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Abstract: A bond-additive connectivity index, named as the
Mostar index, is used to measure the amount of peripheral
edges of a simple connected graph, where a peripheral edge
in a graph is an edge whose one end vertex has more
number of vertices closer as compared to the other end
vertex. In this study, we count the contribution of peripheral
edges in commuting, non-commuting, and non-conjugate
graphs associated to the dihedral and semi-dihedral groups.
In fact, we compute the Mostar index of these graphs.
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1 Introduction

A connectivity index is a form of molecular attribute whose
computation depends upon a chemical graph of a chemical
substance in the subject of mathematical chemistry.A large
variety of numerical values, also known as topological
indices, have been suggested and explored in attempt to
distil and collect, or summarie, the content contained in
graph connectivity patterns (Todeschini and Conosonni,
2002). Topological indices are numerical quantities that

describe the topology of a graph and are generally graph
invariant (Qiu and Akl, 1995). For instance, the Wiener
index is based on the topological proximity of vertices in
a graph, and was defined by Wiener in 1947 to estimate
the boiling properties of various alkane isomers. Since
then, more than 3,000 topological indices of graphs
have been recorded in chemical databases. Another
type of topological index aims to measure the nonbalanc-
edness among the bonds of a chemical graph on the base of
peripherality of bonds (edges), which is named as the
Mostar index (Akhter et al., 2021; Došlić et al., 2018). The
Mostar index recently discovered as a bond-additive con-
nectivity index determines the quantity of peripherality of
certain edges as well as the graph as a whole (Akhter et al.,
2021; Došlić et al., 2018). It is a distinct geometric index
which counts the contribution |ηλ − ημ| of every edge
e = λμ in a connected graph, where ηλ is the quantity
of vertices that are closer to the vertex λ than the vertex μ,
and ημ is defined in the same way (Ali and Doslic, 2021).
Accordingly, this index indicates the degree of specific
edges and the degree of peripherality of the graph as
a whole. This index attracted many graph theorists to mea-
sure the peripherality of various (chemical) graphs. Tepeh
addressed the first conjecture about the Mostar index of
bicyclic graphs (Tepeh, 2019),whichwasproposedbyDošlić
et al. (2018). Further, remarkable work on the Mostar index
of carbon nanostructures, trees, and hexagonal chains has
been supplied by Arockiaraj et al. (2019), Hayat and Zhou
(2019), and Huang et al. (2020).

A classical study of graphs associated with groups
attracted many researchers to explore the various theore-
tical and topological properties of graph. A large number
of interesting work have been published by supplying
the articles by Abdollahi et al. (2006), Ali et al. (2016),
Alolayan et al. (2019), Bhuniya and Bera (2016), Bunday
(2006), Cameron and Ghosh (2011), Chakrabarty et al.
(2009), and Rahman (2017). Some of the graphs asso-
ciated to group are defined as follows: Let a group Γ
and the center of group Γ be ζ(Γ) = {λ ∈ Γ: λμ = μλ∀μ ∈ Γ}.
ΓG denotes the commuting graph of Γ with the vertex set
Γ and two distinct vertices λ and μ ∈ Γ from an edge in ΓG
if and only if λμ = μλ in Γ (Ali et al., 2016; Bunday, 2006).
The non-commuting graph of Γ is denoted by GΓ with
the vertex set Γ − ζ(Γ) and two distinct vertices λ and
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μ ∈ Γ from an edge in GΓ if and only if λμ ≠ μλ in Γ
(Abdollahi et al., 2006; Moghaddamfar et al., 2005;
Wei et al., 2020). If λ = gμg−1 or μ = g−1λg for g ∈ Γ, then
λ and μ are said to be conjugate of each other. This relation
between elements of Γ is an equivalence relation and is
called the conjugacy relation. Due to this equivalence rela-
tion, Γ is partitioned into disjoint classes each of which is
called a conjugacy class. Mathematically, the conjugacy
class of λ ∈ Γ is Cl(λ) = {gλg−1:g ∈ Γ}. G(Γ) denotes a non-
conjugate graph with the vertex set Γ and two different
vertices λ and μ ∈ Γ from an edge in G(Γ) if and only if
λ and μ belong to different conjugacy classes (Alolayan
et al., 2019).

Graphs associated with the dihedral group have been
considered by Abbas et al. (2021), Salman et al. (2022),
and Wei et al. (2020) to study their topological properties
such as the Wiener related indices, Harary index, Randić
indices, geometric arithmetic indices, atom bond connec-
tivity indices, harmonic index, Hosoya index, and poly-
nomials. This study is aimed to investigate the Mostar
index of graphs (commuting, non-commuting, and non-
conjugate graphs) associated with the dihedral and semi-
dihedral groups.

2 Preliminaries

This section provides partitions of groups under consid-
eration, some basic terminologies of a graph, and the
mechanism to compute the Mostar index.

The generating form Dn = 〈a, b|an = b2 = e, ab = ba−1〉
represents the dihedral group of order 2n, which is the
collection of symmetries of regular n-polygon. The center
of Dn is:
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The generating form SD8n = 〈a, b|a4n = b2 = e,
ba = a2n−1b〉 represents the semi-dihedral group of order
8n with:
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Let us partition SD8n as follows:
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Let a connected and simple graph G have vertex and

edge sets symbolized by V(G) and E(G), respectively. We
denote the number of edges(size) of a graph G by S(G).
The notation K + H denotes the sum of two graphs K and
H with V(K) ∪ V(H) as the vertex set and E(K) ∪ E(H) ∪
{λ ∼ μ: λ ∈ V(K) ∧ μ ∈ V(H)} as the edge set. The number of
edges in a shortest path between two distinct vertices λ
and μ is defined as the distance across λ and μ, indicated
by d(λ, μ). The eccentricity of a vertex μ is the number

λ d λ μecc max ,
μ V G

( ) ( )
( )

=

∈

For an edge e = λμ, peripheral neighborhoods of
e according to its end vertices λ and μ are defined,
Arockiaraj et al. (2020), as follows:
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Then, ηλ(e|G) = |Nλ(e|ΓG)| and ημ(e|G) = |Nμ(e|ΓG)| are
the peripheral degrees of e. Akhter et al. in 2021 and
Došlić et al. in 2018 provided the following formula to
compute the Mostar index of a graph G
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The number of vertices adjacent to a vertex λ in G is
called the degree of λ and it is denoted by d(λ). A vertex of
degree 1 is known as a leaf in G. Whenever we need to
find the size, S(G) of a graph G, we will use the formula

d λ S G2λ V G ( ) ( )
( )

∑ =

∈

provided by the well-known hand-
shake lemma (Rahman, 2017).

Proposition 1. If λ is a leaf in G, then for an edge e = λμ, Nλ

(e|G) = {λ} and Nμ(e|G) = V(G) − {λ}.

Proof. Since λ is a leaf in G, so d(λ, x) ≤ d(μ, x) if and only
if x = λ, and d(λ, x) > d(μ, x) for all x ∈ V(G) − {λ}.
Therefore, the result is as follows.

For a non-negative integer k, the set Nk(λ) = {μ ∈ V(G)|
d(λ, μ) = k} is known as the k-distance neighborhood of λ
in G, where 0 ≤ k ≤ ecc(λ). □

Proposition 2. Let e = λμ be any edge in G, if x ∈ Nk(λ) ∩ Nk

(μ), then x ∉ Nλ(e|G) ∪ Nμ(e|G).

Proof. As d(λ, x) = k = d(μ, x), so the result followed from
the definitions of Nλ(e|G) and Nμ(e|G). □

Remark 1. For any edge e = λμ in G, let us define a set:

N λ x V G d λ x k d μ x k

λ

, , , for 0

ecc .
k ( ) { ( )| ( ) ( )}

( )

= ∈ = < ≤

≤

′

Then,Nk′(λ) =Nk(λ)− (∪t≤kNt(μ)). Accordingly,N e Gλ( | ) =

N λk
λ

k0
ecc ( )( )

⋃

=
′

.
A neighbor of λ is a vertex adjacent to it in a graph G.

The open neighborhood, N(λ), of λ in G is the set of all the
neighbors of λ. The closed neighborhood of λ is N[λ] = N
(λ) ∪ {λ}. Two vertices λ and μ are false twins in G when-
ever N(λ) = N(μ), and are true twins whenever N[λ] = N[μ].

Proposition 3. If λ and μ are true twins and e = λμ ∈ E(G),
then Nλ(e|G) = {λ} and Nμ(e|G) = {μ}.

Proof. Since N[λ] = N[μ], so d(λ, x) = d(μ, x)) for each x ∈ V
(G) − {λ, μ} and

d λ λ d μ λ d λ μ d μ μ, 0 1 , , , 1 0 ,( ) ( ) ( ) ( )= ≠ = = ≠ =

Thus, for each x ∈ V(G) − {λ, μ}, x ∈ Nk(λ) ∩ Nk(μ) for
all k ≠ 0. Hence, by Proposition 2, x ∉ Nλ(e|G) ∪ Nμ(e|G) for
each x ∈ V(G) − {λ, μ}. In fact, only λ ∈ Nλ(e|G) and only μ ∈
Nμ(e|G). □

3 Commuting graphs

The Mostar index of commuting graphs on the dihedral
and semi-dihedral groups is computed in this section.

Theorem 1. For n ≥ 3, let Γ be a dihedral group Dn. Then,

n n when n is odd
n n when n is even
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Proof. In a study by Ali et al. (2016), the following graph
theoretical definition of the commuting graph on Dn was
provided:
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Now, we discuss the following two cases. □

Case 1 (n is odd):
Let E EΓ ΓG i i G1

3( ) ( )= ⋃
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with Ei(ΓG) = {e ∈ E(ΓG)|e is of
type Ti}.
‒ Type T1: e = λμ ∈ E1(ΓG) such that λ ∈ Ω3 and μ ∈ Ω3.
‒ Type T2: e = λμ ∈ E2(ΓG) such that λ ∈ Ω3 and μ ∈ ζ(Γ).
‒ Type T3: e = λμ ∈ E3(ΓG) such that λ ∈ ζ(Γ) and μ ∈ Ω2.

Let e is of type T1: Note that N[λ] = ζ(Γ) ∪ Ω3 = N[μ].
Thus, λ and μ are true twins, so Proposition 3 yields that
ηλ(e|ΓG) = 1 = ημ(e|ΓG). Let t1 be the number of type
T1 edges. Since Ω3 induces a complete graph Kn−1, so

t S K n 1
2n1 1( )
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−
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Let e is of type T2: Since ecc(λ) = 2 and ecc(μ) = 1, so
N0(λ) = {λ}, N1(λ) = Ω1, N2(λ) = Ω2N0(μ) = {μ}, N1(μ) = Ω3 ∪
Ω2. Accordingly, Remark 1 implies that:
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and hence ηλ(e|ΓG) = 1 and ημ(e|ΓG) = n + 1. Let t2 be the
number of type T2 edges, then t2 = |Ω3| × |ζ(Γ)| = n − 1.

Let e is of type T3: Note that μ is a leaf in
ΓG, so Proposition 1 yields that ημ(e|ΓG) = 1 and
ηλ(e|ΓG) = 2n − 1. Let t3 be the number of type T3 edges,
then t3 = |ζ(Γ)| × |Ω2| = n. Now, the Mostar index of ΓG is:
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Case 2 (n is even):
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‒ Type T4: e = λμ ∈ E4(ΓG) such that λ ∈ Ω3 and μ ∈ ζ(Γ).
‒ Type T5: e = λμ ∈ E5(ΓG) such that λ ∈ ζ(Γ) and μ Ωi

2∈ .

Let e is of type T1: Note that N[λ] = ζ(Γ) ∪ Ω3 = N[μ].
Thus λ and μ are true twins, so Proposition 3 yields that ηλ
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Let e is of type T2: Note that N[λ] = ζ(Γ) ∪ Ω3 ∪ Ω2 = N
[μ]. Thus, λ and μ are true twins, so Proposition 3 yields
that ηλ(e|ΓG) = 1 = ημ(e|ΓG). Let t2 be the number of type T2
edges. Since ζ(Γ) induces a complete graph K2, so t2 = S
(K2) = 1.

Let e is of typeT3: Note that N λ ζ N μΓ Ωi
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Thus, λ and μ are true twins, so Proposition 3 yields that
ηλ(e|ΓG) = 1 = ημ(e|ΓG). Let t3 be the number of type T3
edges. Since each Ωi

2 induces the complete graph K2 and
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and hence ηλ(e|ΓG) = 1 and ημ(e|ΓG) = n + 1. Let t4 be the
number of type T4 edges, then t4 = |Ω3| × |ζ(Γ)| = 2(n − 2).

Let e is of type T5: As ecc(λ) = 2 and ecc(μ) = 2,
so:
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and hence ηλ(e|ΓG) = 2n − 3 and ημ(e|ΓG) = 1. Let t5 be the
number of type T5 edges, then t5 = |Ω2| × |ζ(Γ)| = 2n.

Now, the Mostar index of ΓG is:
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Theorem 2. For n ≥ 2, let Γ be a semi-dihedral group.
Then,

n n when n is odd
n n when n is even
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Proof. Mathematically, the commuting graph on SD8n is
defined by Kumar et al. (2020) as follows:
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‒ Type T5: e = λμ ∈ E5(ΓG) such that λ ∈ ζ(Γ) and μ Ωi

2∈ .

Let e is of type T1: Note that N[λ] = ζ(Γ) ∪ Ω3 = N[μ].
Thus, λ and μ are true twins, so Proposition 3 yields that
ηλ(e|ΓG) = 1 = ημ(e|ΓG). Let t1 be the number of type
T1 edges. Since Ω3 induces a complete graph K4n−4, so

t S K n4 4
2n1 4 4( ) ⎛

⎝
⎞
⎠

= =

−

−
.

Let e is of type T2: Note that N[λ] = ζ(Γ) ∪ Ω3 ∪ Ω2 = N
[μ]. Thus, λ and μ are true twins, so Proposition 3 yields
that ηλ(e|ΓG) = 1 = ημ(e|ΓG). Let t2 be the number of type
T2 edges. Since ζ(Γ) induces a complete graph K4, so

t S K 4
22 4( ) ⎛

⎝
⎞
⎠

= = .

Let e is of typeT3: Note that N λ ζ N μΓ Ωi
2[ ] ( ) [ ]= ∪ = .

Thus, λ and μ are true twins, so Proposition 3 yields that ηλ
(e|ΓG) = 1 = ημ(e|ΓG). Let t3 be the number of type T3 edges.

Since each Ωi
2 induces the complete graph K4 and 0 ≤ i ≤

n − 1, so t3 = n × S(K4) = 6n.
Let e is of type T4: Since ecc(λ) = 2 and ecc(μ) = 1, so:

N λ λ N λ λ ζ N λ
N μ μ N μ ζ μ

, Ω Γ , Ω
, Ω Γ Ω

0 1 3 2 2

0 1 3 2

( ) { } ( ) { } ( ) ( )

( ) { } ( ) ( ) { }

= = − ∪ =

= = ∪ − ∪

Accordingly, Remark 1 implies that:

N λ λ N λ N λ
N μ μ N μ

,
, Ω

0 1 2

0 1 2

( ) { } ( ) ( )

( ) { } ( )

= = = ∅

= =

′ ′ ′

′ ′

and hence ηλ(e|ΓG) = 1 and ημ(e|ΓG) = 4n + 1. Let t4 be
the number of type T4 edges, then t4 = |Ω3| × |ζ(Γ)| =
4(4n − 4).

Let e is of type T5: Since ecc(λ) = 1 and ecc(μ) = 2, so
N0(λ) = {λ}, N1(λ) = Ω3 ∪ ζ(Γ) − {λ} ∪ Ω2, N0(μ) = {μ},
N μ μ ζΩ Γi

1 2( ) { } ( )= − ∪ , and N μ Ω Ω Ωi
2 3 2 2( ) = ∪ − .

Accordingly, Remark 1 implies that:

N λ λ N λ
N μ μ N μ N μ

, Ω Ω Ω
,

i
0 1 3 2 2

0 1 2

( ) { } ( ) { }

( ) { } ( ) ( )

= = ∪ −

= = = ∅

′ ′

′ ′ ′

and hence ηλ(e|ΓG) = 8n − 7 and ημ(e|ΓG) = 1. Let t5 be the
number of type T5 edges, then t5 = |Ω2| × |ζ(Γ)| = 16n.

Now, the Mostar index of ΓG is:

η e η e

t t t t n

t n
n n

Mo Γ Γ Γ

1 1 1 1 1 1 4 1 1

8 7 1
192 1

G
i λμ E

λ G μ G
1

5

Γ

1 2 3 4

5

i G

( ) | ( | ) ( | )|

| | | | | | | |

| |

( )

( )

∑ ∑= −

= − + − + − + + −

+ − −

= −

= ∈

Case 2 (n is even):

Let E EΓ ΓG i i G1
5( ) ( )= ⋃
=

with Ei(ΓG) = {e ∈ E(ΓG)|e is of
type Ti}.
‒ Type T1: e = λμ ∈ E1(ΓG) such that λ ∈ Ω3 and μ ∈ Ω3.
‒ Type T2: e = λμ ∈ E2(ΓG) such that λ ∈ ζ(Γ) and μ ∈ ζ(Γ).
‒ Type T3: e = λμ ∈ E3(ΓG) such that λ Ωi

2∈ and μ Ωi
2∈ .

‒ Type T4: e = λμ ∈ E4(ΓG) such that λ ∈ Ω3 and μ ∈ ζ(Γ).
‒ Type T5: e = λμ ∈ E5(ΓG) such that λ ∈ ζ(Γ) and μ Ωi

2∈ .

Let e is of type T1: Note that N[λ] = ζ(Γ) ∪ Ω3 = N[μ].
Thus, λ and μ are true twins, so Proposition 3 yields
that ηλ(e|ΓG) = 1 = ημ(e|ΓG). Let t1 the number of type T1
edges. Since Ω3 induces a complete graph K4n−2, so

t S K n4 2
2n1 4 2( ) ⎛

⎝
⎞
⎠

= =

−

−
.

Let e is of type T2: Note that N[λ] = V(ΓG) = N[μ].
Thus, λ and μ are true twins, so Proposition 3 yields that
ηλ(e|ΓG) = 1 = ημ(e|ΓG). Let t2 be the number of type T2
edges. Since ζ(Γ) induces a complete graph K2, so t2 = S
(K2) = 1.

Let e is of typeT3: Note that N λ ζ N μΓ Ωi
2[ ] ( ) [ ]= ∪ = .

Thus, λ and μ are true twins, so Proposition 3 yields that ηλ
(e|ΓG) = 1 = ημ(e|ΓG). Let t3 be the number of type T3 edges.

Since eachΩi
2 induces the complete graphK2| and 0≤ i≤ 2n

− 1, so t3 = 2n × S(K2) = 2n.
Let e is of type T4: Since ecc(λ) = 2 and ecc(μ) = 1, so

N0(λ) = {λ}, N1(λ) = (Ω3 − {λ}) ∪ ζ(Γ), N2(λ) = Ω2, N0(μ) = {μ},
and N1(μ) = V(ΓG) − {μ}. Accordingly, Remark 1 implies
that:

N λ λ N λ N λ
N μ μ N μ

,
, Ω

0 1 2

0 1 2

( ) { } ( ) ( )

( ) { } ( )

= = = ∅

= =

′ ′ ′

′ ′
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and hence nλ(e|ΓG) = 1 and nμ(e|ΓG) = 4n + 1. Let t4 be the
number of type T4 edges, then t4 = |Ω3| × |ζ(Γ)| = 2(4n − 2).

Let e is of type T5: Since ecc(λ) = 1 and ecc(μ) = 2. So
N0(λ) = {λ}, N1(λ) = Ω3 ∪ (ζ(Γ) − {λ} ∪ Ω2, N0(μ) = {μ},
N μ μ ζΩ Γi

1 2( ) ( { }) ( )= − ∪ , and N μ Ω Ω Ωi
2 3 2 2( ) ( )= ∪ − .

Accordingly, Remark 1 implies that:

N λ λ N λ
N μ μ N μ N μ

, Ω Ω Ω
,

i
0 1 3 2 2

0 1 2

( ) { } ( ) { }

( ) { } ( ) ( )

= = ∪ −

= = = ∅

′ ′

′ ′ ′

and hence nλ(e|ΓG) = 8n − 3 and nμ(e|ΓG) = 1. Let t5 be the
number of type T5 edges, then t5 = |Ω2| × |ζ(Γ)| = 8n.

Now, the Mostar index of ΓG is:

η e η e

t t t t n
t n
n n

Mo Γ Γ Γ

1 1 1 1 1 1 4 1 1
8 3 1

48 2 1

G
i λμ E

λ G μ G
1

5

Γ

1 2 3 4

5

i G

( ) | ( | ) ( | )|

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

| |

( )

( )

∑ ∑= −

= − + − + − + + −

+ − −

= −

= ∈

4 Non-commuting graphs

In this section, by measuring the amount of peripherality
of each edge, we investigate the Mostar index of non-
commuting graphs associated with Dn and SD8n.

Theorem 3. For n ≥ 3, let Γ be a dihedral group. Then,

G n n n when n is odd
n n n when n is even

Mo 1 2 ,
2 4 ,Γ( ) ⎧

⎨⎩

( )( )

( )( )
=

− −

− −

Proof. The non-commuting graph on Γ = Dn is mathema-
tically defined by Wei et al. (2020) as follows:

G
K N n
K n

, if is odd
, if is evenΓ

Ω Ω

2,2, , 2, Ω
n

2 3

2 times
3   

⎧

⎨
⎩

=

+
∣ ∣ ∣ ∣

… ∣ ∣

−

Then,

V G
n

n

Ω Ω , if is odd

Ω Ω , if is even
i

n
iΓ

2 3

0

2 1

2 3
( )

⎧

⎨

⎪

⎩
⎪

=

∪

⋃ ∪

=

−

Next we discuss the following two cases.

Case 1 (n is odd):
Let E EΓ ΓG i i G1

2( ) ( )= ⋃
=

with Ei(ΓG) = {e ∈ E(ΓG)|e is of
type Ti}.
‒ Type T1: e = λμ ∈ E1(GΓ) such that λ ∈ Ω2 and μ ∈ Ω2.
‒ Type T2: e = λμ ∈ E2(GΓ) such that λ ∈ Ω2 and μ ∈ Ω3.

Let e is of type T1: Note that N[λ] = V(GΓ) = N[μ].
Thus, λ and μ are true twins, so Proposition 3 yields that
ηλ(e|GΓ) = 1 = ημ(e|GΓ). Let t1 be the number of type
T1 edges. Since Ω2 induces a complete graph Kn, so

t S K n
2n1 ( )

( )
= = .

Let e is of type T2: Since ecc(λ) = 1 and ecc(μ) = 2, so
N0(λ) = {λ}, N1(λ) = Ω3 ∪ (Ω2 − {λ}, N0(μ) = {μ}, N1(μ) = Ω2,
and N2(μ) = Ω3 − {μ}. Accordingly, Remark 1 implies
that:

N λ λ N λ μ
N μ μ N μ N μ

, Ω
,

0 1 3

0 1 2

( ) { } ( ) { }

( ) { } ( ) ( )

= = −

= = = ∅

′ ′

′ ′ ′

and hence ηλ(e|GΓ) = n − 1 and ημ(e|GΓ) = 1. Let t2 be the
number of type T2 edges, then t2 = |Ω2| × |Ω3| = n(n − 1).

Now, the Mostar index of GΓ is:

G η e G η e G

t n t
n n n

Mo

1 1 1 1
1 2

i λμ E G
λ μΓ

1

2

Γ Γ

1 2

i Γ

( ) | ( | ) ( | )|

| | | |

( )( )

( )

∑ ∑= −

= − − + −

= − −

= ∈

Case 2 (n is even):

Let E EΓ ΓG i i G1
2( ) ( )= ⋃
=

with Ei(ΓG) = {e ∈ E(ΓG)|e is of
type Ti}.
‒ Type T1: e = λμ ∈ E1(GΓ) such that λ Ωi

2∈ and μ Ω j
2∈ for

i ≠ j.

‒ Type T2: e = λμ ∈ E2(GΓ) such that λ Ωi
2∈ and μ ∈ Ω3.

Let e is of type T1: Since ecc(λ) = 2 and ecc(μ) = 2, so

N0(λ) = {λ}, N λ Ω Ω Ωi
1 3 2 2( ) ( )= ∪ − , and N λ λΩi

2 2( ) { }= − ,

N μ μ N μ N μ μ, Ω Ω Ω Ωj j
0 1 3 2 2 2 2( ) { } ( ) ( ) ( ) { }= = ∪ − = −

Accordingly, Remark 1 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Ω ,
, Ω ,

j

i
0 1 2 2

0 1 2 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence ηλ(e|GΓ) = 2 and ημ(e|GΓ) = 2. Let t1 be the
number of edges of type T1. Since the partition of Ω2

with parts Ωi
2 induces a complete multipartite graph, so

for any λ Ωi
2∈ , d λ n2 1 2n

2( )
( )

= − = − in the subgraph of

GΓ induced by the set Ωi
i

0
1

2
n
2

⋃
=

− . Since Ω 2i
2| | = and there are

n
2
such sets, so by the formula of handshake lemma,

t .n n
1

2
2

( )
=

−

Let e is of type T2: Since ecc(λ) = 2 and ecc(μ) = 2,

so N0(λ) = {λ}, N λ Ω Ω Ωi
1 3 2 2( ) ( )= ∪ − , N λ λΩi

2 2( ) { }= − ,
N0(μ) = {μ}, N1(μ) = Ω2, and N2(μ) = Ω3 − {μ}.
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Accordingly, Remark 1 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Ω ,
, Ω ,i

0 1 3 2

0 1 2 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence ηλ(e|GΓ) = n − 2 and ημ(e|GΓ) = 2. Let t2 be the
number of type T2 edges, then t2 = |Ω2| × |Ω3| = n(n− 2).

Now, the Mostar index of GΓ is:

G η e G η e G

t t n
n n n

Mo

2 2 2 2
2 4

i λμ E G
λ μΓ

1

2

Γ Γ

1 2

i Γ

( ) | ( | ) ( | )|

| | | |

( )( )

( )

∑ ∑= −

= − + − −

= − −

= ∈

Theorem 4. For n ≥2, let Γ be a semi-dihedral group.
Then,

G n n n when n is odd
n n n when n is even

Mo 64 1 2 ,
32 1 2 1 ,Γ( ) ⎧

⎨⎩

( )( )

( )( )
=

− −

− −

Proof. Mathematically, the non-commuting graph on
Γ = SD8n can be expressed as follows:

G nN N n
nN N n

, if is odd
2 , if is even

n

n
Γ

4 4 4

2 4 2
⎧
⎨⎩

=

+

+

−

−

V G
n

n

Ω Ω , if is odd

Ω Ω , if is even

i

n
i

i

n
i

Γ
0

1
2 3

0

2 1
2 3

( )

⎧

⎨

⎪

⎩
⎪

=

⋃ ∪

⋃ ∪

=

−

=

−

Next we discuss the following two cases. □

Case 1 (n is odd):
Let E EΓ ΓG i i G1

2( ) ( )= ⋃
=

with Ei(ΓG) = {e ∈ E(ΓG)|e is of
type Ti}.
‒ Type T1: e = λμ ∈ E1(GΓ) such that λ Ωi

2∈ and μ Ω j
2∈ for

i ≠ j.

‒ Type T2: e = λμ ∈ E2(GΓ) such that λ Ωi
2∈ and μ ∈ Ω3.

Let e is of type T1: Since ecc(λ) = 2 and ecc(μ) = 2,

so N0(λ) = {λ}, N λ Ω Ω Ωi
1 3 2 2( ) ( )= ∪ − , N λ λΩi

2 2( ) { }= − ,

N0(μ) = {μ}, N μ Ω Ω Ω j
1 3 2 2( ) ( )= ∪ − , and N μ μΩ j

2 2( ) { }= − .
Accordingly, Remark 1 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Ω ,
, Ω ,

j

i
0 1 2 2

0 1 2 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence ηλ(e|GΓ) = 4 and ημ(e|GΓ) = 4. Let t1 be the
number of edges of type T1. Since the partition of Ω2

with parts Ωi
2 induces a complete multipartite graph, so

for any λ Ωi
2∈ , d(λ) = 4(n − 1) = 4n − 4 in the subgraph of

GΓ induced by the set Ωi
n i

0
1

2⋃
=

− . Since Ω 4i
2| | = and there

are n such sets, so by the formula of handshake lemma,
t1 = 2n(4n − 4).

Let e is of type T2: Since ecc(λ) = 2 and ecc(μ) = 2,

so N0(λ) = {λ}, N λ Ω Ω Ωi
1 3 2 2( ) ( )= ∪ − , N λ λΩi

2 2( ) { }= − ,
N0(μ) = {μ}, N1(μ) = Ω2, N2(μ) = Ω3 − {μ}.

Accordingly, Remark 1 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Ω ,
, Ω ,i

0 1 3 2

0 1 2 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence ηλ(e|GΓ) = 4n − 4 and ημ(e|GΓ) = 4. Let t2 be the
number of type T2 edges, then t2 = |Ω2| × |Ω3| = 4n(4n− 4).

Now, the Mostar index of GΓ is:

G η e G η e G

t t n
n n n

Mo

4 4 4 4 4
64 1 2

i λμ E G
λ μΓ

1

2

Γ Γ

1 2

i Γ

( ) | ( | ) ( | )|

| | | |

( )( )

( )

∑ ∑= −

= − + − −

= − −

= ∈

Case 2 (n is even):
Let E EΓ ΓG i i G1

2( ) ( )= ⋃
=

with Ei(ΓG) = {e ∈ E(ΓG)|e is of
type Ti}.
‒ Type T1: e = λμ ∈ E1(GΓ) such that λ Ωi

2∈ and μ Ω j
2∈ for

i≠ j.

‒ Type T2: e = λμ ∈ E2(GΓ) such that λ Ωi
2∈ and μ ∈ Ω3.

Let e is of type T1: Since ecc(λ) = 2 and ecc(μ) = 2,

so N0(λ) = {λ}, N λ Ω Ω Ωi
1 3 2 2( ) ( )= ∪ − , N λ λΩi

2 2( ) { }= − ,

N0(μ) = {μ}, N μ Ω Ω Ω j
1 3 2 2( ) ( )= ∪ − , and N μ μΩ j

2 2( ) { }= − .
Accordingly, Remark 1 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Ω ,
, Ω ,

j

i
0 1 2 2

0 1 2 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence ηλ(e|GΓ) = 2 and ημ(e|GΓ) = 2. Let t1 be the
number of edges of type T1. Since the partition of Ω2

with parts Ωi
2 induces a complete multipartite graph, so

for any λ Ωi
2∈ , d(λ) = 2(2n− 1) = 4n− 2 in the subgraph of

GΓ induced by the set Ωi
n i

0
2 1

2⋃
=

− . Since Ω 2i
2| | = and there

are 2n such sets, so by the formula of handshake lemma,
t1 = 2n(4n− 2).

Let e is of type T2: Since ecc(λ) = 2 and ecc(μ) = 2,

so N0(λ) = {λ}, N λ Ω Ω Ωi
1 3 2 2( ) ( )= ∪ − , N λ λΩi

2 2( ) { }= − ,
N0(μ) = {μ}, N1(μ) = Ω2, and N2(μ) = Ω3 − {μ}.

Accordingly, Remark 1 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Ω ,
, Ω ,i

0 1 3 2

0 1 2 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′
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and hence nλ(e|GΓ) = 4n− 2 and nμ(e|GΓ) = 2. Let t2 be the
number of type T2 edges, then t2 = |Ω2| × |Ω3| = 4n(4n − 2).

Now, the Mostar index of GΓ is:

G η e G η e G

t t n
n n n

Mo

2 2 4 2 2
32 2 1 1

i λμ E G
λ μΓ

1

2

Γ Γ

1 2

i Γ

( ) | ( | ) ( | )|

| | | |

( )( )

( )

∑ ∑= −

= − + − −

= − −

= ∈

5 Non-conjugate graphs

In this section, non-conjugate graphs associated with Dn

and SD8n are considered in the context of Mostar index.

Theorem 5. For n ≥ 3, let Γ be a dihedral group. Then,

G
n n n when n is odd
n n n when n is even

Mo Γ
1 1 ,
2

2
2 4 ,

2

2( ( ))
⎧

⎨
⎩

( )( )

⎛
⎝

⎞
⎠

( )
=

− − +

−

− +

Proof. From conjugacy classes, written in Eq. 1, the
number of conjugacy classes of order 1, 2, and n is 1,
n 1

2
− , and 1, respectively, whenever n is odd, and the

number of conjugacy classes of order 1, 2, and n
2
is 2, n 2

2
− ,

and 2, respectively, whenever n is even. Thus, the non-
conjugate graph G(Γ) on Γ = Dn can be described as
follows:

G

K n

K n
Γ

, if is odd

, if is even

n

n n

1, 2,2, , 2 ,

1,1, 2,2, , 2 , 2 , 2

n

n

1
2 times

2
2 times

  

  









( )

⎧

⎨

⎪

⎩
⎪

=

…

…

−

−

−

−

HereK ,n1, 2,2, , 2 ,
n 1

2 times
   …

−

−

is a complete n 3
2
+ -partite graphhaving

n 1
2
− parts a aΩ ,i i n i

3 { }=

− for i1 n 1
2≤ ≤

− with Ω Ωi

n
i

1

1
2

3 3⋃ =
=

−

;

one part is ζ(Γ); and one part isΩ2. Similarly, K ,1,1, 2,2, , 2 , ,
n

n n

2
2 times

2 2   …

−

−

is a complete n 6
2
+ -partite graph having n 2

2
− parts

Ωi
3 = a a,i n i{ }− for i1 n

2≤ < with Ω Ωi

n
i

1

2
2

3 3⋃ =
=

−

; two parts

{e}, a
n
2{ }; and two parts a b iΩ : 0j i j n

2
2

2{ }
= ∀ ≤ <

+ for

i = 0,1 with Ω Ω Ω2
0

2
1

2∪ = . □

Now, we discuss the following two cases.

Case 1 (n is odd):

Let E EΓ ΓG i i G1
4( ) ( )= ⋃
=

with Ei(ΓG) = {e∈ E(ΓG)|e is of
type Ti}.
‒ Type T1: e = λμ ∈ E1(G(Γ)) such that λ Ωi

3∈ and μ Ω j
3∈

for i ≠ j.

‒ Type T2: e = λμ ∈ E2(G(Γ)) such that λ Ωi
3∈ and μ ∈ Ω2.

‒ Type T3: e = λμ ∈ E3(G(Γ)) such that λ ∈ ζ(Γ) and μ Ωi
3∈ .

‒ Type T4: e = λμ ∈ E4(G(Γ)) such that λ ∈ ζ(Γ) and μ ∈ Ω2.

Let e is of type T1: Since ecc(λ) = 2 and ecc(μ) = 2, so:

N λ λ N λ V G N λ λ
N μ μ N μ V G N μ μ

, Γ Ω , Ω
, Γ Ω , Ω

i i

j j
0 1 3 2 3

0 1 3 2 3

( ) { } ( ) ( ( )) ( ) { }

( ) { } ( ) ( ( )) ( ) { }

= = − = −

= = − = −

Accordingly, Remark 1 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Ω ,
, Ω ,

j

i
0 1 3 2

0 1 3 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence ηλ(e|GΓ) = 2 and ημ(e|GΓ) = 2. Let t1 be the
number of edges of type T1. Since the partition of Ω3

with parts Ωi
3 induces a complete multipartite graph, so

for any λ Ωi
3∈ , d λ n2 1 3n 1

2( )
( )

( )
= − = −

− in the sub-
graph of GΓ induced by the set Ωi

n
i

1

1
2

3⋃
=

−

. Since Ω 2i
3| | =

and there are n 1
2
− such sets, therefore by the formula of

handshake lemma, t n n
1

1 3
2

( )( )
=

− − .
Let e is of type T2: Since ecc(λ) = 2 and ecc(μ) = 2, so:

N λ λ N λ V G N λ λ
N μ μ N μ ζ N μ μ

, Γ Ω , Ω
, Γ Ω , Ω

i i
0 1 3 2 3

0 1 3 2 2

( ) { } ( ) ( ( )) ( ) { }

( ) { } ( ) ( ) ( ) { }

= = − = −

= = ∪ = −

Accordingly, Remark 1 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Ω ,
, Ω ,i

0 1 2 2

0 1 3 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence ηλ(e|G(Γ)) = n and ημ(e|G(Γ)) = 2. Let t2 be the
number of type T2 edges, then t2 = |Ω2| × |Ω3| = n(n− 1).

Let e is of type T3: Since ecc(λ) = 1 and ecc(μ) = 2, so:

N λ λ N λ V G λ
N μ μ N μ V G N μ μ

, Γ
, Γ Ω , Ωi i

0 1

0 1 3 2 3

( ) { } ( ) ( ( )) { }

( ) { } ( ) ( ( )) ( ) { }

= = −

= = − = −

Accordingly, Remark 1 implies that:

N λ λ N λ μ
N μ μ N μ N μ

, Ω ,
,

i
0 1 3

0 1 2

( ) { } ( ) { }

( ) { } ( ) ( )

= = −

= = = ∅

′ ′

′ ′ ′

and hence ηλ(e|G(Γ)) = n and ημ(e|G(Γ)) = 1. Let t4 be the
number of type T4 edges, then t4 = |ζ(Γ)| × |Ω2| = n.

Now, the Mostar index of G(Γ) is:
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G η e G η e G

t t n t t n
n n n

Mo Γ Γ Γ

2 2 2 2 1 1
1 1

i λμ E G
λ μ

1

4

Γ

1 2 3 4
2

i

( ( )) | ( | ( )) ( | ( ))|

| | | | | | | |

( )( )

( ( ))

∑ ∑= −

= − + − + − + −

= − − +

= ∈

Case 2 (n is even):

Let E EΓ ΓG i i G1
6( ) ( )= ⋃
=

with Ei(ΓG) = {e∈ E(ΓG)|e is of
type Ti}.
‒ Type T1: e = λμ ∈ E1(G(Γ)) such that λ Ωi

3∈ and μ Ωk
3∈

for i ≠ k.

‒ Type T2: e = λμ ∈ E2(G(Γ)) such that λ Ωi
3∈ and μ Ω j

2∈ .

‒ Type T3: e = λμ ∈ E3(G(Γ)) such that λ ∈ ζ(Γ) and μ Ωi
3∈ .

‒ Type T4: e = λμ ∈ E4(G(Γ)) such that λ ∈ ζ(Γ) and μ Ω j
2∈ .

‒ Type T5: e = λμ ∈ E5(G(Γ)) such that λ ∈ ζ(Γ) and μ ∈ ζ(Γ).
‒ Type T6: e = λμ ∈ E6(G(Γ)) such that λ Ω j

2∈ and μ Ωk
2∈

for j = 0,1, k = 0,1, and j ≠ k.

Let e is of type T1: Since ecc(λ) = 2 and ecc(μ) = 2, so:

N λ λ N λ V G N λ λ
N μ μ N μ V G N μ μ

, Γ Ω , Ω
, Γ Ω , Ω

i i

k k
0 1 3 2 3

0 1 3 2 3

( ) { } ( ) ( ( )) ( ) { }

( ) { } ( ) ( ( )) ( ) { }

= = − = −

= = − = −

Accordingly, Remark 1 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Ω ,
, Ω ,

k

i
0 1 3 2

0 1 3 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence ηλ(e|G(Γ)) = 2 and ημ(e|G(Γ)) = 2. Let t1 be the
number of edges of type T1. Since the partition of Ω3 with
parts Ωi

3 induces a complete multipartite graph, so for
any λ Ωi

3∈ , d λ n2 1 4n 2
2( )

( )
( )

= − = −

− in the subgraph
of GΓ induced by the set Ωi

n
i

1

2
2

3⋃
=

−

. Since Ω 2i
3| | = and there

are n 2
2
− such sets, so by the formula of handshake

lemma, t n n
1

2 4
2

( )( )
=

− − .
Let e is of type T2: Since ecc(λ) = 2 and ecc(μ) = 2, so:

N λ λ N λ V G N λ λ
N μ μ N μ V G N μ μ

, Γ Ω , Ω
, Γ Ω , Ω

i i

j j
0 1 3 2 3

0 1 2 2 2

( ) { } ( ) ( ( )) ( ) { }

( ) { } ( ) ( ( )) ( ) { }

= = − = −

= = − = −

Accordingly, Remark 1 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Ω ,
, Ω ,

j

i
0 1 2 2

0 1 3 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence η e G Γλ
n
2( | ( )) = and ημ(e|G(Γ)) = 2. Let t2 be the

number of type T2 edges, then t2 = |Ω2| × |Ω3| = n(n − 2).
Let e is of type T3: Since ecc(λ) = 1 and ecc(μ) = 2, so:

N λ λ N λ V G λ
N μ μ N μ V G N μ μ

, Γ
, Γ Ω , Ωi i

0 1

0 1 3 2 3

( ) { } ( ) ( ( )) { }

( ) { } ( ) ( ( )) ( ) { }

= = −

= = − = −

Accordingly, Remark 1 implies that:

N λ λ N λ μ N μ μ
N μ N μ

, Ω ,
,

i
0 1 3 0

1 2

( ) { } ( ) { } ( ) { }

( ) ( )

= = − =

= ∅ = ∅

′ ′ ′

′ ′

and hence ηλ(e|G(Γ)) = 2 and ημ(e|G(Γ)) = 1. Let t3 be the
number of type T3 edges, then t3 = |ζ(Γ)| × |Ω3| = 2(n − 2).

Let e is of type T4: Since ecc(λ) = 1 and ecc(μ) = 2, so:

N λ λ N λ V G λ
N μ μ N μ V G N μ μ

, Γ
, Γ Ω , Ωj j

0 1

0 1 2 2 2

( ) { } ( ) ( ( )) { }

( ) { } ( ) ( ( )) ( ) { }

= = −

= = − = −

Accordingly, Remark 1 implies that:

N λ λ N λ μ N μ μ
N μ N μ

, Ω ,i
0 1 2 0

1 2

( ) { } ( ) { } ( ) { }

( ) ( )

= = − =

= = ∅

′ ′ ′

′ ′

and hence η e G Γλ
n
2( | ( )) = and ημ(e|G(Γ)) = 1. Let t4 be the

number of type T4 edges, then t4 = |ζ(Γ)| × |Ω2| = 2n.
Let e is of type T5: Note that N[λ] = V(G(Γ)) = N[μ].

Thus, λ and μ are true twins, so Proposition 3 yields that
ηλ(e|GΓ) = 1 = ημ(e|GΓ). Let t5 be the number of type T5
edges. Since ζ(Γ) induces a complete graph K2, so t1 = S
(K2) = 1.

Let e is of type T6: Since ecc(λ) = 2 and ecc(μ) = 2, so:

N λ λ N λ V G N λ λ
N μ μ N μ V G N μ μ

, Γ Ω , Ω
, Γ Ω , Ω

j j

k k
0 1 2 2 2

0 1 2 2 2

( ) { } ( ) ( ( )) ( ) { }

( ) { } ( ) ( ( )) ( ) { }

= = − = −

= = − = −

Accordingly, Remark 1 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Ω ,
, Ω ,

k

j
0 1 2 2

0 1 2 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence η e G Γλ
n
2( | ( )) = and η e G Γμ

n
2( | ( )) = . Let t6 be the

number of type T6 edges, then t Ω Ωj k n
6 2 2 4

2
| | | |= × = .

Now, the Mostar index of G(Γ) is:

G η e G η e G

t t n t

t n t t n n

n n n

Mo Γ Γ Γ

2 2
2

2 2 1

2
1 1 1

2 2
2

2
2 4

i λμ E G
λ μ

1

6

Γ

1 2 3

4 5 6

2

i

( ( )) | ( | ( )) ( | ( ))|

∣ ∣ ∣ ∣

∣ ∣ | |

⎛
⎝

⎞
⎠

( )

( ( ))

∑ ∑= −

= − + − + −

+ − + − + −

=

−

− +

= ∈

Theorem 6. For n ≥ 2, let Γ be a semi-dihedral group.
Then:

G n n n when n is even
n n n when n is odd

Mo Γ 4 2 1 4 2 1 ,
16 1 2 4 ,

2

2( ( )) ⎧
⎨⎩

( )( )

( )( )
=

− − +

− − +

Proof. From conjugacy classes, written in Eqs. 2 and 3,
the number of conjugacy classes of order 1, 2 and, n is 4,
2n − 2, and 4, respectively, whenever n is odd, and the
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number of conjugacy classes of order 1, 2, and 2n is 2, 2n − 1,
and 2, respectively, whenever n is even. Thus, the non-
conjugate graph on Γ = SD8n can be expressed as follows:

G
K n

K n
Γ

, if is odd

, if is even

n n n n

n n

1,1,1,1, 2,2, , 2 , , , ,

1,1, 2,2, , 2 ,2 ,2

n

n

2 2 times

2 1 times

  

  









( )

⎧

⎨

⎪

⎩
⎪

=

 
…

…

− −

− −

Here K ,n n n n1,1,1,1, 2,2, , 2 , , , ,
n2 2 times
   …

− −

is a complete(2n + 6)-partite

graph having n − 1 parts Φi
3 for odd i; n−1 parts Φi

3 for

even i; four parts from ζ(Γ); and four parts Φ j
2. Similarly,

K ,n n1,1, 2,2, , 2 ,2 ,2
n2 1 times
   …

− −

is a complete (2n + 3)-partite graph

having n parts Φi
3 for odd i;

n − 1 parts Φi
3 for even i; two parts from ζ(Γ), and two

parts Φ2
1 and Φ2

2.
Now, we discuss the following two cases. □

Case 1 (n is odd):

Let E EΓ ΓG i i G1
6( ) ( )= ⋃
=

with Ei(ΓG) = {e ∈ E(ΓG)|e is of
type Ti}.
‒ Type T1: e = λμ ∈ E1(G(Γ)) such that λ Φi

3∈ and μ Φk
3∈

for i ≠ k.

‒ Type T2: e = λμ ∈ E2(G(Γ)) such that λ Φi
3∈ and μ Φ j

2∈ .

‒ Type T3: e = λμ ∈ E3(G(Γ)) such that λ ∈ ζ(Γ) and μ Φi
3∈ .

‒ Type T4: e = λμ ∈ E4(G(Γ)) such that λ ∈ ζ(Γ) and μ Φ j
2∈ .

‒ Type T5: e = λμ ∈ E5(G(Γ)) such that λ ∈ ζ(Γ) and μ ∈ ζ(Γ).
‒ Type T6: e = λμ ∈ E6(G(Γ)) such that λ Φ j

2∈ and μ Φk
2∈

for j ≠ k.

Let e is of type T1: Since ecc(λ) = 2 and ecc(μ) = 2, so
accordingly, Remark 3 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Φ ,
, Φ ,

k

i
0 1 3 2

0 1 3 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence ηλ(e|G(Γ)) = 2 and ημ(e|G(Γ)) = 2. Let t1 be the
number of edges of type T1. Since the partition of Ω3 with
parts Φi

3 induces a complete multipartite graph, so for
any λ Φi

3∈ , d(λ) = 2(2n − 2 − 1) = 4n − 6 in the subgraph of
G(Γ) inducedby the set i

n
odd 1

1
⋃

=

− Φ Φ Φi
i n

n i
i

n i
3 odd 2 1

3 2
3 even 2

2 2
3⋃ ⋃

= +

−

=

− .
Since Φi

3| 2| = and there are 2n − 2 such sets, so by the
formula of handshake lemma, t1 = (2n − 2)(4n − 6).

Let e is of type T2: Since ecc(λ) = 2 and ecc(μ) = 2, so:

N λ λ N λ V G N λ λ
N μ μ N μ V G N μ μ

, Γ Φ , Φ
, Γ Φ , Φ

i i

j j
0 1 3 2 3

0 1 2 2 2

( ) { } ( ) ( ( )) ( ) { }

( ) { } ( ) ( ( )) ( ) { }

= = − = −

= = − = −

Accordingly, Remark 3 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Φ ,
, Φ ,

j

i
0 1 2 2

0 1 3 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence ηλ(e|G(Γ)) = n and ημ(e|G(Γ)) = 2. Let t2 be the
number of type T2 edges, then t2 = |Ω2| × |Ω3| = 4n(n − 4).

Let e is of type T3: Since ecc(λ) = 1 and ecc(μ) = 2, so:

N λ λ N λ V G λ
N μ μ N μ V G N μ μ

, Γ
, Γ Φ , Φi i

0 1

0 1 3 2 3

( ) { } ( ) ( ( )) { }

( ) { } ( ) ( ( )) ( ) { }

= = −

= = − = −

Accordingly, Remark 3 implies that:

N λ λ N λ μ N μ μ N μ N μ, Φ , ,i
0 1 3 0 1 2( ) { } ( ) { } ( ) { } ( ) ( )= = − = =

= ∅

′ ′ ′ ′ ′

and hence ηλ(e|G(Γ)) = 2 and ημ(e|G(Γ)) = 1. Let t3 be the
number of type T3 edges, then t3= |ζ(Γ)| × |Ω3| = 4(4n − 4).

Let e is of type T4: Since ecc(λ) = 1 and ecc(μ) = 2, so:

N λ λ N λ V G λ
N μ μ N μ V G N μ μ

, Γ
, Γ Φ , Φj j

0 1

0 1 2 2 2

( ) { } ( ) ( ( )) { }

( ) { } ( ) ( ( )) ( ) { }

= = −

= = − = −

Accordingly, Remark 3 implies that:

N λ λ N λ μ N μ μ N μ N μ, Φ , ,j
0 1 2 0 1 2( ) { } ( ) { } ( ) { } ( ) ( )= = − = =

= ∅

′ ′ ′ ′ ′

and hence ηλ(e|GΓ) = n and ημ(e|G(Γ)) = 1. Let t4 be the
number of type T4 edges, then t4 = |ζ(Γ)| × |Ω2| = 16n.

Let e is of type T5: Note that N[λ] = V(G(Γ)) = N[μ].
Thus, λ and μ are true twins, so Proposition 4 yields that
ηλ(e|GΓ) = 1 = ημ(e|GΓ). Let t5 be the number of type T5
edges. Since ζ(Γ) induces a complete graph K|ζ(Γ)|, so t1 = S
(K4) = 42.

Let e is of type T6: Since ecc(λ) = 2 and ecc(μ) = 2, so:

N λ λ N λ V G N λ λ
N μ μ N μ V G N μ μ

, Γ Φ , Φ
, Γ Φ , Φ

j j

k k
0 1 2 2 2

0 1 2 2 2

( ) { } ( ) ( ( )) ( ) { }

( ) { } ( ) ( ( )) ( ) { }

= = − = −

= = − = −

Accordingly, Remark 3 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Φ ,
, Φ ,

k

j
0 1 2 2

0 1 2 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence ηλ(e|G(Γ)) = n and ημ(e|G(Γ)) = n. Let t6 be the
number of edges of type T6. Since the partition of Ω2 with
parts Φ j

2 induces a complete multipartite graph, so for
any λ Φ j

2∈ , d(λ) = 3n in the subgraph of G(Γ) induced
by the set Φj

j
0

3
2⋃

=

. Since nΦ j
2| | = and there are 4 such

sets, so by the formula of handshake lemma, t6 = 6n2.
Now, the Mostar index of G(Γ) is:
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η e G η e G

t t n n T
n T n t t n n

n n n

Mo G Γ Γ Γ

2 2 2 3 2 1
4 1 1 1

16 1 1

i λμ E G
λ μ

1

6

Γ

1 2

5 6
2

i

| ( | ( )) ( | ( ))|

∣ ∣ ∣ ∣ ( )∣ ∣

( )| | | | | |

( )( )

( ( ))

∑ ∑( ( )) = −

= − + − + − −

+ − − + − + −

= − − +

= ∈

Case 2 (n is even):
Let E EΓ ΓG i i G1

6( ) ( )= ⋃
=

with Ei(ΓG) = {e ∈ E(ΓG)|e is of
type Ti}.
‒ Type T1: e = λμ ∈ E1(G(Γ)) such that λ Φi

3∈ and μ Φk
3∈

for i ≠ k.

‒ Type T2: e = λμ ∈ E2(G(Γ)) such that λ Φi
3∈ and μ Φ j

2∈ .

‒ Type T3: e = λμ ∈ E3(G(Γ)) such that λ ∈ ζ(Γ) and μ Φi
3∈ .

‒ Type T4; e = λμ ∈ E4(G(Γ)) such that λ ∈ ζ(Γ) and μ Φ j
2∈ .

‒ Type T5: e = λμ ∈ E5(G(Γ)) such that λ ∈ ζ(Γ) and μ ∈ ζ(Γ).
‒ Type T6: e = λμ ∈ E6(G(Γ)) such that λ Φ j

2∈ and μ Φk
2∈

for j ≠ k.

Let e is of type T1: Since ecc(λ) = 2 and ecc(μ) = 2, so:

N λ λ N λ V G N λ λ
N μ μ N μ V G N μ μ

, Γ Φ , Φ
, Γ Φ , Φ

i i

k k
0 1 3 2 3

0 1 3 2 3

( ) { } ( ) ( ( )) ( ) { }

( ) { } ( ) ( ( )) ( ) { }

= = − = −

= = − = −

Accordingly, Remark 3 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Φ ,
, Φ ,

k

i
0 1 3 2

0 1 3 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence ηλ(e|G(Γ)) = 2 and ημ(e|G(Γ)) = 2. Let t1 be the
number of edges of type T1. Since the partition of Ω3 with
parts Φi

3 induces a complete multipartite graph, so for
any λ Φi

3∈ , d(λ) = 2(2n − 1 − 1) = 4n − 4 in the subgraph of
G(Γ) inducedby the set i

n
odd 1

1
⋃

=

− Φ Φ Φi
i n

n i
i

n i
3 odd 2 1

3 1
3 even 2

2 2
3⋃ ⋃

= +

−

=

− .
Since Φi

3| 2| = and there are 2n − 1 such sets, so by the
formula of handshake lemma, t1 = (2n − 2)(4n − 2).

Let e is of type T2: Since ecc(λ) = 2 and ecc(μ) = 2, so:

N λ λ N λ V G N λ λ
N μ μ N μ V G N μ μ

, Γ Φ , Φ
, Γ Φ , Φ

i i

j j
0 1 3 2 3

0 1 2 2 2

( ) { } ( ) ( ( )) ( ) { }

( ) { } ( ) ( ( )) ( ) { }

= = − = −

= = − = −

Accordingly, Remark 3 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Φ ,
, Φ ,

j

i
0 1 2 2

0 1 3 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence ηλ(e|G(Γ)) = 2n and ημ(e|G(Γ)) = 2. Let t2 be the
number of type T2 edges, then t2 = |Ω2| × |Ω3| = 4n(n − 2).

Let e is of type T3: Since ecc(λ) = 1 and ecc(μ) = 2, so:

N λ λ N λ V G λ
N μ μ N μ V G N μ μ

, Γ
, Γ Φ , Φi i

0 1

0 1 3 2 3

( ) { } ( ) ( ( )) { }

( ) { } ( ) ( ( )) ( ) { }

= = −

= = − = −

Accordingly, Remark 3 implies that:

N λ λ N λ μ
N μ μ N μ N μ

, Φ
, ,

i
0 1 3

0 1 2

( ) { } ( ) { }

( ) { } ( ) ( )

= = −

= = ∅ = ∅

′ ′

′ ′ ′

and hence ηλ(e|G(Γ)) = 2 and ημ(e|G(Γ)) = 1. Let t3 be the
number of type T3 edges, then t3= |ζ(Γ)| × |Ω3| = 4(2n − 1).

Let e is of type T4: Since ecc(λ) = 1 and ecc(μ) = 2, so

N λ λ N λ V G λ
N μ μ N μ V G N μ μ

, Γ
, Γ Φ , Φj j

0 1

0 1 2 2 2

( ) { } ( ) ( ( )) { }

( ) { } ( ) ( ( )) ( ) { }

= = −

= = − = −

Accordingly, Remark 3 implies that:

N λ λ N λ μ
N μ μ N μ N μ

, Φ
, ,

j
0 1 2

0 1 2

( ) { } ( ) { }

( ) { } ( ) ( )

= = −

= = ∅ = ∅

′ ′

′ ′ ′

and hence ηλ(e|GΓ) = 2n and ημ(e|G(Γ)) = 1. Let t4 be the
number of type T4 edges, then t4 = |ζ(Γ)| × |Ω2| = 8n.

Let e is of type T5: Note that N[λ] = V(G(Γ)) = N[μ].
Thus, λ and μ are true twins, so Proposition 4 yields that
ηλ(e|GΓ) = 1 = ημ(e|GΓ). Let t5 be the number of type T5
edges. Since ζ(Γ) induces a complete graph K2, so t1 = S
(K2) = 1.

Let e is of type T6: Since ecc(λ) = 2 and ecc(μ) = 2, so:

N λ λ N λ V G N λ λ
N μ μ N μ V G N μ μ

, Γ Φ , Φ
, Γ Φ , Φ

j j

k k
0 1 2 2 2

0 1 2 2 2

( ) { } ( ) ( ( )) ( ) { }

( ) { } ( ) ( ( )) ( ) { }

= = − = −

= = − = −

Accordingly, Remark 3 implies that:

N λ λ N λ μ N λ
N μ μ N μ λ N μ

, Φ ,
, Φ ,

k

j
0 1 2 2

0 1 2 2

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

= = − = ∅

= = − = ∅

′ ′ ′

′ ′ ′

and hence ηλ(e|G(Γ)) = 2n and ημ(e|G(Γ)) = 2n. Let t6 be the
number of type T6 edges, then t nΦ Φ 4j k

6 2 2
2| | | |= × = .

Now, the Mostar index of G(Γ) is:

G η e G η e G

t t n t t n
t t n n

n n n

Mo Γ Γ Γ

2 2 2 2 2 1 2 1
1 1 2 2

4 2 1 4 2 1

i λμ E G
λ μ

1

6

Γ

1 2 3 4

5 6
2

i

( ( )) | ( | ( )) ( | ( ))|

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ | |

( )( )

( ( ))

∑ ∑= −

= − + − + − + −

+ − + −

= − − +

= ∈

6 Conclusion

A classical field of study associating graphs with alge-
braic structures is extended by exploring graph distance
neighborhood-based property (which is also known as a
bond-additive property) of commuting, non-commuting,
and non-conjugate graphs associated with the group of
symmetries of regular polygon and its semi version. In
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fact, we determined the Mostar index of these graphs.
Basic theme of this work was to propose a different tech-
nique which is quite easy and interesting as compares
with any of the other direct methods to measure the per-
ipherality of edges. It is based upon the distance structure
of a graph captured through observing distance degree
neighborhoods. Researchers working on the peripherality
measurement of edges of various graphs, especially graphs
having twins, can get a remarkable help by understanding
the proposed technique.
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