]. Due to the semimetal
composition of graphene, charge carriers act like Dirac
fermions [58], producing astonishing phenomena including
increased mobility up to 2,000 cm2·s−1 [59]. The distinctive
qualities of graphene, viz. graphene or GO is covered with
epoxy functional groups and also with hydroxyl, and it
has a higher mechanical stiffness of 1,060 GPa, a thermal
conductivity of 5,000 W·m−1·K [60], a large surface area of
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2,630 m2·g−1, an intrinsic mobility of 200,000 cm2·V−1·s−1 [61],
and an excellent optical transmittance of 97.7% [62]. This has
led to a large number of investigations for numerous tech-
nological applications. Sp3 bonding is severely disrupted
during the oxidation process, significantly reducing the elec-
trical conductivity of GO in comparison to graphene [63–65].
Hummers and Offeman [66], Brodie (1859) [67], or Stauden-
maier [68] described strategies for producing GO. Toxic and
explosive-reducing agents, such as hydrazine hydrate (HH)
[67] and sodium borohydride [68], are frequently utilized in
the reduction of GO to rGO. Any organic solvent may be used
to exfoliate graphite oxide to create GO, resulting in GO in a
variety of forms with varying levels of long-term stability
and single-layer thickness. A single layer of GO sheet may be
formed using a single layer of four different types of organic
solvents, including dimethylformamide (DMF), NMP, THF,
and ethylene glycol [69]. The oxidation of GO in themolecule
and the production process are also factors that affect its
conduction capacity. GO sheets are mechanically robust
membranes with millions of tiny flakes that can be distrib-
uted in water and other organic solvents like DMF and
oxygen-containing epoxide groups [70]. The most intriguing
characteristic of GO is that it can be reduced to rGO sheets
by removing the oxygen-containing groups with a re-devel-
oping p-conjugated structure. Graphene has several features
including high thermal conductivity, high surface area,
remarkable transparency, ultrahigh electric conductivity,
and good mechanical strength. Bulk graphite can be con-
verted into single-layer and few transferable graphenes by
thermal reduction of GO [71–73], mechanical or ultrasonic
exfoliation [74], epitaxial chemical vapor deposition [75],
epitaxial growth [76], plasma enhancement [77], electric
arc discharge [78], epitaxial growth, and chemical intercala-
tion. The synthesis of graphene in large numbers and at a
reasonable price via the chemical reduction of GO is
acknowledged [79]. Graphene has gained popularity and
is a substance with many possible uses. It is used in sensors
[80], supercapacitors [81], hydrogen storage [82], coatings
[83], composites [84], paint ink [85], dye-sensitized solar
cells [86,87], transparent conductive layers [88], bio-appli-
cations [89,90], and drug delivery [91]. This is because of its
special transport properties and physicochemical proper-
ties. A graphene derivative known as rGO is created by
reducing GO. Graphene’s key properties that make it sui-
table for energy storage in supercapacitors include its high
electrical conductivity, large surface area, excellent mechan-
ical strength, and chemical stability. However, the potential
for enhancing the performance and efficacy of energy
storage technologies is presented by the incorporation of
graphene and its derivatives in supercapacitors. When com-
bined with a variety of metal oxides and other materials,

graphene is an optimal platform for enhancing the electro-
chemical properties of supercapacitors due to its excep-
tional electrical conductivity, large surface area, and
mechanical strength. The following remarks have been
inferred from the literary studies:
a. rGO–MnO2 composite:

In order to enhance mechanical stability and elec-
trical conductivity, rGO is combined with MnO2, a
pseudocapacitive material that possesses an excep-
tional specific capacitance.

This composite is highly suited for high-performance
supercapacitors due to the synergy among MnO2 and
rGO, which achieves a balance between power density
and energy density.

b. rGO–Co3O4 composite:
In order to enhance capacitance efficacy, rGO is

combined with Co3O4, an additional pseudocapacitive
material.

The rGO–Co3O4 composite is a promising candidate
for next-generation supercapacitors due to its enhanced
cyclic stability as well as particular capacitance.

c. rGO–TiO2 composite:
TiO2, which is renowned for its stability as well as

extensive surface area, is combined with rGO in order to
enhance the stability of cycles as well as the capacity of
charge storage.

The potential of the rGO–TiO2 composite for super-
capacitor applications is suggested by its superior elec-
trochemical performance in comparison to pure TiO2.

d. rGO–ZnO composite:
In order to enhance the rate capability and cycle

performance, rGO is integrated with ZnO, a wide-
bandgap semiconductor.

Both electric double-layer capacitance (EDLC) and
pseudocapacitive contributions are demonstrated by
the rGO–ZnO composite, which maintains a high level
of capacitance even after numerous charge/discharge
cycles.

e. rGO–Ni3S2 composite:
Ni3S2, a material that has the potential to be used in

pseudocapacitors, is combined with rGO to enhance its
energy storage capabilities.

The rGO–Ni3S2 composite is well-suited for high-
rate applications due to its exceptional cyclic stability
as well as particular capacitance.

f. rGO–NiCo2O4 composite:
rGO has been combined with NiCo2O4, a mixed

metal oxide that exhibits a high pseudocapacitance, to
obtain optimal performance.

The rGO–NiCo2O4 composite has the potential to be
employed in a variety of supercapacitor applications
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due to its superior cyclic stability as well as elevated
specific capacitance.

g. rGO–ZnCo2O4 composite:
ZnCo2O4 exhibits outstanding characteristics in terms

of cyclic stability and energy density when combined with
rGO.

Promising energy storage capabilities are presented
by the rGO–ZnCo2O4 composite, a practicable material
option.

h. rGO–RuO2 composite:
RuO2, which is recognized for its high specific capa-

citance, is incorporated into rGO to enhance the perfor-
mance of energy storage.

rGO–RuO2 composites are well-suited for applications
that necessitate high energy density due to their superior
cyclic stability as well as elevated specific capacitance.

Thus, the electrochemical performance of supercapa-
citors is enhanced by the incorporation of graphene as well
as its derivatives in conjunction with a variety of metal
oxides and materials. This results in enhancements in
specific capacitance, cyclic stability, rate capability, and
energy density. In order to optimize these composite
materials for specific application requirements and per-
formance criteria, additional studies and experiments are
required.

Moreover, utilizing graphene and its derivatives in
supercapacitors can enhance performance and efficiency
by increasing specific capacitance, improving charge/dis-
charge rates, enhancing cycling stability, and reducing
overall system weight and size. Graphene’s exceptional
surface area allows for the efficient adsorption of ions
and provides a large number of sites for charge accumula-
tion. Supercapacitors’ specific capacitance is significantly
improved by this property. Graphene’s high electrical con-
ductivity facilitates the rapid transport of electrons within
the electrode material. Low internal resistance is an out-
come of this characteristic, which enables high-rate charge–
discharge processes, which are essential for attaining high
power densities. The exceptional mechanical strength and
flexibility of graphene render it an ideal material for the
development of supercapacitor electrodes that are both
flexible and robust. Even in the presence of mechanical
stress or deformation, this property assures the device’s
durability and longevity. The chemical stability of gra-
phene is characterized by its resistance to corrosion and
its inertness in a variety of electrolytes. The device’s relia-
bility and lifespan are enhanced by this stability, which
prevents electrode degradation and promises long-term
performance. Graphene can be readily functionalized or com-
bined with other materials to enhance certain characteristics,

including ion storage capacity or pseudocapacitance. The
design of electrode architectures that are specifically tai-
lored to satisfy specific performance requirements is
facilitated by this compatibility. Graphene frequently demon-
strates synergistic effects that enhance the electrochemical
performance of supercapacitors when it is combined with
TMOs or other nanomaterials. Furthermore, these synergies
may result in enhanced cycling stability, specific capacitance,
and rate capability.

1.3 BMOs

BMOs have important uses in energy storage, notably in
supercapacitors. Two distinct transition metal elements
are joined with oxygen to form BMOs. In comparison to
other materials, they have a superior high reversible capa-
city, enhanced electronic conductivity, and structural
stability. BMOs have received substantial research as inno-
vative super-capacitor electrodematerials. Pseudocapacitors,
which include BMOs, offer more specific capacitance and
energy density than double-layer capacitors. The increasing
demand for energy storage options has led researchers to
further investigate BMOmaterials. Compared to other mate-
rials, they have a higher capability for reversibility.
Supercapacitors’ total capacity for energy storage is
increased by this characteristic, which enables them to store
and release more charge throughout the charge–discharge
cycle. Their improved structural stability ensures their life-
time even after several charging and discharging cycles. The
life cycle of super-capacitor electrodes and the maintenance
of constant performance depends on this stability. Fast
charge/discharge rates and greater energy storage capability
are both affected by increased conductivity [92–94].

1.4 rGO and BMO composite

For nanosized active material particles, graphene and its
derivatives, such as GO and rGO, have been recognized as
potential carbonaceous supporting materials [95–97]. Com-
posite materials might be predicted to perform better in
batteries because 3D porous rGO frameworks can effi-
ciently maintain the integrity of composite materials and
enhance charge/electrolyte transfer during electrochemical
reactions. Additionally, 2D GO sheets are simple to process
as a precursor for rGO, and their rich surface functional
groups make them to electrostatically trap metal ions, which
are often used as the metal source for BMO crystals.
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Therefore, following further treatments, BMOs will begin to
form on the side of the surface of rGO. BMO development
and 3D rGO frameworks are often done separately. As a
result, the rGO sheets will not be able to enclose the TMO
crystal. BMO/rGO composites with various structural char-
acteristics have been created by combining the metals’ GO
reducing agent with Zn, Sn, and Fe as TMO precursors. rGO
plays a crucial role in supercapacitors by providing a con-
ductive network, increasing surface area for charge storage,
improving electron transfer kinetics, and enhancing the
overall electrochemical stability of the electrodes. rGO/BMO
composites enhance supercapacitor performance by pre-
venting graphene restacking, increasing specific capacitance,
improving charge storage capacity, and enhancing overall
electrochemical performance. As far as the synergistic effect
is concerned, the electrochemical performance is substan-
tially enhanced by the integration of BTMOs with rGO,
resulting in a synergistic effect that cannot be achieved by
either component independently. The pseudocapacitive or
double-layer capacitance behaviour of the BTMOs, in con-
junction with the high surface area and electrical conduc-
tivity of rGO, results in this synergy. As far as the increased
conductivity is concerned, the electrode structure is facili-
tated by the remarkable electrical conductivity of gra-
phene-based materials such as rGO, which allows for
rapid electron transport. The supercapacitor’s overall
performance is enhanced by the efficient charge/discharge
processes that are enabled by the high conductivity,
which reduces internal resistance. As far as the surface
area is concerned, the supercapacitor’s capacitance is
significantly enhanced by the extensive surface area avail-
able for ion adsorption and desorption, which is facilitated
by the layered structure of graphene. Additionally, the
electrochemical activity of graphene is further enhanced
by the presence of functional groups and defects on its sur-
face, which facilitates redox reactions and promotes ion
accessibility. In terms of pseudocapacitive behaviour,
numerous BTMOs demonstrate pseudocapacitive beha-
viour, which entails the ability to store charge through
faradaic redox reactions at the electrode–electrolyte inter-
face. The pseudocapacitive properties of BTMOs are effec-
tively realized when combined with rGO, which facilitates
ion diffusion and provides a conductive framework. This
results in a higher energy density and capacitance. As far
as the enhanced cyclic stability is concerned, the robust
electrochemical performance and stable structure of rGO/
BTMO composites contribute to enhanced cycling stability.
The BTMO nanoparticles are prevented from agglomerating
and undergoing structural degradation during charge/
discharge cycles by the graphene matrix, which functions
as a mechanical support. Consequently, the long-term

performance of the system is preserved. As far as the
tailored nanocomposite design is concerned, the synthesis
method and the specific choice of BTMO can be customized
to optimize the performance of rGO/BTMO composites for
specific applications. The electrochemical characteristics
of the nanocomposite can be optimized to match the
desired specifications by modifying parameters such as
the composition ratio, particle size, morphology, and surface
functionalization. As far as the scalability and cost-effec-
tiveness is concerned, the production of graphene-based
materials is becoming more cost-effective and scalable,
particularly as a consequence of developments in synth-
esis techniques. The versatility of BTMOs, in conjunction
with the scalability of rGO/BTMO composites, renders
them promising candidates for large-scale energy storage
applications, such as supercapacitors, where cost and per-
formance are critical factors. These BMO/rGO composite
preparation techniques are simpler, more efficient, and
environmentally beneficial. As a consequence, these BMO/
rGO composite electrodes have produced excellent storage
characteristics (Figure 1).

2 Synthesis method

2.1 Synthesis method for GO and rGO

Brodie’s method: GO was originally created by Brodie in
1859; therefore, the process has a lengthy history. By
mixing potassium chlorate (KClO3) with a mixture of gra-
phite flakes in fuming nitric acid (HNO3), Brodie suggested
creating GO. In a glass beaker, graphite flakes were com-
bined with nitric acid and fuming potassium chlorate, and
the lass beaker thereafter was submerged in an ice bath to
maintain temperature. After continuous stirring, graphite

Figure 1: rGO/BMO composite.
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flakes became fully oxidized. Afterwards, to remove con-
tamination and acid, it was rinsed with DI water and cen-
trifuged. The final product which is dark brown powder
was vacuum-dried to remove moisture. It produces GO
with less impurity and forms GO with a higher degree of
oxidation. The major drawbacks of this experiment where
it was more aggressive and harmful (Figure 2) [98].

GO preparation with the Staudenmaier method:
Staudenmaier improved Brodie’s procedure in 1898 by
adding concentrated sulphuric acid (H2SO4) to boost reac-
tion acidity instead of a single addition of KClO3 and many
applications of KClO3 during the reaction. GO was pro-
duced using the Staudenmaier technique. By distilling a
solution of concentrated HNO3 and concentrated H2SO4

(1:3), fuming nitric acid was created. Vacuum distillation
is used to repeatedly purify the nitric acid. Using a pycn-
ometer, the concentration of fuming nitric acid was mea-
sured. A reaction flask with a magnetic stir bar, a mixture
of 87.5 mL of H2SO4 (98% concentration) and 27 mL of
fuming HNO3 was formed. The mixture was placed in an
ice bath for 30min to settle. To prevent agglomeration and
create a homogenous dispersion, 5 g graphite was gradu-
ally added and vigorously stirred before adding 55 g of
KClO3. After completion, the flask was then loosely covered
to allow the gas to escape from the solution. At room tem-
perature, the sample was forcefully agitated for 96 h. Once
the reaction was finished, the mixture was decanted into 3 L
of deionized water. The sulphate ions were subsequently

removed by redispersion in HCl (5%) solutions, centrifuga-
tion, and redispersion in deionized water many times till a
negative reaction on sulphate ions and chloride was accom-
plished and was dried for 48 h at 60°C in an oven [99].

Making graphite oxide using the Hofmann technique:
HNO3 (27 mL, 68%) and H2SO4 (87.5 mL, 98%) were added
into a flask and chilled in an ice bath for 30min. To prevent
explosive chlorine dioxide gas production and sudden tem-
perature rise, add 5 and 55 g graphite to an ice bath in the
reaction flask. The mixture was stirred continuously for
96 h, and then the mixture was decanted into 3 L of deio-
nized water. GO is then redistributed in HCl solutions to
remove the sulphate ions. Graphite oxide slurry was dried
in an oven at 60°C for 48 h before use [100,101].

Hummer’s technique of preparing graphite oxide: 2.5 g
of NaNO3 and 115 mL of DI water were mixed with 135 g of
graphite with 98% H2SO4. A subsequent ice bath was used
to settle the mixture. Afterward, 15 g of KMnO4 was well
stirred. During the course of 2 h, the reaction mixture was
allowed to warm up to room temperature prior to being
heated for 30min at 35 °C for 4 h. The reactions were added
to a flask containing 250mL of deionized water and then
heated for an additional 70°C. Then, the mixture was held
constant for around 20min before being transferred to 1 L
of DI water. The reaction mixture was decanted after set-
tling. Then, it was redistributed in DI water after being
repeatedly centrifuged and cleaned. Afterward, the gra-
phite oxide solution was dried for 48 h at 60 °C in the
oven before use [102–105].

Modified Hummer’s method: A 500mL flask was filled
with 2 g of pure graphite flakes, 1 g of NaNO3, and 45 mL of
sulphuric acid. The flask was placed in an ice bath with
constant stirring for 30 min and monitored to prevent
temperature from exceeding 15°C. After homogenizing
the mixture, 6 g of KMnO4 was added. After the ice bath
is removed, the temperature of the mixture steadily rises.
The mixture was kept like this for 30 min until it began to
thicken and turn into a dark green paste. Afterward,
80 mL of DI water was gradually added while stirring.
Both a rapid rise in temperature and violet effervescence
were seen at the same time. The mixture was stirred on a
hot plate for 30 min at 90°C. The solution was diluted by
adding 200 mL of DIW. The colour of the solution changed
to bright yellow with the addition of 3 mL of H2O2. The
mixture was centrifuged and repeatedly rinsed with 100
cc of 10% HCl to remove the metal ions. To remove the
supernatant, the solution was centrifuged for 20 min at
4,000 rpm. Once the pH reached neutral, this process was
done multiple times. By utilizing ultrasonication, the
resulting graphite solution was exfoliated to GO. Finally,

Figure 2: Different synthesis methods of GO.
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the GO solution was maintained at 50°C in a petri dish for
24 h [106,107].

Creation of GO by Tour Approach: At a ratio of 9:1 (v/v),
concentrated H2SO4 (sulphuric acid) and concentrated
H3PO4 (ortho-phosphoric acid) were combined to create
GO. Phosphoric acid is added to prevent further oxidation.
Adding 0.50 g graphite powder and 4.5 g KMnO4 (potassium
permanganate) to the acid mixture, results in temperature
changes ranging from 40°C to 50°C. A temperature-con-
trolled water bath was used to get the mixture to 50°C,
followed by 12 h of stirring. The mixture transformed
into paste as the process continued. After 12 h, the liquid
was cooled to room temperature, and to terminate the
process, 250 mL of distilled water was added. The manga-
nese ion was reduced to soluble manganese sulphate
(MnSO4) and manganese oxides by adding 10mL of 30 wt%
H2O2. The following procedure used H2O2 to convert residual
KMnO4 to soluble MnSO4 in an acidic media. When 30 wt%
H2O2 was injected, bubbling and a bright yellow hue seen
appeared, indicating a significant amount of oxidation. A
graphite oxide (GTO) filter cake was formed after the solu-
tion was filtered to remove the metal sulphate using filter
paper. The cake was thoroughly cleaned with a 5% HCl
aqueous solution to remove all the sulphate ions. Using
BaCl2 solution, the removal of metal sulphate ions was
verified. The supernatant was decanted and used to wash
again after 4 h of centrifugation at 4,000 rpm. The pH of the
obtained sample was tested using a universal indicator. The
collected material (GTO) was agitated in distilled water for
12 h at 60°C. This process is referred to as exfoliation [108].

Table 1 summarizes various synthesis methods for pro-
ducing GO. Each procedure specified here has specific
requirements and reagent compositions. Graphite, NaNO3,

KMnO4, H2SO4, H3PO4, H2O2, HNO3, and KCl are used
to prepare GO, which is then reduced to rGO. These
approaches provide many ways to synthesize GO and
rGO, each with advantages and disadvantages that are
tailored to certain research requirements and applica-
tions in the field of graphene-based materials.

2.1.1 Synthesis of rGO–TiO2 composite

The process of synthesizing rGO–TiO2 nanocomposites
involves combining titanium dioxide (TiO2) nanoparticles
and nanobelts with chemically rGO. The synergistic effects
of both components are harnessed by fabricating these
nanocomposites with a meticulously controlled mass ratio
of TiO2 to rGO, which is typically optimized at 3:7.

In order to ensure that the rGO sheets and TiO2 nano-
particles are in close proximity, nanocomposite synthesis is
typically conducted using chemical methods, including
hydrothermal or sol–gel techniques. The mesoporous TiO2

offers a high surface area and active sites, which contribute
to higher specific capacitance and cycle stability, while the
rGO functions as an ion reservoir, allowing electron mobi-
lity during charge transfer.

2.1.2 Electrochemical characteristics of the rGO–TiO2

composite

The electrochemical efficacy of rGO–TiO2 nanocomposites
is excellent and is crucial for supercapacitor applications.
In particular, these composites demonstrate:
i. Rate capability enhancement: The composite’s rate
capability has been enhanced by the combination of
rGO with TiO2 nanobelts, which enables rapid charge/
discharge processes at high current densities. This is
because TiO2 nanobelts have a high concentration of
active sites, and rGO provides efficient electron trans-
port channels.

ii. High specific capacitance: The rGO–TiO2 nanocomposites
have higher specific capacitance values, particularly at
moderate current densities, than pure TiO2. This is due to
the synergistic effects of rGO and TiO2, in which rGO
functions as a conductive scaffold, thereby enabling the
storage of charge within the composite structure.

iii. Enhanced energy density and power density: The tai-
lored morphology and composition of rGO–TiO2

Table 1: Different methods for GO with precursor required

Method Graphite (g) NaNO3

(mL)
KMnO4 (g) H2SO4

(mL)
H3PO4

(mL)
H2O2

(mL)
HNO3

(mL)
KCl (g) References

Staudenmaier method 5 — 55 87.5 — — 27 — [109]
Hoffmann 5 — — 87.5 — — 27 55 [110]
Hummer’s method 13.5 2.5 15 — — — — — [111–114]
Modified Hummer’s
method

2 1 6 45 — 3 — — [115–118]

Tour method 0.5 — 4.5 90 10 10 — — [119]
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composites aid in an enhancement of energy density
and power density, which are essential metrics for
assessing supercapacitor performance. The composi-
te's hierarchical structure enables high-energy storage
capacities by ensuring effective ion diffusion and elec-
tron transport.

iv. Long-term stability: The rGO–TiO2 nanocomposites
demonstrate exceptional cycling stability, maintaining
a substantial portion of their initial capacitance during
extended charge/discharge cycles. This is due to the
robust interfacial interactions between rGO and TiO2,
which reduce electrode degradation while maintaining
electrochemical performance.

Thus, integrating rGO with TiO2 nanoparticles and
nanobelts presents a promising opportunity to advance
supercapacitor technology by leveraging the distinctive
characteristics of each component to accomplish superior
electrochemical performance. Optimizing synthesis para-
meters and composite form can improve rGO–TiO2 compo-
sites’ efficacy and application in energy storage devices.

2.2 Synthesis method for BMO composite

Hydrothermal/solvothermal synthesis: It is the production of
BMOs using solvents under high pressure and temperature

to dissolve and recrystallize minerals. To obtain vapour
saturation pressure, temperatures are often greater than
100°C, and the products are additionally affected by liquids
and dissolved salts. This process can synthesize a wide
variety of multi-part oxide materials and BMO with typical
low-temperature phases and oxidation states, making it an
attractive option for low-cost BMO manufacture. It has ben-
efits including an inexpensive precursor, low-temperature
processing, and a simple process. Additionally, the sol-
vothermal approach produces highly mono-dispersed parti-
cles having adjustable shape and size while avoiding the
need for dangerous catalysts. It provides a variety of BMOs
with porous surfaces and huge specified regions (Figure 3)
[120].

Microwave-assisted method: A quick approach for
producing bimetallic oxide nanoparticles (BMOs) with adjus-
table structure, size, and morphology is the microwave-
assisted method. The one-pot production of several bimetallic
oxide nanoparticles and nanostructures, including MFe2O4

(M = Zn, Ni, Mn), and NiCo2O4, has often utilized this tech-
nique. It has benefits including regulated heating, a faster
response rate, quicker reaction times, and improved pro-
duct yields. Controlling the shape and phase of BMOs,
however, may be challenging. The coupled microwave-
solvothermal approach combines the benefits of microwave
and solvothermal conditions, resulting in a significant
decrease in reaction time, control over morphology, and
the production of very pure, narrow-size-distribution

Figure 3: Hydrothermal process for NiFe2O4. Reproduced with permission from the study of Anik et al. [121].
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particles. For crystallizing BMOs with regulated phase
and shape, this method works well (Figure 4).

Electrodeposition method: This requires only one
synthesis step throughout the entire process. The basis
for electrodeposition is electrochemical redox reactions,
in which an electric current flows through a metal salt
solution, depositing the metal at the cathode. Even at
room temperature, this method can increase gravimetric
and volumetric energy density while eliminating ohmic
resistance. The most well-known use of the process is the
electro-reduction of cobalt and nickel nitrate mixtures to
produce NiCo2O4. There have been reports of several con-
ductive substrates, including carbon fibre, stainless steel,
nickel foam (NF), and carbon fabric. NiCo2O4 arrays on
flexible carbon fibre have proved remarkable electroche-
mical storage capabilities after 3,000 cycles of high stabi-
lity. Finally, electrodeposition offers a straightforward
technique for producing BMOs with a consistent shape,
but with limitations in small-scale manufacture [122].

Template method: Mesostructured BMOs are helpful
for electrochemical materials because of their variable
pore diameters, morphologies, and large surface areas.
Because of these characteristics, liquid electrolytes diffuse
into electrode materials by increasing contact between the
electrolytes and the electrode. Thermal instability ren-
dered BMOs ineffective. For the synthesis of mesostruc-
tured BMOs, the template approach is often combined
with the solvothermal/hydrothermal method. Hard-tem-
plate and soft-template techniques are two categories of
template-directed procedures. Due to their tetra-connected
covalent bonds, rigid templates like silica are often utilized
because they provide highly organized nanoscale structure
and homogeneous pore size distributions. Yuan et al. created

using silica spheres ultra-thin mesoporous hollow NiCo2O4

structures. These structures feature a high specific capaci-
tance and excellent long-term cycle stability at high current
densities. Flexible organic molecules, surfactants, block copo-
lymers, and microemulsions are examples of soft-template
techniques that act as structure-directing agents throughout
the synthetic process. They offer several benefits, including
being affordable and simple to build without sophisticated
facilities. Jan’s group developed a thin-film electrode of
nickel molybdate with a 3D honeycomb structure to improve
lithium-ion storage capacities. Studies have shown that the
synthesized PVP as a capping agent for mesoporous NiCo2O4,
controlling an-isotropic development and bringing particles
together to produce specialized NiCo2O4 (Figure 5) [124,125].

Sol–gel method: Due to the adjustable purity, composi-
tion, homogeneity, and temperature of the sol–gel approach,
binary complex metal oxides (BMOs) are often synthesized

Figure 4: Microwave synthesis method for ZnO. Reproduced with permission from the study of Senthilkumar et al. [126].

Figure 5: Electrodeposition method for Fe2O3. Reproduced with per-
mission from the study of Meng et al. [123].
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using this technology. However, the necessity for significant
quantities of organic solvents and reagents makes large-
scale applications difficult. Hu et al. previously developed
NiCo2O4 aerogels with the potential to be used as superca-
pacitor electrodes and a homogeneous shape. An NiCo2O4

framework resembling a 3D hierarchical porous network
was created by Yuan et al. to provide an electron transport
channel. This method offers a potential synthetic approach.
This method offers a practical approach to the synthesis of
additional BMOs (Figure 6) [128].

2.3 Synthesis method for rGO BMO composite

Hydrothermal: A method of preparing rGO–NiFe2O4/NF
electrodes. After being washed and dried, commercial NF
was impregnated with a mixture of FeSO4⸱7H2O, Ni(NO3)·
26H2O, and CO(NH2)2, followed by the addition of rGO col-
loidal solution. The mixture was heated at 180°C for 12 h in
a Teflon-lined stainless-steel autoclave, then cooled and
cleaned using deionized water and ethanol. To create the
rGO–NiFe2O4/NF composites, the resulting NiFe2O4/rGO
layered double hydroxide is heated at 350°C for 2 h
(Figure 7) [129,130].

Sol-auto combustion process: In this method, nickel
nitrate hydro-oxide, ferric nitrate, and glycine NH2CH2

COOH were the materials used to prepare the precursor
solution, 50 mL of deionized water was first dissolved in
the stoichiometric quantity of nickel and iron nitrates at a
1:2 Ni/Fe molar ratio. A 50 mL aqueous solution of glycine
was prepared, and a 1:1 molar ratio of cation to fuel agent
was introduced while stirring continuously to a solution of
metal precursors. The final solution, which had a pH of
3.0–3.5, was agitated at 300 rpm for 1 h at 70–80°C to

remove any remaining water. An aqueous ammonia solu-
tion was added drop by drop until the precursor solution’s
pH reached 7. Once a viscous solution had formed, it was
dried to produce a gel. The gel was placed on a hot plate
preheated to 300°C and cooked until it lit. When a colloidal
solution of GO was introduced to the metal salt combina-
tion before the fuel agents, complex oxide/rGO composite
materials were produced under identical experimental
conditions. The modified Marcano-Tour procedure was
used to create colloidal GO. Both pure ferrite (T0 sample)
and NiFe2O4/rGO composites were produced, with a mass
ratio of 3:1 (T1 sample) and 3:2 (T2 sample). To all the
resulting materials, further annealing at temperatures of
300°C, 400°C, 500°C, 600°C, and 900°C was applied [131].

Solvothermal: By using a glycol-mediated solvothermal
synthesis, rGO-doped cobalt ferrite nanostructures were
synthesized. In a typical CoF-rGO synthesis, 50 mg of GO
was dissolved in 10 mL of di-ethylene glycol and ultraso-
nically processed for 6 h. Then, 40 mL of diethylene glycol
(DEG) solution was combinedwith CoCl2⸱6H2O and FeCl3⸱6H2O
in a 1:2 molar ratio, and the mixture was added dropwise to
the GO solution while vigorously stirring. The earlier solu-
tion was then gradually mixed with 10 cc of the reducing
solution. To make the reducing solution, 10mL of DEG was
mixed with 1 g of DEG, 1 g of urea, and 1 g of NaOH. In a
nitrogen atmosphere, the final solution, which was black in
colour, was agitated for an hour. Finally, it was placed in a
100cc airtight stainless-steel autoclave and cooked at 200°C
for 24 h. The product was separated using centrifugation
and then dried overnight at 60°C. In the absence of GO, a
similar technique was used to generate CoF nanoparticles.
Later, to investigate the fictionalization impact, CoF nano-
particles were annealed at 300°C and 500°C. The samples are
designated as CoF, CoF-300, CoF-500, and CoF-rGO, which

Figure 6: Sol–gel synthesis method. Reproduced with permission from the study of Bokov et al. [127].
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stand for CoFe2O2, annealed nanostructures, and composite
nanostructures, respectively [133].

Co-precipitation: The co-precipitation of cobalt ferrite
nanoparticles onto the surface of rGO particles was used to
produce rGO/CoFe2O4. To prepare a stable suspension for
this procedure, 0.126 g of dry rGO was dispersed in 100mL
of deionized water and ultrasonically processed. A mixed
iron salt solution was then prepared by dissolving 0.72 g of
cobalt nitrate hexahydrate and 2 g of iron nitrate nonahy-
drate separately in 10 mL of water. The metal solution was
additionally given 0.25 g of an alcoholic cetyltrimethylam-
monium bromide solution. Drop by drop, ammonia solu-
tion (25%) was added to form a metal precipitate. The
precipitation maintains a pH of 10–11. The addition of the
rGO suspension gradually under stirring conditions was
done after the metal precipitation. The reaction is kept at
80°C for 2 h. After filtering and washing with double dis-
tilled water, the solution was dried at 100°C for 10 h to
achieve a neutral pH. After that, the dry material was cal-
cined at 550°C [134].

Microwave: Graphitic carbon spinel cobalt ferrite
(CoFe2O2/2D-C) composite was synthesized using a micro-
wave combustion synthesis technique with sucrose as a
template. Primarily, dissolve 0.808 g of Fe(NO3)·39H2O

(2 mmol), 0.582 g of Co(NO3)·26H2O (2 mmol) precursor,
and finally 0.684 g of sucrose (C12H22O11, 2 mmol) in a
beaker with 2 mL of de-ionized water, and the mixture
was being continuously stirred for 15 min with a magnetic
stirrer. The corresponding solutions are subjected to rapid
ultrasonication for 10 min, gentle mixing, and continuous
magnetic stirring for 30min, or until a standardized solu-
tion is produced. The 6 mL of the actual resulting solution
in the beaker was placed into a preheated microwave,
which was then heated to the ideal temperature of 150°C
and kept for 1 h. Natural convection is used to cool the
beaker to room temperature, and the resulting solid pro-
duct is then ground up. The triturated product was stored
for 6 h in an inert gas (nitrogen) environment before being
calcined in a furnace at 350°C with a constant rate of
5°C·min−1. The final product was referred to as a CoFe2O4/
2D-C composite (Figure 8).

One-pot synthesis method: The CuFe2O4–rGO compo-
site was prepared using a “one-pot” synthesis technique.
Cu2+ and Fe2+ chloride salts were employed in this instance
as the building blocks for CuFe2O4-rGO composites. In this
synthesis, the formation of CuFe2O4 nanoparticles and the
reduction of GO resulted in the production of rGO concur-
rently. Here, NaOH served as both a reducing agent to

Figure 7: Hydrothermal synthesis method for rGO–ZnO. (a) Formation of ZnO nanomaterials; (b) Formation of 2D Graphine oxide; and (c) formation of
hydrothermal synthesis of rGO–ZnO. Reproduced with permission from the study of Zhang et al. [132].
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change GO into rGO and a precipitating agent for Cu2+ and
Fe3+ during the production of CuFe2O4 nanoparticles under
the circumstances of a coprecipitation process [136].

2.4 Various rGO–TMO composites for
supercapacitor

2.4.1 rGO–manganese dioxide (rGO–MnO2) composite

Recently, 3D reduced graphene oxide (rGO) is a material
that can be used to solve problems with agglomeration
during the reduction process. The areal capacitance of
1.13 F·cm−2 at a greater current density of 40 mA·cm−2.
The structural electrolyte has a compressive strength of
28.5 MPa and good ionic conductivity (2.13mS·cm−1) and is
made of Portland cement, KOH, and 6% poly-acrylic acid.
The asymmetric structured supercapacitor outperformed

earlier research using carbon materials and resin by
achieving an aerial capacitance of 51.5mF·cm−2 at 0.1mA·cm−2

rGO@MnO2 composite supported on carbon cloth by brush
electroplating. The energy density of this flexible aqueous
ASC was 27.7Wh·kg−1 at a power density of 250W·kg−1

(0.9 mA·cm−2). The capacitor retained 76% of its capacity at
a current density of 17.5mA·cm−2 (5 A·g−1) after 10,000 char-
ge–discharge cycles. Asymmetric supercapacitor with high
flexibility using the MnO2/rGO nanosheet-hydrogel films was
used in this concept. The new polyacrylic acid sodium salt-
Na2SO4 neutral gel electrolyte improves flexibility and per-
formance by using bacterial cellulose (Figure 9) [137–139].

2.4.2 rGO and cobalt oxide (rGO–Co3O4) composites

In former research, a combination of reduced graphene
oxide (rGO), cobalt oxide (Co3O4), and polypyrrole (PPy) to
create a high-performance supercapacitor electrode. Research
on supercapacitors has benefited greatly from using cobalt
oxide (Co3O4), polypyrrole (PPy), and rGO. The largest specific
capacitance values (Csp) are 896 F·g−1 in a 2M KOH solution
and 1,370 F·g−1 in a 6M KOH solution. Energy densities are
31.75Wh·kg−1 for 2M KOH and 31.43Wh·kg−1 for 6M KOH.
The power density (P) was achieved at 11,705W·kg−1 (2M
KOH) and 11,600W·kg−1 (6M KOH). This technology shows
promise for the next generation of high-performance super-
capacitors, despite some capacitance loss after 1,000 charge/
discharge cycles. The two-electrode rGO–Co3O4 composite elec-
trode has a specific capacitance of 472 F·g−1 at a scan rate of
2 mV·s−1 in a two-electrode cell with a 2M KOH aqueous
electrolyte solution. Interestingly, even with a scan rate
of 100mV·s−2, 82.6% of capacitance is still supported. The
combination of Co3O4/graphene/Co3O4 chemically synthesized,

Figure 8: Microwave synthesis method for rGO–NiFe2O4. Reproduced with permission from the study of Mary et al. [135].

Figure 9: MnO2 structure.
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the performance of this composite’s supercapacitance is
superior: Excellent cyclic stability, a large specific capaci-
tance, and excellent rate capability. In a 6mol·L−1 KOH solu-
tion, a needle-like nanostructure composite electrode made
of Co3O4/rGO/NF achieves a specific capacitance of 1,400 F·g−1

at 1 A·g−1. Its outstanding performance is a result of the mate-
rial’s synergistic interaction with Co3O4 (Figure 10) [140–142].

2.4.3 rGO–titanium dioxide (rGO–TiO2) composite

Shape and coupling effects of rGO–TiO2 nanocomposites
for supercapacitor electrodes: researchers chemically mixed
rGO with TiO2 nanoparticles and nanobelts to create nano-
composites for supercapacitor. With rGO–TiO2 composites,
the ideal electrochemical performance is reached at a mass
ratio of 3:7 for TiO2 and rGO. Notably, the rate capability,
specific capacitance, power density, and energy density of
rGO–TiO2 NBs are higher when compared to rGO–TiO2 NPs.
At a discharge current density of 0.125 A·g−1, the specific
capacitances of NPs (mass ratio 7:3) and rGO–TiO2 NBs are
62.8 and 225 F·g−1, respectively. Due to their strength, abun-
dance in nature, and superior mechanical properties, rGO/
TiO2 are regarded as possible supercapacitor materials. In
this system, rGO serves as the ion reservoir, accelerating the
mobility of electrons during electron transfer. Mesoporous
TiO2 has more active sites and a bigger surface area, which
enhances specific capacitance and cycle stability. Researchers
have looked at TiO2-C nanowire arrays covered with poly-
aniline (PANI) to create in situ carbon-supported titanium
dioxide (ICS-TiO2). The combination offers a continuous con-
ductive 3D network and improves mechanical stability. Due
to its broad bandgap semiconductor properties, TiO2 has
been studied less for supercapacitor applications; nonethe-
less, it functions as a spacer with rGO to prevent rGO sheet

restacking. TiO2 nanocrystals hydrogenation-induced dis-
order leads to an increase in electrochemical activity
(Figure 11) [143–145].

2.4.4 rGO–zinc oxide (rGO–ZnO) composite

A wide-bandgap piezoelectric semiconductor called ZnO is
used in UV light emitters, photodetectors, and solar cells.
Its inherent point defects, such as zinc vacancies, oxygen
vacancies, and interstitial sites for zinc and oxygen, are
especially important in shaping its characteristics. Electron
paramagnetic resonance spectroscopy can find these flaws.
Hybrid nanocomposites of rGO and ZnO for supercapacitors.
Researchers improved Hummer’s approach and used high-
energy ball milling to prepare rGO–ZnO nanocomposites.
Both EDLC and pseudocapacitive contributions were pre-
sent in the supercapacitors. Interestingly, after 30 cycles at
0.30 A·g−1, the capacitance retention remained at 100%. The
rate capability and cycle performance are increased when
graphene sheets are wrapped around ZnO nanospheres,
creating highly conductive paths. At a current density of
1 A·g−1, a ZnO-rGO HSC produced a specific capacitance of
1,012 F·g−1. Supercapacitors made of biodegradable seaweed
are another exciting advancement. These are called rGO–ZnO
seaweed cellulose paper supercapacitors. These ecologically
friendly, biodegradable technology products provide out-
standing performance and safety (Figure 12) [146–149].

2.4.5 rGO–nickel sulphide (rGO–Ni3S2) composite

Using a one-step hydrothermal method, Ni3S2/rGO/Ni3S2
was prepared on NF. The bottom cyclic voltammetry (CV)
layer was converted in situ from the NF substrate and the
top CV layer with vertical nanosheets arose from Ni2+ ions

Figure 10: Co3O4 structure.
Figure 11: TiO2 structure.
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in the solution. It gave a specific capacitance value of
3,234.62 F·g−1 at a current density of 3.85 A·g−1. At a high
rate of 100 mA·cm−2 after 1,000 cycles, 90% of the original
capacitance was kept. Synthesis of composite 3D Ni3S2-rGO
nanosheets on NF was easy. This composite has exceptional
catalytic capability for the hydrogen evolution process. The
rGO has an impact. The rGO affects the Ni3S2 nanosheet
shape, electrochemically active surface area, and quantity
of active sites. Ni3S2/MoS2 on NF in Situ Morphological
Evolution: For the construction of a HSC, the positive elec-
trode is made of the hybrid material Ni3S2/MoS2@NF-9. It
has an SE of 26.9Wh·kg−1 at 375W·kg−1 and a specific capa-
city of 129.2 C·g−1 at 0.5 A·g−1 (Figure 13) [150–153].

2.4.6 rGO–NiCo2O4 composite

N-rGO/NiCo2O4 nanocomposite combines nitrogen-doped
rGO (N-rGO) with spinel-structured TMO (NiCo2O4). N-rGO/
NNiCo2O4 has a specific capacitance of 1,078.2 F·g−1 and an
energy density (Ed) of 20.4Wh·kg−1. The power density is

3,500W·kg−1, whereas the energy density is 14.9Wh·kg−1.
Hybrid NiCo2O4@rGO nanostructures on NF. The hybrid
electrode has a high specific capacitance of 3.6 F·cm−2 at
5 mA·cm−2 of current density (at which the capacity des-
cends), superior cycling stability (retention of 90% after
2,000 charge/discharge cycles), and NiCo2O4/rGO/NiO hetero-
structure. ASCs made using commercial activated carbon
(AC) and NiCo2O4/rGO exhibited the following characteris-
tics: The energy per kilogram is 32.38 Wh·kg−1, with a total
of 797 W·kg−1, excellent cycling performance, and pace
ability (Figure 14) [154–156].

2.4.7 rGO–zinc cobaltite (rGO–ZnCo2O4) composite

Doping ZnCo2O4 with Ni2+ ions significantly improves the
electrochemical performance of the material. Ni has a
strong electrical conductivity, which significantly increases
the specific capacitance. Ni doping results in a long life
cycle as well as a strong rate ability. An ASC with Ni2+-
doped ZnCo2O4 and rGO in a 3.5 M KOH electrolyte has
an energy density of 40Wh·kg−1. At 1 A·g−1, the power den-
sity is 775W·kg−1. A flexible ASC made entirely of solid state
was also created; it had a high energy density of 26Wh·kg−1

and kept 95% of its initial capacity after 10,000 cycles. The
ZnCo2O4 @NiO//rGO architecture-based ASC device pro-
duces a maximum energy density of 46.66Wh·kg−1 at a power
density of 800W·kg−1. Remarkably, the ZnCo2O4 @NiO//rGO
architecture-based ASC device produces a maximum energy
density of 46.66Wh·kg−1 at a power density of 800W·kg−1.
Interestingly, the device displays 90.20% capacitance reten-
tion even after 4,000 cycles, making it a practical material
with promise for energy storage applications. rGO-based
mesoporous ZnCo2O4 nanosheet arrays: The electrochemical
performance of this composite is good and has a specific
capacity of 680 F·g−1 at a current density of 1 A·g−1. High

Figure 12: ZnO structure.

Figure 13: Ni3S2 structure.

Figure 14: NiCo2O4 structure.
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energy density is shown by an ASC using activated porous
carbon (AC) made from lotus leaves as the negative elec-
trode and rGO/ZnCo2O4 as the positive electrode. Using
freeze-dried rGO (F-rGO) as the anode and ZnCo2O4 as the
cathode, an ultrahigh-energy-density ASC can reach an
energy density at 0.4 kW·kg−1 of 84.48Wh·kg−1 (Figure 15)
[144,157,158].

2.4.8 rGO–ruthenium dioxide (rGO–RuO2) composite

The metal oxide utilized in supercapacitor applications is
RuO2. Excellent electrical conductivity, low resistivity, elec-
trocatalytic activity, and thermal stability are some of
RuO2’s key properties. Fast Faradaic redox reactions are
made possible by RuO2, which improves energy storage
performance. RuO2 and rGO work together synergistically
to give specific capacitance, which is enhanced by the com-
posite’s coupled conductive network. Together, graphene
(rGO) and metal oxide (RuO2) improve energy density and
cyclic stability. Good rate capability, long electrochemical
cycling life (no deterioration after 2,000 cycles), and high
specific capacitance (e.g. 345 F·g−1 for 15% RuO2 loading) are

all characteristics of supercapacitors based on rGO–RuO2

composites (Figure 16) [159–162].

2.4.9 rGO–CuO composite

rGO–CuO nanocomposites are created by ultrasonically
synthesizing CuO nanoparticles and combining them with
rGO. The qualities of CuO are electrical conductivity, low
resistivity, catalytic activity, and stability at elevated tem-
peratures. The performance of supercapacitors is improved
by the synergistic actions of rGO and CuO. The rGO–CuO
nanocomposite shows increased capacitance and reduced
resistance. Images taken using a transmission electron
microscope show CuO particles trapped in the web of
rGO layers. The synergistic impact of double-layer capa-
citance from rGO is credited with the supercapacitor per-
formance [163–165].

2.4.10 rGO–copper oxide (rGO–Cu2O3) composite

rGO–Cu2O3 nanocomposites are created by combining
ultrasonically synthesized Cu2O3 nanoparticles with rGO.
Supercapacitor performance is improved by the syner-
gistic actions of rGO and Cu2O3. The rGO–Cu2O3 nanocom-
posite shows greater capacitance and less resistance. The
supercapacitor was created utilizing rGO–Cu2O3 nanocom-
posite electrodes, and its specific capacitance is about
137 F·g−1 (Figure 17) [166–169].

2.4.11 rGO–vanadium pentoxide (rGO–V2O5) composite

Sol–gel synthesis has been used by researchers to produce
rGO-anchored vanadium pentoxide (V2O5) nanorods. These
materials’ electrochemical analysis reveal the following
fascinating characteristics: At a scan rate of 10 mV·s−1, the

Figure 15: ZnCo2O4 structure.

Figure 16: RuO2 structure. Figure 17: Cu2O3 structure.
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large surface area of V2O5 electrode material results in a
high specific capacitance of 112 F·g−1. The rGO/V2O5 elec-
trode material has a higher specific capacitance value
than pure V2O5, measuring 218.4 F·g−1 at 10 mV·s−1. rGO
nanosheets are thought to be responsible for this improve-
ment. Adding GO to V2O5 improves the nanocomposite’s
electrochemical performance significantly. These compo-
sites have a high specific capacitance of 438.1 F·g−1 at a
current density of 1 A·g−1. Researchers developed electrode
materials based on 2D heterostructures of rGO and V2O5

nanosheets (V2O5 NS) for ASC applications. These hetero-
structures have a specific capacitance of 253 F·g−1 at a
current density of 1 A·g−1. When combined with rGO, the
capacitance dramatically increases to 635 F·g−1, which is 2.5
times higher (Figure 18) [170–172].

2.4.12 Various other composites

The characteristics and performances of MnO2–NiO–ZnO
@GO electrodes are affected by 8.0 MeV C2+ ion radiations.
Electrochemical investigations revealed that electrodes
with radiation dosages of 5.0 × 1,015 yielded specific capa-
citances with the value of 1,627, and 7.5 × 1,015 ions·cm−2

yielded specific capacitances with the value of 1,960 F·g−1

[173].
A study found that the mass loading (thickness) of rGO

film electrodes affects the electrochemical performance.
Due to their substantial specific surface area and consis-
tent pore distribution, these rGO film electrodes with a
mass loading of 6.7 mg·cm−2 display a high specific capaci-
tance of 173.4 F·g−1 (1.16 F·cm−2) at 1 A·g−1. The supercapa-
citor constructed with the prepared rGO film electrode
exhibits outstanding cycling stability after 10,000 cycles,
with 85.6% retention, a high area capacitance of 1.03 F·cm−2,
a large SE of 0.073 mWh cm2, and an SP of 3.3 mW·cm−2. This
rGO film may be a suitable electrode material for use in
supercapacitors based on its outstanding performance [174].

A thin film of GO was produced on the indium thin
oxide substrate using the spin-coating process, with GO in

various concentrations that were distributed in water. The
oxygen in the GO film was removed using thermal reduc-
tion, which took place at 200°C for 1 h. A scan rate of
25 mV·s−1 was used to measure the thinnest rGO film with
the highest specific capacitance of 6.53 F·g−1 [175].

The powders made using urea as a precipitant (NFO-U)
and sodium acetate (NFO-C) displayed a nanoparticle struc-
ture and a nanosheet form. The crystallinity of the two
NFOs was excellent, at 1 A·g−1, and the specific capacity of
NFO-U is 240.9 F·g−1 which increases to 128% after 2,000
cycles [176].

A low-cost approach for producing nickel ferrite nanos-
tructures as an alternative TMO electrode material for clean
energy. At 2 mV·s−1 scan rate, the maximum specific capaci-
tance attained by NiFe2O4 electrode material was 541 F·g−1

without the use of heterostructures, template-based techni-
ques, or any carbon-based materials [177].

A regulated number of functional groups containing
oxygen on few-layered GO graphene oxide sheets and
metallic Zn atoms undergoes a redox process. The ZnFe2O4/
rGO at a high current rate of 1.0 A·g−1 shows a reversible
capacity of 1,022mA·h−1·g−1 for 500 continuous cycles [178].

A 3D core–shell ZnFe2O4/NiMoO4 nanosheet was stu-
died for supercapacitor applications by fabricating ZnFe2O4

nanosheet arrays on conductive NF substrates embellished
with rGO. At a power density of 799W·kg−1, prolonged cyclic
durability (89.6% after 7,000 cycles) and a high energy den-
sity of 58.6Wh·kg−1, an ASC device made of ZFO@NMO
NSAs@rGO-NF as the MOF-derived hollow porous carbon
acting as the anode and cathode showed its potential use
in advanced HSCs [179].

A one-step coprecipitation method was used on a
binary compound comprising rGO and doped iron oxide
(rGO/MeFe2O4), with sodium hydro-oxide serving as a GO
reducing agent. The rGO/MnFe2O4 composite electrode
showed an aerial capacitance of 232mF·cm−2 at a scan rate
of 5mV·s−1 and a gravimetric capacitance of 147 F·g−1. The
(rGO/MnFe2O4/Ppy) electrode significantly improved in the
final phase, reaching 232 F·g−1 and 395mF·cm−2, respectively,
due to the synergistic effect of Ppy additions [180].

The application of rGO impregnated with Al3+ − (Mn)/
(Cu) ferrite as electrode materials for super-capacitor appli-
cations and photo-electrocatalytic water splitting. The pseu-
docapacitance and EDLC characteristics were found with
specific capacities of 216 F·g−1 for manganese and 142 F·g−1

for copper. The two-electrode device demonstrated 99.1%
capacity retention after 5,000 cycles [181].

The effective hydrothermal production of MnFe2O4/
PEDOT/rGO, poly(3,4-ethylenedioxythiophene), and manga-
nese ferrite. At 1 A·g−1 current density, the specific capaci-
tance values to 298.97 F·g−1, and at 2 mV·s−1 scan rate, the

Figure 18: V2O5 structure.
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specific capacitance values to 325 F·g−1. At a greater current
density of 10 A·g−1, the capacitance retention of 87 F·g−1 was
observed. The substance showed excellent electrochemical
stability, keeping 81% of its capacitance even after 5,000
cycles [182]. The addition of PEDOT impacts the specific
capacitance and electrochemical stability of composite
electrodes by improving charge storage capacity, enhan-
cing charge transfer kinetics, and increasing overall elec-
trochemical stability, leading to improved performance of
supercapacitors. As a conductive polymer, poly(3,4-ethylene-
dioxythiophene) (PEDOT) is renowned for its exceptional
electrical properties, which include high conductivity and
stability. The electrochemical efficacy of supercapacitors
can be substantially impacted by the incorporation of
PEDOT into composite electrodes.

PEDOT leads to an increase in specific capacitance,
principally through its pseudocapacitive behaviour. The
electrode–electrolyte interface undergoes rapid and rever-
sible faradaic redox reactions, resulting in charge storage
that exceeds the electric double-layer capacitance (EDLC)
of materials such as rGO or TMOs. This phenomenon is
referred to as pseudocapacitance.

The overall charge storage capacity of the electrode
material is enhanced by the incorporation of additional
charge transfer pathways due to the redox-active nature
of PEDOT. In comparison to composite electrodes lacking
PEDOT, this results in an elevated specific capacitance.

Efficient electron transport within the electrode mate-
rial is also facilitated by the conductive character of PEDOT,
which further enhances its charge storage capacity.

As far as the enhancement of electrochemical stability
is concerned, PEDOT inhibits the agglomeration or restacking
of activematerial particulates, including rGO or TMOs, during
charge–discharge cycles by acting as a stabilizing agent
within the composite electrode structure.

This leads to enhanced electrochemical stability by
preventing the loss of active surface area as well as
ensuring the electrode structure’s integrity over multiple
cycles.

In addition, the electrode material’s resilience under
severe electrochemical conditions is ensured by PEDOT’s
chemical stability, which reduces degradation and extends
the supercapacitor’s operational lifespan.

In addition to the double-layer capacitance, the inclu-
sion of PEDOT on the electrode surface introduces addi-
tional redox-active sites, which promote pseudocapacitive
charge storage mechanisms.

The conductive polymer matrix of PEDOT enables the
efficient transport of charge and electrons within the elec-
trode material, thereby enhancing charge–discharge kinetics
and reducing internal resistance.

The overall electrochemical stability of the composite
electrode is enhanced by the chemical stability and com-
patibility of PEDOT with the electrolyte, which reduces the
probability of degradation mechanisms including active
material dissolution or electrolyte decomposition.

Furthermore, glycol-functionalized cobalt ferrite nano-
particles and cobalt ferrite composites with rGO for usage as
the supercapacitor electrodes were synthesized using a one-
pot solvothermal technique. The cobalt ferrite composites
with rGO demonstrated at a scan rate of 2 mV·s−1, 8% capa-
citance retention after 2,000 cycles, and high specific capa-
citance of 551 F·g−1 [183].

They used a hydrothermal technique to synthesize a
three-dimensional hierarchical electrode material made of
nickel ferric oxide and rGO nanostructures. The NiFe2O4/r-
GO nanostructured electrode with a current density of
0.65 A·g−1 has a specific capacity of 362.46 F·g−1. It has a power
density of 276.22 kW·kg−1 and a high energy density of
36.37Wh·kg−1, the composite exhibits enhanced cycling sta-
bility over 2,000 cycles with no capacitance reduction [184].

A hybrid of rGO and NiFe2O4 nanocomposite and
nickel ferrite nanoparticles (NFN) is used to produce the
nanoparticles. This electrode may be an alluring choice for
supercapacitor applications because of its high capacitance
of 584.63 F·g−1 and 91% retention after 2,000 consecutive
cycles [185].

NiFe2O4/rGO composite material is formed by reducing
graphene oxide (rGO) and decorating it with NiFe2O4 nano-
particles. SC device with electrodes consisting of both nat-
ural gas and AC, which demonstrated outstanding cycle
stability, high specific capacity, and power and energy den-
sities of 75Wh·kg−1 and 2,343W·kg−1, respectively [186,187].

NiFe2O4-NiCo-LDH@rGO composite material has high
electrical conductivity and can transport and disperse ions.
The electrode formed of this composite material is very
durable and has a high specific capacitance of 750 C·g−1 [188].

To form hierarchical functional composites, NiO and
NiFe2O4 nanoparticles are layered on top of rGO nanoflakes
derived from coconut coir biowaste. To form hierarchical
functional composites, NiO and NiFe2O4 nanoparticles are
layered on top of rGO nano-flakes derived from coconut coir
biowaste, keeping current severe electrochemical conditions
is ensured by PEDOT’s density of 1 A·g−1 with a high specific
capacitance of 599.9 F·g−1 having a retention rate of 86.5%
were achieved even after 2,000 cycles to the synergies
created by the combination of NiFe2O4 nanoparticles and
rGO nanoflakes. The composite also show an excellent
96.5% photocatalytic degradation efficiency when activated
by visible light [189].

According to the researchers, after 10,000 cycles, the
rGO–NiFe2O4 hybrid demonstrated improved cycle
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stability and no significant capacity loss. At 0.5 A·g−1, the
hybrid provided a higher specific capacitance value of
215.7 F·g−1 [190].

NiFe2O4 nano-cubes and rGO cryogen electrodes were
used to create a flexible solid-state capacitor with a voltage
of 1.8 V. The combination nickel ferrite with rGO electrode
displayed at a constant current density valued to 1 A·g−1 a
high charge storage capacity valued to 488 F·g−1, excellent
rate ability, with initial capacitance value after 10,000 cycles
with cycling performance 89.8%, as a result of the syner-
gistic effects between graphene nanosheets and NFNs [191].

The nickel ferrite graphene nanosheet composite
increased specific capacitance by twofold (264 F·g−1) and
threefold (845 F·g−1). Furthermore, the NiFe-A@GNS elec-
trode retained 94.3% of its capacity after 5,000 cycles, out-
performing the NiFe2O4 electrode’s retention rate of 62%
after 2,000 cycles). At a current density of 1.0 A·g−1, the
nickel ferrite graphene nanosheet composite has a high
power density of 620W·kg−1 and a high energy density of
30.8Wh·kg−1 [192].

A freestanding nickel ferrite electrode nanosheet was
produced and deposited on the three-dimensional NF
termed NiFe2O4/NF using a simple hydrothermal technique.
The formation of nickel ferrite electrode nanosheets on the
three-dimensional NF electrode demonstrated at a current
density of 1 A·g−1, a comparatively high capacitance of 975
F·g−1, excellent capacitance retention from 1 to 10 A·g−1 range
at the rate valued to rate capability 74.6% and excellent
cycle life at 10 A·g−1 after 3,000 charge–discharge cycles
about 95% capacitance retention [193].

The NiFe2O4 nanoparticle and NiFe2O4/CNT composite
were examined by the researchers using a number of ana-
lytical methods. The retention rate was observed 89.16%
after 5,000 cycles, the nickel ferrite and carbon nanotube
composite- modified single electrode displayed 343 F·g−1

(GCD) and a specific capacitance value of 670 F·g−1 (CV),
respectively. Additionally, a two-electrode device with an
AC anode and a cathode constructed of spinel NiFe2O4/CNT
composite had a specific capacitance of 85.93 F·g−1 (GCD)
and 118.36 F·g−1 (CV), respectively, and a power density value
of 466.66W·kg−1 opposed by an energy density value of
23.39Wh·kg−1 [194].

rGO–CoF (cobalt ferrite)-based electrodes were used. A
one-pot solvothermal synthesis of glycol-functionalized CoF
nanoparticles and the composite with rGO for the superca-
pacitor electrode was carried out in this study, and CoF-rGO
displays a high specific capacity of 551 F·g−1, 98% capacitance
retention after 2,000 cycles at a scan rate of 2 mV·s−1 [195].

Flower-like, rod-shaped, and spherical nanostructured
ternary composites comprising GO, PANI, ZnFe2O4 nano-
particles are synthesized and employed as a hybrid SC,
with the energy density (45.18Wh·kg−1), power density

(302.73 W·kg−1), highest specific capacitance (594 F·g−1),
and cycle stability after 1,500 cycles. These results showed
the PANI/GO/ZFS hybrid electrodes’ enormous potential
as powerful supercapacitors for a range of uses, from
electrical gadgets to transportation [196].

A hybrid ZnFe2O4 nanorod and ZnFe2O4 nanorod rGO
structure based on iron and zinc was experimentally stu-
died. The specific capacitance of ZnFe2O4-rGO was calcu-
lated to be 1,419 F·g−1 with a cyclic stability of 93% after
5,000 consecutive voltammetry cycles at a scan rate of
10 mV·s−1 [197].

Zinc ferrite (ZnFe2O4) and graphene nanosheets are
synthesized and characterized for use in supercapacitors.
The ZnFe2O4/graphene nanosheet electrodes’ performance
in devices was determined at a 5 mV·s−1 scan rate with an
estimated specific capacitance of 789.2 F·g−1, and the device
demonstrated exceptional capacitive performance [198].

CuFe2O4/rGO as electrode materials for HSCs is shown
here using a simple microwave method. The appealing CG
composite at a 2 A·g−1 current density had a higher specific
capacity of 800 C·g−1 and superior cycle stability because fer-
rite nanoparticles were uniformly inserted into rGO sheets to
create a nanostructure. It is an HSC device with an SP of
455W·kg−1 and an SE of 18.3Wh·kg−1 and exhibits exceptional
electrochemical performance. It is notable that the cyclic sta-
bility is outstanding, demonstrating the superiority of CG elec-
trodes with a capacity retention after 3,000 cycles of 98% [199].

There are various factors to consider while selecting
the optimum electrode materials for supercapacitors. These
include excellent conductivity, chemical inertness, mechan-
ical stability, compatibility with the electrolyte, and compat-
ibility with the current collector [183,194,200]. In rGO–MnO2,
MnO2 has an excellent specific capacitance and is a typical
pseudocapacitive material. High electrical conductivity is
provided by rGO [189,201,202]. This mixture could provide
a balance between power density and energy density.
rGO–Co3O4, another pseudocapacitive substance is Co3O4

[203–205]. This combination can offer good capacitance
performance. rGO–TiO2, because of its stability and large
surface area, TiO2 is often utilized in supercapacitors.
RuO2 has a high specific capacitance, which is well known
[206–208]. In terms of energy storage, this combination
may be exceptional. rGO–Cu2O3, although less frequent,
Cu2O3 has been researched for use in supercapacitors
[209–211]. Although less common, this combo has poten-
tial. rGO-V2O5, the pseudo capacitance of V2O5 is excellent.
Charge transport is improved by rGO. For some applica-
tions, this combination can be intriguing [180,212,213].
rGO–ZnO, it is possible that this combo will perform med-
iocrely. rGO–Ni3S2, a potential material for pseudocapaci-
tors is Ni3S2 [214–216]. This combination could have effec-
tive energy-storage capabilities. rGO–NiCo2O4, a mixed
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metal oxide with high pseudocapacitance is NiCo2O4. This
combination could result in performance that is balanced
[217–219]. A rGO–ZnCo2O4, performance from this combo
may be respectable [220–222]. A rGO–RuO2, due to its high
specific capacitance, RuO2RuO2 is well recognized [223–225].
When it comes to energy storage, this mixture could be
exceptional [226–228]. Keeping in mind that the exact
requirements of your supercapacitor, such as energy den-
sity, power density, and cycle stability, will determine the
choice of electrode material [229–231]. Further investigation
and experimentation are necessary to choose the ideal com-
bination depending on our application demands, because
each material has advantages and limits [232–234].

2.5 Composites of BMO and metal oxide

Figure 19a shows X-ray diffraction (XRD) examination of
NiFe2O4/rGO nanoparticles, which are estimated to be

about 20 nm in size. Figure 19b shows NiFe2O4 nanopar-
ticles are evenly distributed across the surface of rGO
plates. NiFe2O4 and NiFe2O4/rGO CV in 0.1 M KOH solution
at the potential range of 0 to 500 mV is shown in Figure
19c. Both graphs show a redox peak. The addition of rGO
to the structure of NiFe2O4 redox peaks, increases the
current density, and reduces the overpotential in the gra-
phene-containing electrode, validating the improvement
in electrode conductivity. The peaks become sharper as
the scan rate increases. Figure 19d shows that the peak
potential tends to positive values with increasing scan
rate, suggesting that the reaction is quasi-reversible [235].

The XRD and scanning electron microscopy (SEM)
images of the CoFe2O4-rGO (CoF-rGO) nanocomposite are
shown in Figure 20a and b. Figure 20c shows the CoF-rGO
nanocomposites in an alkaline (2 M KOH) electrolyte demon-
strating improved electrochemical behaviour. At a scan rate
of 2 mV·s−1, CoF-rGO displays a high C S of 551 F·g−1 and
retains 98% capacitance retention after 2,000 cycles. The

Figure 19: (a) Scanning electron microscopy image of NiFe2O4/rGO, (b) XRD image of NiFe2O4/rGO, and (c) and (d) cycling performance of NiFe2O4/
rGO. Reproduced with permission from the study of Askari et al. [235].
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relationship between current densities and corresponding
capacitance values is shown in Figure 6d. rGOmakes it clear
that as current densities increase, the capacitance values
decrease. The longer charge–discharge time for CoF-rGO is
shown in Figure 20d, indicating a somewhat higher capaci-
tance of the composite as compared to the as-prepared and
annealed CoF. The CoF-rGO composite exhibits a noteworthy
C S of 187 F·g−1 at a current density of 0.5 A·g−1 [180].

Figure 21a shows NiCo2O4/rGO and NiCo2O4 X-ray dif-
fractometer patterns. Figure 21b shows the SEM image of
NiCo2O4/rGO, through in situ development, the NiCo2O4 not
only has good mechanical qualities, but it also resists
falling off while charging and discharging. Ion diffusion

in the gaps is aided by NiCo2O4/rGO. rGO primarily serves
as a supporting and conducting component in the compo-
site mode of rGO and NiCo2O4, while the pseudocapacitance
performance of the NiCo2O4 spinel structure is shown in
Figure 21c. The composite material’s electrochemical perfor-
mance is enhanced due to the equally dispersed NiCo2O4/
rGO needles, more moderate gap, broad contact area with
the electrolyte, shorter ion transmission channel, and so on.
In the curve created using the solvothermal approach, there
are two pairs of redox peaks. It may have to do with chan-
ging the equivalent states of Co2+/Co3+/Co4+ and Ni2+/Ni3+/
Ni4+, suggesting that the primary mechanism for storing
energy is the presence of pseudocapacitance (Figure 21d).

Figure 20: (a) XRD image of CoFe2O4-rGO, (b) SEM image of CoFe2O4-rGO, (c) cycling performance of CoFe2O4-rGO, and (d) charge–discharge
behaviours of CoFe2O4-rGO composites at a current density of 0.5 A·g−1. Reproduced with permission from the study of Rani and Sahu [180].
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NiCo2O4/rGO produced by solvothermal technique has a spe-
cific capacitance of 935.6 F·g−1, as determined by a constant
current charge–discharge test conducted at 2 A·g−1. Figure
21e shows the two materials’ AC impedance diagrams are
composed of a low-frequency linear line and a high-fre-
quency Nyquist curve. NiCo2O4/rGO has a resistance of 1.35
Ω. However, it has been shown that there is good electrode-
to-electrolyte contact. The NiCo2O4/rGO material electrode
made using the two techniques has a reasonably low resis-
tance, suggesting that the addition of GO may lower the
electrode’s resistance and hence its resistance to ion migra-
tion [236].

According to the aforementioned findings, combining
two different kinds of materials improves the composite
material’s redox capacity while also improving its struc-
tural stability. Above all, rGO-BMOs’ enhanced conductivity
may operate as a structural support for active electrode
materials, facilitating an efficient electrical connection that
can maximize the combined effects of each component.
These factors make it crucial for supercapacitors to adjust
the microstructure, crystallinity, and electrical conductivity
of oxide-based materials.

Table 2 lists various composites of carbon, BMO, and
their combinations with their synthesis process with specific

capacitance, current density, and stability of electrode for
supercapacitor performances [237–239]. The comparison in
the table shows how rGO with BMO enhances charge sto-
rage capability [240–242]. We can see that when combined
with Ni, Mn, and Co, it gives a higher specific capacitance
than when given alone [201,243,244].

3 Limitations of the current study

a. Power density trade-off vs energy density: To achieve a
balance between power density and energy density is
one of the primary obstacles [245–247]. Despite the fact
that materials such as rGO and a variety of metal oxides
possess high power density as a result of their rapid
charge–discharge capabilities, it remains difficult to
achieve a comparable energy density [248–250].

b. Cycle stability and longevity: Despite optimistic advance-
ments, the maintenance of long-term cycle consistency
and durability continues to be a substantial challenge
[189,251,252]. The capacitance degradation of numerous
supercapacitor electrodes, including rGO-metal oxide
composites, over extended charge–discharge cycles is

Figure 21: (a) XRD image of CoFe2O4-rGO, (b) SEM image of CoFe2O4-rGO, (c) cycling performance of CoFe2O4-rGO, and (d) charge–discharge
behaviours of CoFe2O4-rGO composites at a current density of 0.5 A·g−1. (e) Nyquist plots (EIS) of the NiCo2O4/rGO. Reproduced with permission from
the study of Yao et al. [236].
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an issue that requires enhancements in electrode design
and material selection [180,235,236].

c. Cost and scalability: Practical challenges arise from the
cost-effectiveness and scalability of supercapacitor tech-
nology, particularly in the context of the large-scale
synthesis of high-performance electrode materials such
as rGO and metal oxides [253–255]. In order to achieve
widespread adoption across a variety of sectors, it is
imperative to address these challenges [256–258].

Hence, the synthesis processes and synergistic benefits
of BMO-rGO composites are discussed, with an emphasis on
their superior performance in specific capacitance and cycle
stability compared to individual components in comparison
with prior studies [259–261]. Thus, this research highlights
the potential of BMO-rGO composites as high-performance
electrode materials for supercapacitors [262,263]. In addi-
tion, the study has exhibited that these composites have
showcased their enhanced specific capacitance, improved
charge storage capacity, increased power density, excellent
cycling stability, and overall durability even after numerous
charge–discharge cycles [264,265].

4 Conclusion

We have methodically described both new advancements
and traditional approaches pertaining to BMOs as super-
capacitor energy storage materials in this study. It is well
known that specific surface area and conductivity are two
important variables that impact supercapacitor perfor-
mance when evaluating electrode materials. Graphene,
BMOs, and composite materials that mix carbon-based
elements with BMOs or other substances are among the
materials included in this study. Each material has unique
benefits and concerns that make it appropriate for parti-
cular supercapacitor kinds and performance needs. Due to its
remarkable mechanical and electrical conductivity, graphene
has attracted much interest in supercapacitor research.
When energy density is high, BMOs like MnO2 may be con-
sidered, although AC is still a dependable option for EDLCs.
By integrating the benefits of several materials, composite
materials provide a versatile solution. The synergistic effects
of composite materials, which combine carbon-based com-
ponents with BMOs or other compounds, enhance ion/elec-
tron diffusion and overall electrochemical performance.

Apart from designating certain structural BMOs, many
approaches are used to create composite electrodes. As a
result of BMOs’ p-type semiconductors, which have a sig-
nificantly low electric conductivity that makes it difficult

for them to support the fast electron transport needed for
high rates, mesoporous carbons, graphene, and CNTs com-
bined can be a helpful method for creating rGO–BMO-
based composite electrodes. The composite material utilizes
the advantages of both the conductive EDLC of the carbonac-
eous material and the pseudocapacitive nature of the metal
oxide, suggesting a highly efficient use case for supercapaci-
tors. Additional research has also been used to create rGO-
BMO materials with a high specific area. Additional TMO
doping may improve performance and create impurity
band effects. While significant advancements have been
achieved in supercapacitor energy storage for BMOs,
there are still issues and roadblocks that need to be
resolved in the near future.

Synthetically, it is still quite challenging to create
BMOs using a straightforward process that meets all the
needs of certain applications. The authors contend that in
order to fully realize the promise of BMO-based electrode
materials, scientists must optimize the material’s charac-
teristics as well as the production settings. Furthermore,
achieving extended cycle stability and high specific capa-
citance still presents a barrier to enhancing rGO-BMO elec-
trochemical performance. Nonetheless, we are excited to
support further advancements in this fascinating field of
study in order to make significant strides toward super-
capacitor applications in the future.

With special benefits including quick charge–discharge
cycles, high power density, and a longer lifespan than con-
ventional batteries, supercapacitors, also known as electro-
chemical capacitors, hold enormous promise as energy sto-
rage and conversion devices.

5 Future outlook

i. Advanced electrode materials: The potential for enhan-
cing energy density, cycle stability, and overall perfor-
mance is present in the ongoing research of novel
electrode materials, including rGO-metal oxide composites
like rGO–MnO2, rGO–Co3O4, and rGO–TiO2. Synergistic
effects are provided by these materials, which combine
the pseudocapacitive properties of metal oxides with
the conductivity of rGO.

ii. Tailored electrode architectures: The electrochemical
performance of supercapacitors can be enhanced
further by designing tailored electrode architectures,
such as hierarchical composites and 3D nanostruc-
tures. These architectural designs provide higher sur-
face area, reduced ion diffusion pathways, and enhanced
charge transport, resulting in enhanced cycling stability
and raised capacitance.
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iii. Integration with renewable energy systems: The imple-
mentation of supercapacitors in conjunction with
renewable energy systems, including solar and wind
power, offers a promising opportunity to mitigate
carbon emissions. Their capacity to store and deliver
energy efficiently and their rapid response times
complement the intermittent character of renewable
energy sources, thereby facilitating easier grid opera-
tion and reducing dependence on fossil fuels.

iv. Continuous improvements in manufacturing methods:
the continued development of manufacturing techni-
ques, such as scalable synthesis methods for rGO and
metal oxide-based materials, can reduce production
costs and enable the widespread deployment of super-
capacitor technology. The integration of roll-to-roll
processing methods and additive manufacturing offers
specifically potential for enhancing scalability as well
as cost-effectiveness.
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