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Abstract: In this study, we characterize the structure and
some topological indices of a class of random spider trees
(RSTs) such as degree-based Gini index, degree-based
Hoover index, generalized Zagreb index, and other indices
associated with these. We obtain the exact and asymptotic
distributions of the number of leaves via probabilistic
methods. Moreover, we relate this model to the class of
RSTs that evolves in a preferential attachment manner.
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1 Introduction

Initiated in 1736 by Euler and developed in the 19th cen-
tury by the Englishmen A. Cayley and J.J. Silvester, graph
theory has become a very powerful practical and theore-
tical tool (Abbas et al., 2021a,b; Afzal Siddiqui et al., 2021;
Ahmad et al., 2022; Alatawi et al., 2021; Imran et al., 2021;
Nadeem et al., 2021; Raza et al., 2021, 2022; Zuo et al.,
2021). A graph G is determined by two sets (V, E), the set
of nodes and edges. The edges and nodes are interpreted
according to the problem to be modeled. Highlighting the
trees as a very important and studied family of graphs,
which from its origin has proven to have many applica-
tions in different areas. In mathematical chemistry, trees
are used to characterize the molecular structure of che-
mical compounds; in this context, the nodes represent
the molecules and the edges the chemical bonds (Kier
and Hall, 1986). One relevant class of trees for chemical
studies are the trees with a given number of pendants. A
node is called pendant if it has degree 1. Ducoffe et al.

(2018) proved that the trees with n pendants (n 3≥ ) that
maximize the modified first Zagreb connection index
must be spider trees or double stars. On the other hand,
Shiu (2008) reported that spider trees are used to study
hexagonal systems that model benzenoid molecules and
unbranched catacondensed benzenoid molecules.

The structural information of a graph can be repre-
sented in different ways: matrices, polynomials, topolo-
gical indices, etc. The topological indices quantify the
structural information contained in the graph and are
independent of the numbering of the nodes and edges;
hence they are called topological. The theoretical and
practical interest of topological indices have experienced
explosive growth from its introduction, resulting in count-
less papers published that are able to position them as
a useful tool in multiple practical problems of computer
science (Gutman et al., 2018), physic (Estrada, 2010), ecology
(Pineda-Pineda et al., 2020), and chemistry (Kashif et al.,
2021; Rao et al., 2021; Reždepović and Furtula, 2020; Shao
et al., 2022). As a summary, the first research in this area
appeared in the report by Wiener (1947) giving rise to the
now well-known Wiener index to analyze and correlate
the physicochemical properties of alkanes. In 1971, Haruo
Hosoya continued the research on topological indices by
introducing the Z index of Hosoya (Hosoya, 1971). On the
other hand, the Zagreb index appeared for the first time in
Gutman and Trinajstić (1972). Then, it was defined by Randić
(1975), the Randić index, considered possibly the most
studied and applied topological index at present, giving
way to generalizations such as the “molecular connectivity
indices,” introduced by Kier et al. (1975).

In the development of applications, it has become
natural to conclude that random graphs are an appro-
priate and useful tool to analyze phenomena that evolve
over time, since many important characteristics are diffi-
cult to capture using deterministic models. In this sense,
it is important to mention that some works perform stu-
dies of topological indices on random graphs. For a better
treatment we refer interested readers to Aguilar-Sánchez
et al. (2021), Kazemi (2021), Li et al. (2021a, 2021b), Mar-
tínez-Martínez et al. (2020), Pegu et al. (2021), and Zhang
andWang (2022). In particular, motivated by the substan-
tial increase in interests in random tree models and con-
sidering the arguments put forward in the previous
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paragraphs, in this article, we considered a class of
spider trees that are incorporated with randomness,
called random spider trees (RSTs), and we investigated
several useful topological indices of this random class,
including degree-based Gini index, degree-based Hoover
index, generalized Zagreb index, and other indices asso-
ciated with these. Specifically, a central limit theorem is
developed for the asymptotic distribution of the number of
leaves in an RST.

Notation: � denotes the set of real numbers. The
expected value and the variance of a random variable X
in (Ω, ℱ, P) are denoted as E(X) and V(X). On the other
hand, X ⁓ F means that the random variable X has a
distribution function F and MX denotes the moment gen-
erating function of the random variable X. n pBin 1,( )−

represents a random variable with binomial distribution
with parameters n 1 0− ≥ and p in [0,1]. pBer( ) repre-
sents a random variable with Bernoulli distribution with
parameter p in [0,1]. N μ σ, 2( ) represents a random variable
with normal distribution where μ in � is the mean and
σ 02

> is the variance of the random variable. χ λ k,2 ( )

represents a random variable with noncentral chi-squared
distribution where k 0> is the degrees of freedom and
λ 0> is the non-centrality parameter. For probabilistic con-
vergence we use → P to denote convergence in probability
and→D to denote convergence in distribution. Let r 0> ,→
Lr denotes convergence in r-mean. Given two real-valued
functions f x( ) and g x 0( ) ≠ , we call f x o g x( ) ( ( ))= , if we
have f x g x 0( ) ( )/ → as x → ∞. Given two real-valued
functions f x( ) and g x( ), we call f x O g x( ) ( ( ))= , if there
exists a positive real number N and a real number x0
such that f x Ng x( ) ( )| | ≤ for all x x0≥ .

2 RSTs

A spider tree is a connected tree with a centroid of degree
of at least 3. All the remaining nodes are classified into
two categories: internal nodes of degree 2 and leaves of
degree 1, respectively. Thus, except for the centroid, all
the nodes in a spider tree have degrees of at most 2. The
class of RSTs considered in this study evolves in the fol-
lowing way: at time 1, an RST starts with a seed graph
containing a centroid and three leaves. At each subse-
quent stage, the leaves and centroid will be able to recruit
new nodes (at time n):
1) The centroid will be selected with probability p, p0 1< < .
2) A leafwill be selectedwith probability p L1 ,n( )− / where Ln

denotes the number of leaves in the RST at time n, where

p p
L

p p L
L
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Note that only the centroid and leaves are qualified
for recruiting new nodes. If the centroid is selected, a
new leaf is attached to it; if a leaf is selected, a new leaf
is attached to the (selected) leaf, and the recruiter is
converted to an internal node. Finally, we have that at
each stage the generated graph is a spider tree with
n 3+ nodes.

2.1 Leaves

In the following, Ln denotes the number of leaves in an
RST at time n, with n 1≥ . For n 2≥ , by the construction of
the model it follows that

P L L L p1 .n n n1 1( | )= + =− −

Consequently, let t �∈ , then we obtain a recurrence
relationship
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Now, we solve the recurrence relationship with the
initial value L 31 = , obtaining

M t p pe e t1 , .L
t n t1 3

n �( ) ( )= − + ∈
−

By the above result, L n p3 Bin 1,n ( )− = − , applying
the central limit theorem (Gut, 2005) we get
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Now, note that for each k �∈
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In addition, 1,p p n
p p n k

1 1
1

( ) ( )

( ) ( )
→

− −

− +

whenn .→ ∞ Finally,

the following proposition follows from combining these
results.

Proposition 1. For n 1≥ and p0 1< < , the following
statements hold:
1) E L n p3 1n( ) ( )= + − and V L n p p1 1 .n( ) ( )( )= − −

2) M t p pe e t1 , .L
t n t1 3

n �( ) ( )= − + ∈
−

3) For each k �∈ , N 0, 1L n p
p p n k

D3 1
1

n ( )
( )

( )( )
→

− − −

− +

as n .→ ∞
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2.2 A class of RSTs that evolves in a
preferential attachment manner

In a very recent article (Ren et al., 2022), the authors
inspired by the seminal paper (Barabási and Albert,
1999) introduced a class of RSTs that evolves in a prefer-
ential attachment manner as follows. At time 1, an RST
starts with a seed graph containing a centroid of degree 3
and 3 leaves. At each subsequent point, the probability of
a qualified node recruiting a newcomer is proportional to
its degree. If the centroid is selected, a new leaf is
attached to it; if a leaf is selected, a new leaf is attached
to the (selected) leaf, and the recruiter is converted to an
internal node. Consequently, for n 2≥ ,

P I
deg

degv n
v n

u Q u n
,

, 1

, 1n 1

( ) =

∑

−

∈ −
−

where v is a qualified node at time n, Iv n, indicates the event
that node v is chosen as recruiter at time n, degi n, 1− is the
degree of a node i at time n 1− and Qn 1− denotes the set of
qualified nodes at time n 1− . Then, for n 2≥ , it follows that:
1) The probability that the centroid recruits a newcomer

at time n is L
L2

1
2

n

n

1

1
=

−

−

.

2) The probability that a leaf recruits a newcomer at time

n is
L

1
2 n 1−

.

Therefore, we can conclude that the class of RSTs
that evolves in a preferential attachment manner (prefer-
ential model) is the model presented in Section 2 with

p 1
2= .

3 Topological indices

The purpose of topological indices is to study the struc-
tural properties associated with a graph and its invariants
using a certain numerical value. The idea of capturing the
information in numerical form is to be able to compare
the graphs according to the property to be studied. Let
G = (V, E), then many important topological indices
(TI(G)) can be defined as follows:

G hTI deg
v V

v
α( ) ( )∑=

∈

(1)

where α �∈ , h : 1,2, 0, ,{ } ( )… → ∞ and degv is the
degree of a node v. In Section 3, we will study the indices
that satisfy Eq. 1 in the model introduced in Section 2. At
each stage, the generated tree has three types of nodes,

centroid, leaves, and internal, for which their degrees are
Ln, 1 and 2, respectively.

Proposition 2. Let TIn be the value of the topological index
at stage n. For each n 1≥ , we have

E E h L h h E L h n
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Proof. Note that I L n1 3n n+ + = + , where In is the number
of internal nodes in the tree at stage n, it follows that:

h L h L h n L
h L h h L h n

TI 1 2 2
1 2 2 2 .

n n n n
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(2)

By Eq. 2, we immediately get the mean and the var-
iance of TIn. □

Proposition 3. Let n t1, .�≥ ∈ If h L aL bn n( ) = + with
a b, �∈ , then M t p pe e1 .h L

at n a b t1 3
n ( ) ( )( )

( )
= − +

− +

3.1 Generalized Zagreb index

Zagreb index was introduced by chemists Gutman and
Trinajstić (1972). Later, some of its general mathematical
properties were pointed out and its relationship with
other quantities of interest in chemical graph theory
was shown (Gutman and Das, 2004). In fact, Zagreb index
and its variants have been used in the studies of quanti-
tative structure-property/activity relationships (QSPR/QSAR)
(Devillers and Balaban, 1999; Khadikar et al., 2001; Sardana
andMadan, 2002), while the overall Zagreb indices exhibited
a potential applicability for deriving multilinear regression
models. Nowadays, as an indicator of its importance, the
ideas outlined in the initial paper are explored by
numerous other scholars (An, 2022; Filipovski, 2021;
Milovanović et al., 2021).

At time n 1≥ , taking h x x( ) = and α ϵ � in Eq. 1, we
obtain the generalized Zagreb index (Zn

g). According to Eq. 2,

Z L L n1 2 2 2 .n
g

n n
α α α( ) ( )= + − + + (3)

Proposition 4. Let α ϵ 1,2,{ }… and t ϵ �, we have

M
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with C C 1α α α, ,1= = and C C iCα i α i α i, 1, 1 1,= +− − − for
i αϵ 2, 3, , 1 .{ }… −
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Proof. We will get the proof via mathematical induction
on α. First, observe that the point (2) in Proposition 1 may
be simplified by defining a new variable u t p1( ) = − +

pet. Substituting p pe1 t
− + by u t( ), we get M tLn( ) =

M u t u tL
n u t p

p
1 1 3

n( ( )) ( )
( )

( )=
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with C C 13,1 3,3= = and C C C2 33,2 2,1 2,2= + = . We assume
that the statement holds for all α, i.e.,
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with C C 1α α α, ,1= = and C C iCα i α i α i, 1, 1 1,= +− − − for i ∈

α2, 3, , 1{ }… − . Note that for each i α1, 2, ,{ }∈ … we
obtain that:
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By Eqs. 4 and 5, we have proved the following result:
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with C C 1α α α1, 1 1,1= =+ + + and C C iCα i α i α i1, , 1 ,= ++ − for
i α2, 3, ,{ }∈ … , which completes the proof. □

A special case of Proposition 4 has the following
result, which is valid when t 0= in Eq. 4.

Corollary 1. For α 1,2,{ }∈ … , it is verified that
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By Corollary 1, it is concluded that for each
α 1,2,{ }∈ … ,
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In consequence, by Theorem 1, the first two moments
of Zn

g for α 3,4,{ }∈ … are given by
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Theorem 2. For any α 3,4, ,{ }∈ … it is verified that
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α ⟶  when n goes to infinity.
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Proof. Let
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By Chebyshev’s inequality (Gut, 2005), we get
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Then, x 0n → as n .→ ∞ Therefore, the result follows.
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3.2 Zagreb index

At time n 1≥ , taking h x x( ) = and α 2= in Eq. 1, we
obtain the Zagreb index (Zn). According to Eq. 3, we have
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By the well-known normal approximation of non-
central chi-squared distribution (Severo and Zelen, 1960),
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− +

+ −

− +

as n .→ ∞ In particular,

Z p p n k n p

p p n k p p n k n p

Z p p n k n p

p p n k o n

a Z n p
p p n k

b

1

2 1

1 1

1 2 1 2 1

1 1

4 1

4 1

Z
p p n k

n
p p n k

n p

p p n k

n p

p p n k

n
n

n
n

n
n

n

1
16 23

4 1

1

1

2 1

1

16 23
4

3
2

2

3
2

2

16 23
4

3
2

2

3 3 3

2 2

3 3

n
3
2

2

3
2

2
⎛

⎝
⎜

⎞

⎠
⎟

( )( ) ( )

( )( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( )

( )( ) ( )( )

( )

( )( )

( )

( )( )
( )

( )

( )

( )

( )

( )

− − −

+

=

− − − + − + −

− + − + + + −

=

− − − + − + −

− + +

=
−

− +

+

− +

+

− +

+ −

− +

+ −

− +

+

+
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where

a
p p n k

p p n k o n
4 1

4 1
n

3 3

3 3 3

( )( )

( )( ) ( )
=

− +

− + +

b
o n

p p n k o n4 1
.n

3
2

3 3 3( )( ) ( )

( )
=

− + +

It is verified that a 1n → and b 1n → as n → ∞, then

Z n p
p p n k

N
2 1

0, 1 .n D2 2

3 3( )( )
( )

−

− +

→ □

(2) The proof can be verified similar to that of
Corollary 2.

We conduct a numerical experiment to verify point
(1) of Proposition 5 with k 0= , developed in this section.
Given a fixed pϵ 0,1 ,( ) we independently generate 5,000
replications of RSTs after n 10,000= evolutionary steps.
For each simulated RST, its Zagreb index is computed,
then the sample data are formed by 5,000 Zagreb indices
from independent simulated graphs. The histogram of the
sample data with a normal approximation curve is given

in Figure 1 for p = 0.3, 0.5, and 0.7, respectively. We
further confirm the conclusion via the Shapiro–Wilk nor-
mality test, which yields that the p-value equals 0.070,
0.365, and 0.469 for p = 0.3, 0.5, and 0.7, respectively.

3.2.1 Gordon-Scantlebury index

Defining Sn as the Gordon-Scantlebury index at time
n 1≥ , which verifies that Z S E2n n n( )= + (Nikolić et al.,
2003) where En is the number of edges at time n. The
tree generated by the model at time n has n 3+ nodes

and n 2+ edges, thus S n 2n
Z
2
n

= − − . For n 1≥ , we get

the following proposition:

Proposition 6. For p ϵ 0,1( ), it is verified that

1) E S p p n p p2 1 2 2.n
n p

2
3
2

2 22 2
( ) ( )= + − + + + − +

2) V S p p n p p p n

p p p p n p p

p p

10

23 4 5 14

13 4 .

n
4 3 3 11

2
4 3 9

2
2 2

19
2

4 3 35
2

2 4 3

2

( ) ( ) ( )

( )

= − + + − +

+ − + − + + −

+ −

Figure 1: Histogram of the standardized Zagreb indices of 5,000 independently generated RSTs withn = 10,000 taking p = 0.3, 0.5 and 0.7 in
(a–c) respectively; the thick red curve is the estimated density of the sample.
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3) For all k �∈ , N 0,1
S

p p n k

D

1

n
n p2 2

2
3 3

( )
( )( )

→

−

− +

when n goes to

infinity.

4) For all r 0> , S
n

L p
2

n r
2

2
→ when n goes to infinity.

3.2.2 Platt index

Let Pn denote the Platt index at time n 1≥ , which verifies
that P S2n n= (Nikolić et al., 2003). Thus, we obtain the
following proposition:

Proposition 7. For p ϵ 0,1( ), it is verified that
1) E P n p p p n p p3 4 2 2 4 4.n

2 2 2 2( ) ( )= + − + + + − +

2) V P V Zn n( ) ( )= .

3) For all k �∈ , N 0,1P n p
p p n k

D

2 1
n 2 2

3 3
( )

( )( )
→

−

− +

when n goes to

infinity.

4) For all r 0> , pP
n

L 2n r
2 → when n goes to infinity.

3.2.3 Forgotten index

At time n 1≥ , taking h x x( ) = and α 3= in Eq. 1, we
obtain the forgotten index (Fn). According to Eq. 3, we
have F L L n7 8 2 .n n n

3 ( )= − + + Our next task is to calcu-
late the first moment of Fn, and consequently to get the
variance of Fn:

E F n p p p n p p p n
p p p

12 6 11 36 30 8
6 24 30 22.

n
3 3 2 3 2 3 2

3 2
( ) ( ) ( )= + − + − + +

− + − +

V F p p n p p p n

p p p p n
p p p p p n
p p p p p n
p p p p p

9 1 9 1 13 18

3 1 197 490 302
9 1 159 530 572 192
6 1 272 803 714 150
36 1 19 64 71 25 .

n
5 5 4 4

3 2 3

2 3 2 2

2 3 2

2 3 2

( )

( )

( )

( )

( )

= ( − ) − ( − )( − )

+ ( − ) − +

− ( − ) − + −

− ( − ) − + −

+ ( − ) − + −

According to Corollary 2, we obtain the following
result:

Corollary 3. For all r 0,> it is verified that pF
n

L 3n r
3 →

as n .→ ∞

3.3 Degree-based Gini index

Recently, a degree-based Gini index for general graphs
was proposed by Domicolo and Mahmoud (2020). This
index is a topological measure on a graph capturing the
proximity to regular graphs. Ren et al. (2022) considered
the degree-based Gini index introduced by Domicolo and
Mahmoud (2020), with slight modifications. In this sec-
tion, we will study the degree-based Gini index defined
by Ren et al. (2022). By definition, the degree-based Gini
index of a graph within the class of RSTs at time n 1≥ is
given by

G
n E

deg deg
3 degn

i j V i j

v
2

n
| |

( ) ( )
=

∑ −

+

< ∈

*

where v* is an arbitrary node of a randomly selected
graph from the class of RSTs and Vn denotes the node
set at time n. We take E Gn( ) as the degree-based Gini
index of the class. Due to the characteristics of the model,
we get

L L L n L

L n L L n L

n

deg deg 1 2 2

2 2 5

2 4

i j V
i j n n n n

n n n n

,

2
n

| | | |( )

( ) ( )

∑ − = | − | + − + −

+ + − = − + +

− −

∈

since L 3n ≥ for all n 1≥ . Finally,

E d n
n

2 2
3

.v( )
( )

=
+

+
*

Thus,

G L n L n
n n
2 5 2 4

2 3 2
.n

n n
2 ( )

( )( )
=

− + + − −

+ +

(7)

It follows that

E G p p n p p n p p
n n

2 3 4 4 2 2 2
2 3 2

.n
2 2 2 2

( )
( ) ( )

( )( )
=

− + − + − + +

+ +

Next we get an asymptotic property of the degree-
based Gini index of the class of RSTs at time n.

Proposition 8. As n → ∞, we have E Gn
p p2

2( )
( )

→
− .

We see from Eq. 7 that

G
L n

n n

2 4

2 3 2
.n

n
n n2 5

2
2 2 5

2
2

( )( )

( ) ( )
=

− − + − −

+ +

+ +

Therefore,

V G p p n p p p n p p p p n p p p p
n n

4 1 2 11 6 1 2 1 19 23 6 4 1 5 5 1
4 3 2

.n
3 3 2 2 2 2

2 2( )
( ) ( )( ) ( )( ) ( )( )

( ) ( )
=

− + − − + − − + − − − +

+ +
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Corollary 4. It is verified that Gn
P p p2

2
( )

→
− , as n → ∞.

Proof. By Chebyshev’s inequality (Gut, 2005), we have

P G E G V Gϵ
ϵn n

n
2(| ( )| )

( )
− ≥ ≤

for any ϵ 0> . If n → ∞ then 0V G
ϵ

n
2

( )
→ , so

G E G 0n n
P

( )− → . Therefore, Proposition 8 completes the
proof. □

Corollary 5. For all r 0> , we have Gn
L p p2

2
r ( )

→
− , when n

goes to infinity.

Proof. Argued in a similar manner to Corollary 2 by
Corollary 4, the result follows. □

Remark 1
a) In view of Proposition 8 and Corollary 4, we

define f p p, 0,1p p2
2( ) ( )

( )
= ∈

− . Note that f is strictly

increasing, consequently, if we want a more regular
class we must choose smaller values of p, since
Domicolo and Mahmoud (2020) showed that a smaller
value of degree-based Gini index suggests more reg-
ularity of a graph or a class of graphs, which makes
sense in this case since the center would have a lower

degree. Specifically, for p 0, 1
2( )∈ , we have that the

class of RSTs that evolves in a preferential attachment
manner is relatively less regular than the class of RSTs
studied in this work (Figure 2).

b) Domicolo and Mahmoud (2020) compared the regu-
larity of two classes of binary trees. The authors
showed that the class of uniform binary trees has

degree-based Gini index 3
16

(Domicolo and Mahmoud,

2020; Section 6.1), whereas that of the class of binary

search trees is 2
9
(Domicolo and Mahmoud, 2020; Sec-

tion 6.2). Note that for p 1 0.20910
4≤ − ≈ , we have

f p 3
16

2
9( ) ≤ < , then the class of uniform binary and

binary search trees are relatively less regular than the

class of RSTs studied in this work for p 0,1 10
4( )∈ −

(Figure 2).
c) Zhang and Wang (2022) concluded that the degree-

based Gini index for the class of random caterpillars

is 1
2
. Since f p 1

2( ) < for p 0,1( )∈ , we conclude that the

class of RSTs is more regular than the class of random
caterpillars of Zhang and Wang (2022) (Figure 2).

3.4 Degree-based Hoover index

Zhang and Wang (2022) proposed a degree-based Hoover
index for graphs analogous to the degree-based Gini
index introduced by Domicolo and Mahmoud (2020) as
a competing measure for assessing graph regularity. In
our context, at time n 1≥ , the degree-based Hoover index
of a graph within the class of RSTs (Hn) is defined as
follows:

H
n n

n n
3 deg 2 2

4 2 3n
i V in

|( ) ( )|

( )( )
=

∑ + − +

+ +

∈

whereVn denotes the node set at time n. In a similar way,
we take E Hn( ) as the degree-based Hoover index of the
class. The same analysis applied in Section 3.2 is used in
this section and we obtain the following results.

Figure 2: Graphic representation of functions in Remark 1.
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Proposition 9. For n 1≥ , we have

H n L
n n

E H pn n p
n n

V H p p n n
n n

1
2 3 2

, 3 3
2 3 2

,

1 1 1
4 3 2

.

n
n

n

n

2

2

2 2

( )

( )( )
( )

( )( )

( )
( )( )( )

( ) ( )

=
+

+ +

=
+ + −

+ +

=
− − +

+ +

Finally, for all r 0> , Hn
L p

2
r

→ , as n → ∞.

A direct consequence of Proposition 9 is the fol-
lowing corollary.

Corollary 6. In the preferential model for all r 0> , it is

verified that Hn
L 1

4
r

→ and E Hn
1
4( ) → when n goes to infinity.

Remark 2
a) In view of Proposition 9 we define f p p, 0,1p

1 2( ) ( )= ∈ ,

then f1 is strictly increasing. Since it is shown by
Zhang and Wang (2022) that a value closer to 0 sug-
gests that the graphs in the class tend to be more
regular, by an argument similar to Remark 1a we get
the same behavior as the degree-based Gini index
studied in Section 3.2.

b) Moreover, it is observed that f p f p1( ) ( )< for p 0,1( )∈ .
Then, the degree-based Hoover index of the class of
RSTs presented in Section 2 is less than the degree-based
Gini index of the same class when n goes to infinity.

c) Zhang and Wang (2022) (Section 3) concluded that the
degree-based Hoover index for the class of random cater-
pillars is 1

2
as n → ∞. Since f p pfor 0,11

1
2( ) ( )< ∈ , we

conclude that the class of RSTs is more regular than the
class of random caterpillars of Zhang andWang (2022), in
these cases via the degree-based Hoover index.

4 Conclusion

We investigated a class of RSTs, the random variable of
prime interest is the number of leaves as time proceeds
and we calculated the moment generating function of the
leaves and showed that the number of leaves follow a
Gaussian law asymptotically. Next we investigated sev-
eral useful topological indices for this class, including
degree-based Gini index, degree-based Hoover index,
generalized Zagreb index, and other indices associated
with these. Moreover, Proposition 3 and Theorem 1 showed
by Ren et al. (2022) are deduced from Proposition 1 of this
work taking p 1 2= / . In similar way, the results displayed in
Sections 3.2.1 and 3.2.2 of Ren et al. (2022) are obtained as a
special case of the results demonstrated in Sections 3.1 and

3.2, respectively. In particular, we conclude that the class of
RSTs that evolves in a preferential attachment manner is
relatively less regular than the class of RSTs studied in this
work in some cases.
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