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Abstract: The bond-additive topological invariants are
largely employed to recognize the characteristics of che-
mical graphs. They provide quantitative measures of per-
ipheral shapes of molecules and attract considerable
attention, both in the context of complex networks and
in more classical applications of chemical graph theory.
In this article, we compute exact analytical expressions of
Mostar and weighted Mostar invariants for a chemical
structure.
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1 Introduction

Chemical graph theory is a branch of mathematical
chemistry in which tools of graph theory are utilized
to model chemical occurrence mathematically. Chem-
informatics is a brand-new discipline that combines
chemistry, mathematics, and information science. It
investigates the quantitative structure—property rela-
tions (QSPR) and quantitative structure-activity rela-
tions (QSAR), both of which are used to predict the
bioactivity and physiochemical characteristics of che-
mical compounds. The assessment and exploration of
topological invariants of molecular structures are cur-
rent research topics with significant implications in
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nanotechnology and theoretical chemistry (Javaid et al.,
2017, Liu et al., 2019).

Let G = (V, E) be a molecular graph with vertex set V
(G) and edge set E(G). For an edge xy, we call x and y the
end vertices of xy. For a vertex x € V(G), the open neigh-
borhood of x is the set N(x) = {y € V(G): xy € E(G)}, and the
closed neighborhood of x is N[x] = N(x) U {x}. The degree
of a vertex x € V(G), denoted by §(x), is |N(x)|. The dis-
tance between two vertices x and y, denoted d(x, y), is the
length of a shortest x — y path in G. For any two edges e; =
xy and e, = uv of G, define d(x, e,) = min{d(x, u), d(x, v)}
and the distance between edges as D(e;, e;) = min{d(x,
ey), d(y, €2)} = min{d(u, ey), d(v, e;)}.

For an edge e, = xy, the values n,(e;) and m,(e,) are
defined to be the number of vertices and edges of G,
respectively, whose distance to the vertex x is smaller
than the distance to the vertex y. Similarly, n,(e;) and
my(e;) are defined to be the number of vertices and edges
of G, respectively, whose distance to the vertex y is
smaller than the distance to the vertex x. Furthermore,
t(e;) is the number of vertices and edges of G whose
distance to the vertex x is smaller than the distance to
the vertex y. Similarly, ¢,(e;) is the number of vertices and
edges of G whose distance to the vertex y is smaller than
the distance to the vertex x. Mathematically:

n(ep) = l{a € V(G) : d(x, a) < d(y, a)}|
ny(e1) = l{a € V(G) : d(y, a) < d(x, a)}|
m(e1) = l{e; € E(G) : d(x, e3) < d(y, e}l
my(e1) = {e; € E(G) : d(y, ez) < d(x, e}l
tx(el) = nx(el) + mx(el)

ty(el) = ny(el) + my(el)

The bond-additive topological invariants are exten-
sively used to recognize the characteristics of chemical
graphs. A notable bond-additive invariant is the Wiener
index (Wiener, 1947). Inspired by the miscellaneous pro-
ductive invariants, such as Zagreb (Gutman and Trinajstic,
1972), irregularity (Albertson, 1997), Szeged (Gutman, 1994),
Padmakar-Ivan (Khadikar et al., 2001), and revised-Szeged
(Klavzar et al., 2018; Li and Zhang, 2017; Pisanski and
Randi¢, 2010); recently, Dosli¢ et al. (2018) proposed a
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new bond-additive invariant, which they named the
Mostar invariant. This index provides information related
to the peripherality of individual bonds and then sums up
each bond’s inputs into a global measure of peripherality of
the underline graph. Mostar index is also seem to provide
quantitative measures of peripheral shapes of molecules.
For any simple connected graph G, the Mostar index is
represented as

MOV(G) = Z

e;=xy€E(G)

|nx(e1) - ny(el)|

Deng and Li (2020) determined the Mostar invariant
of benzenoid system. For trees and unicyclic graphs, they
found the extremal Mostar invariant. Later, the expres-
sion for the Mostar invariant of bicyclic graphs was
derived in Solé and Valverde (2014). Tratnik (2021) proved
that the Mostar invariant of the weighted graph can be
deduced in the form of the Mostar invariant of quotient
graphs. Arockiaraj et al. (2019) recently presented other
versions of the Mostar invariant, dubbed edge Mostar,
and total Mostar invariants. These invariants are reported
for G as follows:

Mo (G)= Y |mye) — my(ey)|
e1=xy<E(G)

Mo(G)= ) I|tle)) - t(el
e1=xy€E(G)

For an edge e; = xy € E(G), the two types of weight
based on the degree of end vertices are as follows:

wi(er = xy) = 6(x) + 6(y),

wHer = xy) = 60x) x () @

Using the edge weights (Eq. 1), the Mostar invariants
for G are classified into two types, weighted plus Mostar
invariants and weighted product Mostar invariants and
defined (Arockiaraj et al., 2020) as follows:

wMo,(G) = )
e1=xy€E(G)

w*Mo,(G) = Z
e1=xy€E(G)

wMos(G) = )
e1=xy€E(G)

w*(ey)|ne(er) — ny(e)]
w¥(e)|ny(er) — ny(ey)|
w*(er)l my(er) — my(ey)l

WMo(G) = )

e1=xy€E(G)

wMo(G) = )
e1=xy€E(G)

w*(ep)| my(e)) — my(ey)|
wt(e)| t(e) — (el

wMo(G) = )
e;=xy€E(G)

w*(ep)l tler) — (el
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2 Computational technique

The cut method in a general form reads as follows

(Klavzar, 2008). For a given (molecular) graph G:

1. partition the edge set of G into classes F;, F, ... F,,
call them cuts, such that each of the graphs G - F;,
i=1,2..r, consists of two (or more) connected com-
ponents; and

2. use properties (of the components) of the graphs G - F;
to derive a required property of G.

The cut method demonstrated its usefulness, espe-
cially for those topological indices that are based on the
distances in the molecular graphs; the common name for
such indices is distance-based topological indices. The
power of the cut method stems from the fact that in a
way it enables to obtain distance-based topological indices
of families of chemical graphs without actually calculating
the distances between pairs of vertices.

A subgraph H of a graph G is convex if, for any two
vertices u, v of H, any shortest path in G between u and v
lies completely in H, and H is an isometric subgraph of G
if dy(u, v) = ds(u, v) holds for any two vertices u, v of H.
Clearly, a convex subgraph is isometric but not the other
way around. The class of graphs that consists of all iso-
metric subgraphs of hypercubes are called partial cubes.
A few well-known partial cubes are hypercubes, even
cycles, trees, median graphs, benzenoid graphs, pheny-
lenes, and Cartesian products of partial cubes. The edges
e; = xy and e, = uyv are in the Djokovi¢c-Winkler relation
0 if dg(x, u) + dg(y, v) # dg(x, v) + dg(y, w). The relation
O is always reflexive, symmetric, and transitive on partial
cubes. Therefore, © partitions the edge set of a partial
cube G into equivalence classes F;, F, .. F,, called
B-classes or cuts.

Theorem 1. Let G be a partial cube and let F, F, ... F, be its
O-classes. Let ni(F,) and ny(E) be the number of vertices in
the two connected components of G — F;. Let mi(F;) and
my(F;) be the number of edges in the two connected com-
ponents of G — F;. Let ti(F) = m(F) + mu(Fy), t(F) = ny(F) +
mo(E), w(B) = Syepw'(f) and wH(B) =Y, ,w*(f). Then:
1. Mo,(G) = Y[_,|ElIm(F) — ny(F)| (Dosli¢ et al., 2018).
. Mo.(G) = ZllelEIIml(E) — my(F)| (Arockiaraj et al., 2019).
. Mo«(G) = Y_,|FIlt(F) - t(F)| (Arockiaraj et al., 2019).
. WMo, (G) = YI_ wH(F)| m(F) — ny(F)| (Arockiaraj et al.,
2020).
5. w*Mo,(G) = Yi_ ,w*(F)| m(F) — ny(F)| (Arockiaraj et al.,
2020).

N wWwoN
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6. WMoe(G) = YI_ w*(F)| my(F) — my(F))| (Arockiaraj etal.,
2020).

7. W*Moe(G) = ¥|_,w*(F)| my(F;,) — my(F)| (Arockiaraj et al.,
2020).

8. w'Moy(G) = Y. w*(F)| 4(F) - t,(F)| (Arockiaraj et al.,
2020).

9. w*Moi(G) = Y, \w*(F)| t(F) — t(F)| (Arockiaraj et al.,
2020).

3 Polyphenylene superhoneycomb
networks

Polyphenylenes are macromolecules which comprise ben-
zenoid aromatic nuclei directly joined to one another by
C-C bonds. These materials have been known for many
years. They attract great interest, particularly as active
materials for electronic devices such as light-emitting
diodes, photovoltaic cells, and field-effect transistors. The
polyphenylene superhoneycomb network, often known as
porous graphene, is one of the most important and well-
studied two-dimensional materials (Figure 1).

Bieri et al. (2009) reported the observation by scan-
ning tunneling microscopy spectroscopy of a polypheny-
lene superhoneycomb network, which is a graphene
lattice with holes (the authors called porous graphene).
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The polyphenylene superhoneycomb is obtained starting
with a precursor (hexaiodo-substituted macrocycle cyclo-
hexa-m-phenylene, named CHP) that is polymerized at
the Ag(111) surface by the silver-promoted aryl-aryl
coupling of iodobenzene to biphenyl. The polypheny-
lene network belongs to a class of covalently linked
hydrocarbon superhoneycomb networks, which present
large potentialities by tuning the electronic properties
through the size of the holes.

Polyphenylene superhoneycomb network can be
constructed in different ways. The construction of a
polyphenylene superhoneycomb network from a hon-
eycomb network is described in Krishnan and Rajan
(2022).

Theorem 2. (Krishnan and Rajan, 2022)

Let G be the polyphenylene superhoneycomb network
of dimension n. Then, the number of vertices and edges of G
are 36n° and 45n° - 3n, respectively.

Consider three directions, say X, Y, and Z, all of
which are mutually inclined at an angle of 120°. We begin
with the X direction and define cuts made up of edges
perpendicular to the X direction. The cuts X;, - (n-1) <i<
n — 1 are depicted in Figure 2.

For each X;, — (n — 1) <i < n - 1, we associate two sets
of cuts parallel to the X direction called X and X?
(Figure 3).

(a)

(b)

Figure 1: (a) Polyphenylene superhoneycomb network with carbon and hydrogen atoms depicted by hollow circle and dark circle bullets,
respectively. (b) Hydrogen-depleted structure of polyphenylene superhoneycomb network.
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(@)
Y Z

Y, 0 ZO
%Y |
(b) (c)

Figure 2: Edge cuts made up of edges perpendicular to (a) X direction, (b) Y direction, and (c) Z direction.

Let {X] : 1 < j < n} be the cuts as shown in Figure 3.  (iii) Mo,(G) = %[3645#’ - 566n° + 21n? - 268n].
Similar terminology is applied to Y and Z directions. (iv) w*Mo,(G) = 4212n" — 888n> + 144n% — 372n.

We now compute exact analytical expressions of (V) w*Mo,(G) = 5346n* — 1452n% + 162n% — 456n
v - .
Mo,(G), Moo(G), Mo,(G), w'Mo,(G), w'Moy(G), wMoe(G), iy \pfo,(G) = 5265m — 1318n3 + 57n2 — 332n,
W*Mo.(G), w*Mo(G), and w*Mo¢(G) for the graph of poly- 3 ¢ 3 R 5
(vil) w*Mo.(G) = 5[44551’1“ - 1386n° — 137n? — 244n].

phenylene superhoneycomb networks.
(viii) w*Mo¢(G) = 9477n* — 2206n> + 201n* — 704n.

Theorem 3. Let G be the polyphenylene superhoneycomb  (ix) w*Moy(G) = %[8019n“ — 235413 + 163n? — 580n].
network of dimension n. Then:
(i) Mo,(G) = 810n* - 108n> + 18n% — 72n. Proof. Removal of the edges in X, leaves G into two
(i) Moe(G) = %[2025n4 - 350n° — 15n2 + 124n]. components say Gx, and Gx, with |Xo| = 2n, n;(Xo) = 18n?,
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X' X2

X

X

X2

Xo

X, X2

Figure 3: Various edge cuts made up of edges perpendicular to X
direction.

ny(Xo) = 18n%,my(Xo) = 5(45n2 - 5n), my(Xo) = 5(45n7 - 5n),
ti(Xo) = 3(81n? - 5n), and t,(Xo) = 3(81n? - 5n).

For1 < k < n — 1, removal of the edges in X leaves G
into two components say Gy, and G,’(k with |Xk| = 2n - k,
m(Xy) = 18n? — 24nk + 6k?,ny(X) = 18n? + 24nk — 6k?,
my(Xic) = 2(45n2 - 60nk +15k2 - 5n + 3k), my(Xie) = 3(45n +
60nk — 15k?>—5n—k), tl(Xk):%(81n2—108nk+27k2—5n+3k),
and t(X,) = 3(81n* + 108nk — 27k? - 5n - k). The argu-
ment is similar for X_;,1 <k<n-1.

Removal of the edges in X{, 1<k<n -1 leaves
G into two components say Gxr and G ?IfkT with |X{| =
4n - 2k, m(X!) = 18n? — 24nk + 6k? - 6n + 3k, ny(X[) =
18n? + 24nk — 6k2 + 6n — 3k, my(X{) = %(45n2 - 60nk +
15k2 - 21n + 11k), my(X}) = %(45n2 + 60nk — 15k2 + 7n -
7k),  t(X{) = 5(81n? - 108nk + 27k - 33n + 17k), and
tLXD) = %(81n2 +108nk — 27k? + 19n — 13k).A similar argu-
ment holds for X%, 1<k<n-1.

For1 < k < n - 1, removal of the edges in X,f leaves

G into two components say Gys and G}, with X8| =

"
4n - 2k, m(X2) = 18n? - 24nk + 6k? + 6n —k 3k, ny(X2) =
18n? + 24nk — 6k — 6n + 3k, my(XF) = J(45n* - 60nk +
15k2 + 7n = 3k), my(X¢) = 5 (45n% + 60nk — 15k2 - 21n + 7k),
((XP) = 3(81n? - 108nk + 27k? + 19n - 9k), and L(XE) =
%(Sln2 + 108nk — 27k% — 33n + 13k). The argument is

similar for X8, 1<k<n-1.
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For k = 0, the removal of the edges in XOT leaves

G into two components GXOT and G',; where IXg | = 4n,

X5
m(XD) =18n% - 6n, ny(X!) = 18n2 + 6n, my(XY) =%(45n2 -
21n), my(X3) = 3(45n2 + 7n), t(Xg) =5(81n? - 33n), and
6(X§) = 5(81n + 19n).

Similarly, for k = 0, the removal of the edges in
XE leaves G into two components Gyp and G)’(g where

1X8) = 4n, ny(XB)=18n?+6n, ny(X8)=18n?-6n, m(x?%) =
S@5n2 + 7n), my(X$) = 5(45n% - 21n), H(X§) = 3(81n? +
19n), and 6(X§) = 3(81n? - 33n).

For 1 < j < n, the removal of the edges in X,{ leaves G
into two components say Gy; and G ),(,{ with |X}J| = 2,
m(X)) =3, ny(X}) = 36n% - 3, my(X}) = 2, my(X}) = 45n% -
3n - 4, t(X)) = 5, and t(X]) = 81n? - 3n — 7. The argu-
ment is similar for X/,, 1 < j < n. Then:

(i) Mo,(G) = 3[(2n)I(18n?) — (18n2)| + 2% _;(2n - k)|

=
(18n2 - 24nk + 6k?) — (18n? + 24nk — 6Kk2)| + 237,
(4n - 2k)|(18n? — 24nk + 6k? — 6n + 3k) — (18n? +
24nk — 6k2 + 6n — 3k)| + 2%, (4n - 2k)|(18n> -
24nk + 6k* + 6n - 3k) — (18n? + 24nk — 6k? — 6n +
3k)| + 2(4n)|(18n? — 6n) — (18n? + 6n)| + 2n(2)| 3 -
36n? - 3)|1.
(ii) Moe(G) = 3[(2n)| 3(45n* — 5n) — 3(45n* - 5n)| +
2531@2n - IOl 5(45n% - 60nk + 15k2 - 5n + 3k) -
54502 + 60nk - 15k - 5n - k)| + 2¥;_j(4n — 2K)|
%(45n2 - 60nk + 15k? — 21n + 11k) - %(45n2 + 60nk
—15K% + 7n — 7K)| + 25 (4n - 2k)| 2(45n - 60nk
+15Kk% + 7n - 3k) - 3(45n% + 60nk — 15k* - 21n +
7K)| + (2)(4n)| %(45n2 - 21n) - %(45112 +7n)| + 2n
l@5n? - 3n - 4) - 21].
Moy(G) = 3[(2n)| 3(81n% - 5n) — 2(81n? — 5n)| +
25012n - k)| %(81n2 — 108nk + 27k? — 5n + 3k) —
2(81n? + 108nk — 27k2 - 5n - k)| + 25} j(4n - 2k)|
5(81n? - 108nk + 27k? - 33n + 17k) — 5(81n? + 108nk
~27K2 +19n - 13k)| + 233 (4n - 2Kk)| %(81n2 - 108nk
+ 27k* + 19n - 9k) - %(Eiln2 + 108nk — 27k? — 33n
+ 13k)| + (2)(4n)| 5(81n? - 33n) - (81n% + 19n)| +
2n(2)|(81n2 - 3n-7) - 5]].

(iv) w*Mo,(G) = 3[(3 + 3)2n)|(18n2) - (18n?)| + 25},
(3 + 3)(2n - k)|(18n? - 24nk + 6k?) — (18n? + 24nk

(iii)
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W)

(vi)

(vii)

(viii)
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—6k)| + 25713 + 2)(4n - 2k - 2) + 2 + 2|
(18n2 — 24nk + 6k? — 6n + 3k) — (18n? + 24nk -
6k? + 6n — 3k)| + 253 1[(3 + 2)(4n - 2k)]|(18n* -
24nk + 6k* + 6n — 3k) — (18n? + 24nk — 6k? — 6n
+3K)] + 2[(3 + 2)(4n - 2) + (2 + 2)(2)]|(18n? - 6n)
— (18n?% + 6n)| + 2n(3 + 2)(2)| 3 - (36n% - 3)|].
w*Mo,(G) = 3[(3)(3)(2n)|(18n?) — (18n?)| + 2¥}_;
3)3)(2n - k)|(18n% - 24nk + 6k?) — (18n? + 24nk —
6k + 2551 [3)()(4n - 2k - 2) + 2)()()]I(18n? -
24nk + 6k% — 6n + 3k) — (18n? + 24nk — 6k% + 6n —
3k)| + 235,(3)(2)(4n — 2K)|(18n? - 24nk + 6k* + 6n
- 3k) - (18n2 + 24nk — 6k2 — 6n + 3k)| + 2[(3)(2)
(4n - 2) + (()]1(18n? - 6n) — (18n? + 6n)| +
2n(3)2)(2)| 3 - 36n° - 3)|].
wMo,(G) = 3[(3 + 3)(2n)| 5(45n> - 5n) — S(45n% -
5n)| + 25513 + 3)2n - k)| %(45n2 — 60nk + 15k —
5n + 3k) - 3(45n% + 60nk — 15k% - 5n - k)| + 2
1[G+ 2)(4n - 2k = 2) + (2 + 2)(2)]| 5451 -
60nk + 15k2 - 21n + 11k) - 5(45n* + 60nk — 15k +
7n - 70| + 255 1[G + 2)(4n - 2k)]| 3(45n - 60nk
+15k2 + 7n = 3k) — 3(45n + 60nk — 15k2 - 21n +
701+ DIG +2)(4n -2) + 2+ ]I %(45n2 - 21n)
— 204512 + Tn)| + 2n(3 + 2)()I(45n% - 3n - 4) - 2 |].
w*Mo(G) = 3[(3)(3)(2n)| 5(45n? - 5n) — 3(45n* -
5m)| + 253 1(3)3)2n — k)| 3(45n - 60nk + 15k2 -
5n + 3k) - S(45n% + 60nk - 15k? = 5n - k)| + 2
(3))4n - 2k - 2) + ()| 3(45n% - 60nk
+15k2 - 21n + 11k) — 5(45n2 + 60nk — 15k2 + 7n - 7K))|
+ 255 1[3)@)4n ~ 2]l 5(45n% — 60nk + 15k2 +
7n - 3k) - %(45n2 + 60nk — 15k - 21n + 7k)| +
@I - 2) + Q@) 34512 - 21n) - 5
(45n% + 7n)| + 2n(3)(2)(2)|(45n% — 3n - 4) - 2].
w*Mo,(G) = 3[(3 + 3)(2n)| 3(81n? - 5n) - 3(81n? -
5m)| + 251G + 3)(@n - k)| 3(81n% - 108nk + 27k?
-5n + 3k) - %(81n2 +108nk — 27k* — 5n — k)| + 2
(1lG + 2(4n - 2k = 2) + (2 + Q)] 5(81n? -
108nk + 27k? - 33n + 17k) — 3(81n? + 108nk — 27k
+19n - 13K)] + 255 1[G + 2)(4n - 2Kk)]| 3(81n? -
108nk + 27k2 + 19n - 9k) - (81n® + 108nk — 27k?
- 33n + 13k)| + Q)[B + 2)(4n - 2) + 2 + 2|

(ix)
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~(81n2 - 33n) - 2(81n% + 19n)| + 2n(3 + 2)(2)|(81n?
-3n-7)-5]].
wMoy(G) = 3[(3)3)(2n)| 5(81n? - 5n) - S(81n? -
5n)| + 25 ,(3)3)(2n — k)| 3(81n? - 108nk + 27k -
5n + 3k) — %(81)12 +108nk — 27k? — 5n — k)| + 2
l(3)@)@n - 2k - 2) + (QQQ)]| 5(81n? - 108nk
+27k? = 33n + 17k) - 5(81n? + 108nk — 27k + 19n
— 13| + 25} ,[3)()(4n - 2K)]| 5(81n? - 108nk +
27Kk + 19n - 9k) - 5(81n? + 108nk — 27k? - 33n +
13I)] + IB))Gn - 2) + Q)| 5(81n? - 33n)
— 2(81n2 + 19n)| + 2n(3)(Q)(2)I(81n% - 3n - 7) - 5 |].

We have obtained the above results using MATLAB

interface.

4

Graphical comparison

Graph-theoretical methods are often used to interpret
chemical structures as molecular graphs. The analytical
expressions are represented as a two-dimensional (2D)
graph against variable n to analyze the relationship and
behavioral pattern of the computed invariants. Figure 4
shows a 2D graph of Theorem 3. The invariants vary
based on the chemical structure, as seen in the graph.

_1011

Comparison

Mov(G)
Mo_(G)
Mo‘(G)
w'Mo, (G)

w Mo (G)
w'Mo,_(G)
— W Moe(G)

w'Mo‘(G)

w'Mox(G)

Figure 4: 2D plot for Theorem 3.
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5 Conclusion

The bond-additive topological invariants considered in
this article have been extensively investigated for many
classes of graphs, which encouraged us to investigate
these invariants for polyphenylene superhoneycomb net-
works. We have obtained exact analytical expressions of
different versions of weighted Mostar invariants for the
molecular structure of polyphenylene superhoneycomb
networks by applying the cut method. Our results could
be useful in determining the characteristics of these
molecular structures using models of QSPR/QSAR rela-
tionships. The degree-based topological indices for the
graph of polyphenylene superhoneycomb network are
under investigation.

Acknowledgment: The authors would like to thank the
editor and the anonymous referees for their valuable sug-
gestions, which helped, in a great way, to improve the
original version of the article.

Funding information: The authors state no funding involved.

Author contributions: Sathish Krishnan: writing — ori-
ginal draft, writing — review and editing; Bharati Rajan:
writing — original draft, writing — review and formal ana-
lysis; Muhammad Imran: writing — original draft, writing
— review and formal analysis.

Conflict of interest: One of the authors (Muhammad Imran)
is a Guest Editor of the Main Group Metal Chemistry’s Special
Issue “Theoretical and computational aspects of graph-the-
oretic methods in modern-day chemistry” in which this
article is published.

Data availability statement: All data generated or ana-
lyzed during this study are included in this article.

References

Albertson M.O., The irregularity of a graph. Ars Comb., 1997, 46,
219-225.

Expressions for Mostar and weighted Mostar = 271

Arockiaraj M., Clement )., Tratnik N., Mostar indices of carbon
nanostructures and circumscribed donut benzenoid systems.
Int. J. Quantum Chem., 2019, 199(24), e26043.

Arockiaraj M., Clement J., Tratnik N., Mushtaq S., Balasubramanian K.,
Weighted Mostar indices as measures of molecular peripheral
shapes with applications to graphene, graphyne and graphdiyne
nanoribbons. SAR. QSAR Environ. Res., 2020, 31(3), 187-208.

Bieri M., Treier M., Cai J., Ait-Mansour K., Ruffieux P., Groning O.,
et al., Porous graphenes: two-dimensional polymer synthesis
with atomic precision. Chem. Commun., 2009, 45, 6919-6921.

Dengm K., Li S., Extremal catacondensed benzenoids with respect to
the Mostar index. ). Math. Chem., 2020, 58(7), 1437-1465.

Dosli¢ T., Martinjak I., Skrekovski R., Spuzevi¢ S.T., Zubac I., Mostar
index. J. Math. Chem., 2018, 56(10), 2995-3013.

Gutman |., Trinajsti¢ N., Graph theory and molecular orbitals. total
electron energy of alternant hydrocarbons. Chem. Phys. Lett.,
1972, 17(4), 535-538.

Gutman I., A formula for the Wiener number of trees and its exten-
sion to graphs containing cycles. Graph. Theory Notes, N. Y.,
1994, 27, 9-15.

Javaid M., Rehman M. U., Cao J., Topological indices of rhombus
type silicate and oxide networks. Can. J. Chem., 2017, 95(2),
134-143.

Khadikar P.V., Karmarkar S., Agrawal V.K., A novel Pl index and its
applications to QSPR/QSAR studies. J. Chem. Inf. Comput. Sci.,
2001, 41, 934-949.

Klavzar S., A birds eye view of the cut method and a survey of its
applications in chemical graph theory. MATCH Commun. Math.
Comput. Chem., 2008, 60, 255-274.

Klavzar S., Li S., Zhang H., On the difference between the (revised)
Szeged index and the Winener index of cacti. Discret. Appl.
Math., 2018, 247, 77-89.

Krishnan S., Rajan B., Molecular descriptor analysis of polypheny-
lene superhoneycomb networks. Polycycl. Aromatic Compd.,
doi: 10.1080/10406638.2022.2094972.

Li S., Zhang H., Proofs of three conjectures on the quotients of the
(revised) Szeged index and the Wiener index and beyond.
Discret. Math., 2017, 340(3), 311-324.

Liu J.-B., Javaid M., Awais H. M., Computing Zagreb indices of the
subdivision-related generalized operations of graphs. IEEE
Access., 2019, 7, 105479-105488.

Pisanski T., Randi¢ M., Use of the Szeged index and the revised
Szeged index for measuring network bipartivity. Discret. Appl.
Math., 2010, 158(17), 1936-1944.

Solé R.V., Valverde S., Information theory of computer networks: on
evolution and architectual constraints in complex networks.
Lecture Notes in Physics, ed. Ben-Naim E., Frauenfelder H.,
Toroczkai Z., Berlin, Heidelberg: Springer, vol. 650, 2014.

Tratnik N., Computing the Mostar index in networks with applications
to molecular graphs. Iran. J. Math. Chem. 2021, 12(1), 1-18.

Wiener H., Structural determination of paraffin boiling points. J. Am.
Chem. Soc., 1947, 69, 17-20.


https://doi.org/10.1080/10406638.2022.2094972

	1 Introduction
	2 Computational technique
	3 Polyphenylene superhoneycomb networks
	4 Graphical comparison
	5 Conclusion
	Acknowledgment
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


