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Abstract: A bond-additive connectivity index, named as the
Mostar index, is used to measure the amount of peripheral
edges of a simple connected graph, where a peripheral edge
in a graph is an edge whose one end vertex has more
number of vertices closer as compared to the other end
vertex. In this study, we count the contribution of peripheral
edges in commuting, non-commuting, and non-conjugate
graphs associated to the dihedral and semi-dihedral groups.
In fact, we compute the Mostar index of these graphs.
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1 Introduction

A connectivity index is a form of molecular attribute whose
computation depends upon a chemical graph of a chemical
substance in the subject of mathematical chemistry. A large
variety of numerical values, also known as topological
indices, have been suggested and explored in attempt to
distil and collect, or summarie, the content contained in
graph connectivity patterns (Todeschini and Conosonni,
2002). Topological indices are numerical quantities that
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describe the topology of a graph and are generally graph
invariant (Qiu and Akl, 1995). For instance, the Wiener
index is based on the topological proximity of vertices in
a graph, and was defined by Wiener in 1947 to estimate
the boiling properties of various alkane isomers. Since
then, more than 3,000 topological indices of graphs
have been recorded in chemical databases. Another
type of topological index aims to measure the nonbalanc-
edness among the bonds of a chemical graph on the base of
peripherality of bonds (edges), which is named as the
Mostar index (Akhter et al., 2021; Dosli¢ et al., 2018). The
Mostar index recently discovered as a bond-additive con-
nectivity index determines the quantity of peripherality of
certain edges as well as the graph as a whole (Akhter et al.,
2021; Dosli¢ et al., 2018). It is a distinct geometric index
which counts the contribution [y — 1,/ of every edge
e = Ay in a connected graph, where 1, is the quantity
of vertices that are closer to the vertex A than the vertex p,
and 1, is defined in the same way (Ali and Doslic, 2021).
Accordingly, this index indicates the degree of specific
edges and the degree of peripherality of the graph as
a whole. This index attracted many graph theorists to mea-
sure the peripherality of various (chemical) graphs. Tepeh
addressed the first conjecture about the Mostar index of
bicyclic graphs (Tepeh, 2019), which was proposed by Dosli¢
et al. (2018). Further, remarkable work on the Mostar index
of carbon nanostructures, trees, and hexagonal chains has
been supplied by Arockiaraj et al. (2019), Hayat and Zhou
(2019), and Huang et al. (2020).

A classical study of graphs associated with groups
attracted many researchers to explore the various theore-
tical and topological properties of graph. A large number
of interesting work have been published by supplying
the articles by Abdollahi et al. (2006), Ali et al. (2016),
Alolayan et al. (2019), Bhuniya and Bera (2016), Bunday
(2006), Cameron and Ghosh (2011), Chakrabarty et al.
(2009), and Rahman (2017). Some of the graphs asso-
ciated to group are defined as follows: Let a group I'
and the center of group I be {(I') = {A € I': Au = yAvu € I'}.
I'c denotes the commuting graph of I with the vertex set
I' and two distinct vertices Aand p € I from an edge in I'g
ifand only if Au = uAdin T (Ali et al., 2016; Bunday, 2006).
The non-commuting graph of I' is denoted by Gr with
the vertex set I' — {(I') and two distinct vertices A and
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u € T from an edge in Gr if and only if Ay #+ yA in T
(Abdollahi et al., 2006; Moghaddamfar et al., 2005;
Wei et al., 2020). If A = gug ™" or u = g 'Ag for g € T, then
Aand y are said to be conjugate of each other. This relation
between elements of T' is an equivalence relation and is
called the conjugacy relation. Due to this equivalence rela-
tion, I is partitioned into disjoint classes each of which is
called a conjugacy class. Mathematically, the conjugacy
class of A € T'is Cl(A) = {gAg™":g € I'}. G(I') denotes a non-
conjugate graph with the vertex set I' and two different
vertices A and y € T from an edge in G(I') if and only if
A and u belong to different conjugacy classes (Alolayan
et al., 2019).

Graphs associated with the dihedral group have been
considered by Abbas et al. (2021), Salman et al. (2022),
and Wei et al. (2020) to study their topological properties
such as the Wiener related indices, Harary index, Randi¢
indices, geometric arithmetic indices, atom bond connec-
tivity indices, harmonic index, Hosoya index, and poly-
nomials. This study is aimed to investigate the Mostar
index of graphs (commuting, non-commuting, and non-
conjugate graphs) associated with the dihedral and semi-
dihedral groups.

2 Preliminaries

This section provides partitions of groups under consid-
eration, some basic terminologies of a graph, and the
mechanism to compute the Mostar index.

The generating form D,, = {a, bla" = b* = e, ab = ba™ %)
represents the dihedral group of order 2n, which is the
collection of symmetries of regular n-polygon. The center
of D, is:

{e}, if nis odd

noooL
{e, az}, ifniseven

((Dn) = {

Let us partition D, as follows:

Q, =1e, a, @...,a" Y}, Q, = {b, ab, a°b,..., a*'b}, and
Q3 = 01— {(Dy), then |Q4| = |Q,| = n. Further for even n, let
Q, = U Qb with Qb = {a"b, a”'z’} be the subsets accord-
ing to the commuting elements from Q,, and conjugacy
classes of D,, are:
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{e},

fel],

{db:0<i<n-1}

for any n
when n is even

when n is odd

{a,avh1<i< n ; 1, when n is odd
CI(Dy) = ; 1
{aZib :0<i< g}, when n is even

. . n .
{a2’+1b :0<i< E}, when n is even

. . . n .
{a,a"}h1<i< > when n is even

The generating form SDg, = (a, bla** = b = e,
ba = a®'b) represents the semi-dihedral group of order
8n with:

b = a*p, if niseven
a*-ip, ifnisodd

and

{e, a®1, if n is even
{e, a®, a®*, a®%}, ifnis odd

¢{(SDgn) = {

Let us partition SDg, as follows:

Q,=1{e, a, ..., a1}, Q, = {b, ab, ab,..., a*" b}, and
Q3 = Q) — {(Dy), then |Qy| = |Q,| = 4n. For odd n > 3, let
Q, = | Jr40L with Q) = {a'b, a'*"b, a'*?"b, a'*3"b} be the
subsets according to the commuting elements from Q,,

and conjugacy classes of SDg,, are:

{e}

{a";1<i<3

@, ={a*b:0<i<n-10<j<3
CI(SDgy) = { @}, = {a, a®*"1}; foroddi, 1< i )

n-land 2n+1<i<3n-2

IA

@} = {dl, a*"1}; foreveni,2 < i

< 2n-2

where Uko®) = Q; and Usad i1 ®5Usdai-an1 @3 Usven i-2
5=0Qs.
For even n > 2, let Q, = |J%'5'Q} with Q) ={a'b, a*?"b}
be the subsets according to the commuting elements from
Q,, and conjugacy classes of SDg, are:
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{e}

{a}

@} ={ab: foreveni,0< i< 4n -2}
@) ={ab: foroddi,1< i< 4n- 1}
@} = {a!, a"1}; foroddi, 1< i

<n-land 2n+1<i<3n-1

C1(SDgp) = 1 (3)

L={d, a*"1}; foreveni,2 < i

<2n-2

where U@ = Q; and Ugad i1 @3Usda 2n i @S UdNen 12
D5 = Qs.

Let a connected and simple graph G have vertex and
edge sets symbolized by V(G) and E(G), respectively. We
denote the number of edges(size) of a graph G by S(G).
The notation K + H denotes the sum of two graphs K and
H with V(K) u V(H) as the vertex set and E(K) U E(H) U
{A~pu: A e V(K) A u € V(H)} as the edge set. The number of
edges in a shortest path between two distinct vertices A
and pu is defined as the distance across A and y, indicated
by d(A, p). The eccentricity of a vertex u is the number

ecc(d) = max d(A, p)
ueV(G)

For an edge e = Au, peripheral neighborhoods of
e according to its end vertices A and u are defined,
Arockiaraj et al. (2020), as follows:

Ni(elTp) = fx € V() : dA, %) < d(u, X},
Ny(e|lg) = {x € V(Ip) : d(u, x) < d(A, x)}

Then, n(elG) = [Na(elT)| and n,(elG) = [Ny(ell'c)| are
the peripheral degrees of e. Akhter et al. in 2021 and
Dosli¢ et al. in 2018 provided the following formula to
compute the Mostar index of a graph G

MoG) = Y ny(elG) - n,(elG)]
e=AucE(G)

The number of vertices adjacent to a vertex A in G is
called the degree of A and it is denoted by d(A). A vertex of
degree 1 is known as a leaf in G. Whenever we need to
find the size, S(G) of a graph G, we will use the formula
ZAGV(G)d(/l) = 25(G) provided by the well-known hand-
shake lemma (Rahman, 2017).

Proposition 1. If 1 is a leaf in G, then for an edge e = Ay, N,
(elG) = {A} and Ny(e|G) = V(G) - {A}.

Proof. Since Ais a leaf in G, so d(A, x) < d(i, x) if and only
if x = A, and d(A, x) > d(u, x) for all x € V(G) - {A}.
Therefore, the result is as follows.
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For a non-negative integer k, the set Ni(A) = {u € V(G)|
d(A, p) = k} is known as the k-distance neighborhood of A
in G, where 0 < k < ecc(A). (|

Proposition 2. Let e = Au be any edge in G, if x € Ni(A\) N Ny
(W), then x ¢ Ny(e|G) U N,(elG).

Proof. As d(A, x) = k = d(i, x), so the result followed from
the definitions of N;(e|G) and N, (e|G). O

Remark 1. For any edge e = Ay in G, let us define a set:

NeQh) = {x € V(G)|dQ, x) = k < d(u, x)}, for 0 < k

< ecc(A).

Then, Ni(A) = Ni(A) — (UeiN()). Accordingly, Ni(e|G) =
U ON ().

A neighbor of A is a vertex adjacent to it in a graph G.
The open neighborhood, N(A), of A in G is the set of all the
neighbors of A. The closed neighborhood of A is N[A] = N
(A) U {A}. Two vertices A and y are false twins in G when-
ever N(A) = N(u), and are true twins whenever N[A] = N[u].

Proposition 3. If A and u are true twins and e = Ay € E(G),
then N)(e|G) = {A} and N,(e|G) = {u}.

Proof. Since N[A] = N[u], so d(A, x) = d(u, x)) foreach x e V
(G) - {A, p} and

d(A’ A) =0+1= d(}l’ A)9 d(A’ I'l) =1#0= d(ya H)

Thus, for each x € V(G) — {A, u}, x € Ni(A) n Ni(w) for
all k # 0. Hence, by Proposition 2, x ¢ N;(e|G) U N,(e|G) for
each x € V(G) — {A, u}. In fact, only A € Nj(e|G) and only u €
N, (elG). O

3 Commuting graphs

The Mostar index of commuting graphs on the dihedral
and semi-dihedral groups is computed in this section.

Theorem 1. For n > 3, let T be a dihedral group D,,. Then,

3n(n - 1), whennis odd
Mo(Ig) =
2 {6n(n - 2), whennis even
Proof. In a study by Ali et al. (2016), the following graph
theoretical definition of the commuting graph on D,, was
provided:
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K+ (I<|93| U Ivlﬂzl)’ if n is odd

K + (K|Q3| v ng), if nis even

Then,
(M) uQ3UQ,, ifnisodd

n-1
(MU QsJQ,
i=0

V(I =
(o) if n is even

Now, we discuss the following two cases. O

Case 1 (n is odd):

Let E(T;) = (J,Ei(T;) with EyT'g) = {e € E(Tg)le is of
type T3}.
— Type T;: e = Au € Ei(I'g) such that A € Q; and p € Qs.
— Type T,: e = Au € Ex(I'g) such that A € Qs and u € {(I).
— Type T5: e = Aut € E3(T'g) such that A € {(T') and y € Q,.

Let e is of type T;: Note that N[A] = {(T') u Q3 = N[u].
Thus, A and u are true twins, so Proposition 3 yields that
naellg) = 1 = ny(ellg). Let t; be the number of type
T, edges. Since Qs induces a complete graph K,_;, so

ti = S(Kn-1) = (n ; 1)-

Let e is of type T,: Since ecc(A) = 2 and ecc(y) =1, so
No(A) = {A}, Ni(A) = Qy, Nx(A) = QoNo(u) = {pb, Na(u) = Q3 U
Q,. Accordingly, Remark 1 implies that:

No'(D) = {A}, NvA) = NpQ) = &, Nor() = {3, Nv(u) =

and hence na(ell'g) = 1 and n,(ellg) = n + 1. Let ¢, be the
number of type T, edges, then t, = |Qs| x [{(T)| =n - 1.
Let e is of type T3: Note that p is a leaf in
['c, so Proposition 1 yields that n,(e|l[z) = 1 and
na(elT'g) = 2n — 1. Let t53 be the number of type T5 edges,
then t; = [{(I')| x |Q,| = n. Now, the Mostar index of I is:

3
Y Y Imells) - ny(elle)]

i=1ApcE(T5)
t1|1—1|+t2|n+1—1|+t3|2n—1—1|
3n(n-1)

Mo(T¢)

Case 2 (n is even):

Let E(FG) =
type Ti}.
- Type Ty: e = Au € E(T'g) such that A € Qs and y € Qs.
— Type T,: e = Au € Ex(Tg) such that A € {(T') and u € {(I).
— Type Ts: e = Au € E5(T) such that A € Q) and u € Qb.
— Type T4: e = Au € E4(Tg) such that A € Qz and p € {(T).
— Type Ts: e = Au € E5(Tg) such that A € {(T') and u € Qb.

?_Ei(Ts) with E{T¢) = {e € E(Tg)|e is of
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Let e is of type Ty: Note that N[A] = {(I') U Q3 = N[u].
Thus A and y are true twins, so Proposition 3 yields that 17,
(ellg) =1=n,(ell'c). Let t; be the number of type T; edges.
Since Q3 induces a complete graph K,,_,, so t; = S(K,,_,) =
("2?)

5 )

Let e is of type T,: Note that N[A] = ([ uQ3UQ, =N
[1]. Thus, A and u are true twins, so Proposition 3 yields
that nx(ell') = 1= n,(ellc). Let t, be the number of type T,
edges. Since {(I') induces a complete graph K,, so t, = S
(Ky) =1.

Let e is of type T;: Note that N[A] = ¢{(T') U Q) = N[u].
Thus, A and p are true twins, so Proposition 3 yields that
n(ellg) = 1 = nu(ell). Let t; be the number of type T5
edges. Since each Q) induces the complete graph K, and
oSisg—l,so@:gxs(Kz):g.

Let e is of type T,: Since ecc(A) =2 and ecc(u) = 1, so:

No(A) = {A}, Ni(D) = (Q3 — {A}D) U (D), No(A) = Q,,
No(u) = {3, Niq) = Q3 U {(I) - {up U Q,

Accordingly, Remark 1 implies that:
No@) = A}, Nud) = NoQ) = @, Nor) = {ab, Nuo) = @,

and hence ny(ell¢) = 1 and n,(ell) = n + 1. Let t, be the
number of type T, edges, then t, = |Qs| x [{(T)| = 2(n - 2).

Let e is of type Ts: As ecc(d) = 2 and ecc(y) = 2,
SO:

No(D) = A}, MA) = Q3 U ¢(I) - A} U 2,
No(w) = {1}, M) = Q) — {1} U ¢(D), No) = Q3 U @, - Q)

Accordingly, Remark 1 implies that:

No(A) = (A3, NvA) = Q5 U (Q; - QY),
No(u) = {p}, Nv(u) = No(u) = @

and hence n,(ell') = 2n - 3 and n,(e|Ts) = 1. Let t5 be the
number of type T5 edges, then t5 = |Q,| x [{(T)| = 2n.
Now, the Mostar index of I is:

5
Mo(lg) =) ) ImelTe) - my(ello)|

i=1AueE(I6)

=4l -1+1-1+81-1+tn+1-1]
+ 62n - 3 - 1]

= 6n(n - 2)

Theorem 2. For n > 2, let T be a semi-dihedral group.
Then,

192n(n — 1), when n is odd

48n(2n — 1), when nis even

Mo(Tg) = {
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Proof. Mathematically, the commuting graph on SDg, is
defined by Kumar et al. (2020) as follows:

K4 + (Kiq, U nKy), ifnisodd
7K + (K, U 2nKy), ifnis even

n-1
(U3, ifnisodd
i=0
V() = i
M u Qs | Q) ifniseven
i=0
Now, we discuss the following two cases. O
Case 1 (n is odd):

Let E(Tg) = U1 Ei(Tg) with Ey(Tg) = {ee E(T¢)le is of
type Tj}.
— Type T;: e = Au € Ei(Tg) such that A € Qz and p € Qs.
— Type T,: e = Au € E;(Tg) such that A € {(T') and u € {(I).
— Type Ts: e = Au € E5(Tg) such that A € Q) and p € Qb.
— Type T4: e = Au € E4(Tg) such that A € Q; and p € {(T).
~ Type Ts: e = Au € E5(T') such that A € {(T) and p € Qb.

Let e is of type T;: Note that N[A] = {(I') U Q3 = N[u].
Thus, A and p are true twins, so Proposition 3 yields that
nellg) = 1 = n(ellg). Let t; be the number of type
T, edges. Since Q; induces a complete graph K,,_4, SO

ti = S(Kyn-4) = (4n2_ 4)-

Let eis of type T,: Note that N[A] = (I uQ3 U Q, =N
[1]. Thus, A and yu are true twins, so Proposition 3 yields
that n(ellg) = 1 = n,(ellg). Let ¢, be the number of type
T, edges. Since {(T') induces a complete graph K,, so

t, = S(K,) = (g)

Let e is of type T;: Note that N[A] = {(T) u Q) = N[u].
Thus, A and y are true twins, so Proposition 3 yields that 77,
(ell'¢) =1=n,(ellc). Let t5 be the number of type T edges.
Since each Q) induces the complete graph K, and 0 <i<
n-1,sot;=nxSK,) = 6n.

Let e is of type T,: Since ecc(A) =2 and ecc(u) = 1, so:

No(A) = {A}, Ni(A) = Q3 = {A} U ¢(D), N,(A) = @,
No(u) = {pu}, M) = Q3 U () - {up U Qy
Accordingly, Remark 1 implies that:
No(A) = {A}, Nu(A) = Np(A) = &
No() = {u}, Nv(u) = Q;

and hence na(ell'g) = 1 and n,(ell'g) = 4n + 1. Let ¢, be
the number of type T, edges, then t, = |Qs| x [{(T)| =
4(4n - 4).
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Let e is of type T;: Since ecc(d) = 1 and ecc(y) = 2, so
No(d) = A}, Ny(A) = Q3 U (1) — {A&} U Qy, No(u) = {u},
N() = Q) — {3 u {(T), and No(u) = Q3 U Q, — Q.

Accordingly, Remark 1 implies that:

No'(A) = A}, Nuv(Q) = {Q3 U Q, — Q)
No(u) = {p}, Ny(u) = No(u) = @

and hence n,(ell'¢) = 8n — 7 and n,,(e|l’¢) = 1. Let 5 be the
number of type T5 edges, then t5 = |Q,| x |[{(T)| = 16n.
Now, the Mostar index of I'; is:

5
Mo(Tp) =) Y I|myelTe) - 1,(ell)|

i=1ApeE(Tg)

= 41-1+61-1+861-1 +4n+1-1]
+ t5|8n -7 - 1

= 192n(n - 1)

Case 2 (n is even):

Let E(T;) = |J3_,Ei(Ts) with EyT's) = {e € E(Tg)le is of
type Ti.
— Type T;: e = Au € E{(Tg) such that A € Q; and p € Qs.
- Type T,: e = Aut € E5(Tg) such that A € {(I') and u € {(I).
~ Type Ts: e = A € E5(T) such that A € Q) and u € Qb.
- Type T4: e = Ay € E,(Tg) such that A € Qz and p € {(T).
— Type Ts: e = Au € E5(Tg) such that A € {(T') and u € Qb.

Let e is of type T;: Note that N[A] = {(T') u Q3 = N[u].
Thus, A and u are true twins, so Proposition 3 yields
that n(ell) = 1 = nu(ell’s). Let t; the number of type T;
edges. Since Qs induces a complete graph K,, ,, so

b= SKun2) = (“”2‘ 2).

Let e is of type T,: Note that N[A] = V(I's) = N[u].
Thus, A and u are true twins, so Proposition 3 yields that
nm(ellg) = 1 = ny(ell’). Let £, be the number of type T,
edges. Since {(I') induces a complete graph K5, so t, = S
K = 1.

Let eis of type T;: Note that N[A] = {(T) U Q) = NJ[u].
Thus, Aand u are true twins, so Proposition 3 yields that 1,
(ell'g) =1=n,(elTc). Let t5 be the number of type T5 edges.
Since each Q) induces the complete graph Kyand0<i<2n
—1,s0t3=2nx S(K,) =2n.

Let e is of type T,: Since ecc(d) =2 and ecc(u) =1, so
No(A) = {A}, Ni() = (Q3 - {A}) U {I), No(A) = Qa, No(u) = {u},
and Ny(u) = V(I'g) — {u}. Accordingly, Remark 1 implies
that:

No'(A) = {A}, NvA) = Nx(A) = &
No'() = {p}, Nv(u) = Qz
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and hence n,(e|T) = 1 and n,(ell'¢) = 4n + 1. Let t, be the

number of type T, edges, then ¢, = |Q3| x [{(T')| = 2(4n - 2).
Let e is of type Ts: Since ecc(A) =1 and ecc(u) = 2. So

No@) = (A}, Ni(d) = Q5 U (1) - (A} U Q, No) = {u},

N = (@) - ) U {(), and No() = Q3 U (Q; — Q).
Accordingly, Remark 1 implies that:

No(A) = {A}, Np(A) = {Q3 U Q; - Q)
No(w) = {u}, Nuv(u) = Npy(u) = &
and hence n,(e|T') = 8n - 3 and n,(ell';) = 1. Let £5 be the

number of type Ts edges, then 5 = |Q,| x [{(T)| = 8n.
Now, the Mostar index of T; is:

5
oy Inx(elTe) — n,(ell5)|

i=1ApeEy(Tg)
1l -1+ 61 -1+ 61 -1 +t44n +1 - 1]
+ t8n -3 - 1]

48n(2n — 1)

Mo(I5)

4 Non-commuting graphs

In this section, by measuring the amount of peripherality
of each edge, we investigate the Mostar index of non-
commuting graphs associated with D,, and SDg,,.

Theorem 3. For n > 3, let T be a dihedral group. Then,

n(n - )(n - 2), whennis odd
n(n - 2)(n - 4), when nis even

Mo(Gr) = {

Proof. The non-commuting graph on I' = D,, is mathema-
tically defined by Wei et al. (2020) as follows:

I<|QZ| + Mﬂsl’ if n is odd

Gr =1K22, 2,0, ifniseven
%7times
Then,
Q, U Qg, if n is odd
V(Gr) =15

2 .
UQbu Qs ifniseven
i=0

Next we discuss the following two cases.

Case 1 (nis odd):

Let E(T;) = JA,Ei(T;) with E(T'g) = {e € E(Tg)le is of
type Ti}.
- Type Ty: e = Au € E;(Gr) such that A € Q, and y € Q,.
— Type T,: e = Au € E5(Gr) such that A € Q, and u € Qs.
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Let e is of type T;: Note that N[A] = V(Gr) = N[u].
Thus, A and y are true twins, so Proposition 3 yields that
naelGr) = 1 = n,(elGr). Let t; be the number of type
T, edges. Since Q, induces a complete graph K,, so

f = S(K,) = (’21)

Let e is of type T,: Since ecc(d) = 1 and ecc(y) =2, so
No(D) = {A}, Ny(A) = Q3 U (Q; — {A}, No(u) = {u}, Ni(u) = Qs,
and N,(u) = Q3 — {u}. Accordingly, Remark 1 implies
that:

No(A) = {A}, Nv(A) = Q3 - {u}
No() = {ub, Nv(u) = Ny(u) = @
and hence na(e|Gr) = n — 1 and n,(e|Gr) = 1. Let ¢, be the
number of type T, edges, then t, = |Q,]| x |Qs| = n(n - 1).
Now, the Mostar index of Gr is:

2
MoGr) =Y Y Im(elGr) - myelGp)]

i=1AucE(Gr)
= t1|n—1—1|+t2|1—1|
=nn-1Dn-2)

Case 2 (n is even):

Let E(Tg) = U~ Ei(Tg) with ET') = {e € E(Tg)|e is of
type Tj}.
— Type T;: e = Au € Ey(Gr) such that A € le and u € Qé' for
i#].
— Type T,: e = Au € E5(Gy) such that A € Q‘z and u € Qs.

Let e is of type T;: Since ecc(A) =2 and ecc(u) = 2, so
No() = {A}, i) = Q3 U (Q; — Qb), and N() = Q) — {A},

No(w) = {13, Ni() = Q3 U (Q2 — Q)No() = ) — {1}
Accordingly, Remark 1 implies that:
No() = (A} o) = Q) — {uh, No) = @
No() = {p}s N = Q5 - {4, Ny(u) = &
and hence n,(elGr) = 2 and n,(elGr) = 2. Let ; be the

number of edges of type T;. Since the partition of Q,
with parts Q) induces a complete multipartite graph, so

forany A € Qb, d(A) = 2(% - 1) = n - 2 in the subgraph of

Gr induced by the set | J2 Q). Since|Q}] = 2 and there are

g such sets, so by the formula of handshake lemma,

nn-2)
-
Let e is of type T,: Since ecc(A) = 2 and ecc(u) = 2,

s0 No(A) = {A}, Ni(A) = Q3 U (Q; - Q)), N(D) = Q) - {A},
No(u) = {u}, Ni(u) = Q,, and Ny(u) = Q3 — {u}.

t=
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Accordingly, Remark 1 implies that:
NoD) = (A}, Ny(d) = Q5 - {1}, Ny(A) = @
No() = {ub, Qo) = Q) — (A}, No() = @
and hence na(elGr) = n - 2 and 7,(e|Gr) = 2. Let ¢, be the

number of type T, edges, then t, = |Q,| x |Qs3| = n(n- 2).
Now, the Mostar index of Gr is:

2
MoGr) =Y Y Im(elGr) - n,elGp)]

l’zlll}lEEi(Gr)
= 42-2|+Hn-2-2|
= nn-2)(n-4)

Theorem 4. For n =2, let ' be a semi-dihedral group.
Then,

Mo(Gy) = 64n(n — 1)(n - 2), whenn z:s odd

32n(n — 1)(2n — 1), when nis even
Proof. Mathematically, the non-commuting graph on
I' = SDg, can be expressed as follows:

G = {nN4 + Nyn_y4, ifnisodd
2nN; + Ny,_p, ifnis even
n-1
UQyu Q;, ifnisodd
V(Gr) = {5
U QU Qs, ifniseven
i=0

Next we discuss the following two cases. O

Case 1 (nis odd):
Let E(T;) = U~ ,Ei(T;) with Ey(Tg) = {e € E(Tg)le is of
type T3.
— Type Ty: e = A € E;(Gy) such that A € Q) and u € Q) for
i4].
— Type T»: e = Au € E5(Gy) such that A € Q) and p € Qs.

Let e is of type T;: Since ecc(d) = 2 and ecc(u) = 2,
s0 No(d) = {A}, M) = Q3 U (Q; - Q)), N(A) = Q) - {A},
No(w) = {u}, M) = Q3 U (Q; — Q}), and Ny(u) = Q) — {u}.
Accordingly, Remark 1 implies that:
No) = A}, Nu(D) = Q) - {13, o) = @
No() = {u}, Nu(u) = Qb — {4}, No(u) = @
and hence n,(e|lGr) = 4 and n,(elGr) = 4. Let t; be the

number of edges of type T;. Since the partition of Q,
with parts Q) induces a complete multipartite graph, so
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for any A € Q), d(A) = 4(n — 1) = 4n — 4 in the subgraph of
Gr induced by the set | JF-2Qb. Since |Qb| = 4 and there
are n such sets, so by the formula of handshake lemma,
t; =2n(4n - 4).
Let e is of type T,: Since ecc(A) = 2 and ecc(u) = 2,
s0 No(D) = {A}, NiD) = Q3 U (Q — QY), No(A) = Q) — {A},
No(p) = {u}, Ni(p) = Qz, No(u) = Q3 — {p}.
Accordingly, Remark 1 implies that:
No(V) = {A}, Nv(A) = Q3 = {u}, 2(D) = &
No/() = {u}, NuQu) = Qb — {A}, No(u) = @

and hence nx(e|Gr) = 4n - 4 and n,(e|Gr) = 4. Let t, be the
number of type T, edges, then t, = [Q,| x |Qs3| = 4n(4n- 4).
Now, the Mostar index of Gr is:

2
MoGp) =Y Y Im(elGr) - n,(elGo)l
i=lAﬂ€Ei(Gr)

= 4l4 - 4| + bl4n - 4 - 4]
= 64n(n - 1)(n - 2)

Case 2 (n is even):
Let E(T;) = A Ei(T) with E(T'g) = {e € E(Tg)le is of
type Ti}.
— Type T;: e = Au € E;(Gr) such that A € Q) and u € Q} for
it j.
— Type T e = Au € E5(Gr) such that A € Q) and p € Qs.

Let e is of type T;: Since ecc(d) = 2 and ecc(y) = 2,
s0 No(A) = {A}, NiA) = Q3 U (Q; - Q)), No) = Q) - {A},

No(w) = {1, (W) = Q3 U (Q; - @), and No() = Q5 - {3
Accordingly, Remark 1 implies that:

No(A) = (A3, M) = Q5 - (1}, No(A) = &
No(u) = {u}, Nu(u) = Qb — A}, Na(u) = @

and hence n,(elGr) = 2 and n,(elGr) = 2. Let ; be the
number of edges of type T;. Since the partition of Q,
with parts Q) induces a complete multipartite graph, so
forany A € Qb, d(A) = 2(2n-1) = 4n- 2 in the subgraph of
Gr induced by the set | J?'5'Q5. Since |Qb| = 2 and there
are 2n such sets, so by the formula of handshake lemma,
t; = 2n(4n- 2).

Let e is of type T,: Since ecc(A) = 2 and ecc(u) = 2,
s0 No() = {A}, Ni(A) = Q3 U (Q; - Q)), N(A) = Q) - {A},
No() = {u}, Na(p) = Qy, and Ny(u) = Q3 — {u}.

Accordingly, Remark 1 implies that:

No(A) = {A}, Nv(A) = Q3 — {p}, N2(A) = @
NoGo) = {u}, Nv(u) = Q4 - A}, o) = @
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and hence n,(e|Gr) = 4n- 2 and n,(e|Gr) = 2. Let t, be the
number of type T, edges, then t, = |Q,| X |Qs| = 4n(4n - 2).
Now, the Mostar index of Gr is:

2
Y Y muelGr) - n(elG)l

i=1AucEi(Gr)
t1|2 - 2| + t2|4n -2- 2|
32n(2n - 1)(n - 1)

MO(Gr)

5 Non-conjugate graphs

In this section, non-conjugate graphs associated with D,,
and SDg, are considered in the context of Mostar index.

Theorem 5. For n > 3, let I be a dihedral group. Then,

m-1Dn* -n+1), whennisodd

Mo(G(I) = (n_—Z)
2

(n* - 2n + 4), when nis even

Proof. From conjugacy classes, written in Eq. 1, the

number of conjugacy classes of order 1, 2, and n is 1,
n-1

2
number of conjugacy classes of order 1, 2, and % is 2, "T‘Z,

and 1, respectively, whenever n is odd, and the

and 2, respectively, whenever n is even. Thus, the non-
conjugate graph G(I') on T = D,, can be described as
follows:

Ky, 25 .2, if nis odd

22..,2
G(F) "T’l— times
Ky 22 o, if n is even

n-2_ .
5 times

n+3

> -partite graph having

HereK;, 55, .2 n isacomplete

S5l
"T’l ~ times

. . . _ n-1 .
"1 parts 0} = {a!, a"} for1 < i < 2L with J,2 Q) = Q33

one part is {(I'); and one part is Q,. Similarly, K ; 55 . 2,21,
1,22,...,2,5,0
n-2_ times
2
n-2
2

n+

Te—partite graph having

is a complete parts

Q) ={a’, a7} for 1 < i < 2 with [J;3 Qf = Q3; two parts
{e}, {a2}; and two parts Q) = {az“fb :V0<i< %} for

i=0,1with QQuQl =0, O

Now, we discuss the following two cases.
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Case 1 (n is odd):

Let E(Tg) = Ui Ei(Ts) with Ey(Tg) = {ec E(T¢)le is of
type Tj}.
~ Type Ty: e = A € Ey(G(I')) such that A € Q) and p € Q}
fori+j.
— Type T,: e = Au € E5(G(I") such that A € Q} and u € Q..
— Type T5: e = Au € E5(G(T) such that A € {T') and p € Q3.
- Type T,: e = Au € E,(G(T')) such that A € {(T') and p € Q.

Let e is of type T;: Since ecc(A) =2 and ecc(u) = 2, so:

No) = {AL, M) = V(G(D)) - Q%, Nb(D) = Qf - {A}
No() = {3, Ny(u) = V(G(T)) - Qf, Ny(u) = Q- {1}

Accordingly, Remark 1 implies that:

No(A) = (A3, Nv) = Q] - {1}, No(A) = &
No() = {u}, Nu(u) = Qf — {4}, No(u) = @

and hence n(elGr) = 2 and n,(elGr) = 2. Let t; be the
number of edges of type T;. Since the partition of Qs
with parts Qf induces a complete multipartite graph, so
for any A € Qi, d(A) = 2((";1) - 1);51" -3 in the sub-
graph of Gr induced by the set | J; 4 Q3. Since |Q}] =2
and there are "=! such sets, therefore by the formula of
handshake lemma, t; = (-Dn-3)

Let e is of type T,: Since ecc(A) = 2 and ecc(u) = 2, so:

No(d) = {4}, NyA) = V(G(D)) - O}, Ny(A) = Qf - {4}
No() = {u}, Ni(p) = {(I) U Q3, No(u) = Q; — {pi}
Accordingly, Remark 1 implies that:
No(A) = {A}, Nv(A) = Q, — {u}, No(A) = &
No/() = {u}, NuQu) = Q% - {A}, No(u) = @
and hence n;(e|G(I)) = n and 7,(e|G(I')) = 2. Let ¢, be the
number of type T, edges, then t, = |[Q,| x |Qs| = n(n-1).
Let e is of type T3: Since ecc(A) =1 and ecc(u) =2, so:
No(A) = {A}, Ni(A) = V(G(D)) - {A}
No() = {13, Ny(u) = V(G(D)) — Q5, No(u) = Q5 - {3

Accordingly, Remark 1 implies that:

No(D) = {4}, Nv(Q) = Q5 — {3,
No(u) = {u}, Nv(u) = Ny(u) = @
and hence n;(e|G(I)) = n and n,(e|G(I)) = 1. Let t, be the

number of type T, edges, then t, = |{(T)| x |Q,| = n.
Now, the Mostar index of G(T) is:
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4
Y Y ImelGm) - nylelGT)

i=1 AueE(G(T))
t1|2 - 2| + t2|n - 2| + t3|2 - 1| + t4|n - 1|
=(n-1D?-n+1)

Mo(G(I)

Case 2 (n is even):

Let E(T;) = U, Ei(T;) with E(T'g) = {ec E(Tg)le is of
type T3}
~ Type T;: e = Au € E;(G(I)) such that A € Q} and p € Q%
fori + k.
— Type T e = Au € Ex(G(T')) such that A € Q} and u € QJ.
— Type T5: e = Ay € E3(G(T')) such that A e {(T) and u € Q‘3
— Type T,: e = Au € E,(G(T")) such that A € {(T') and p € QJ.
— Type Ts: e = Au € E5(G(T)) such that A € {(I') and u € {(T').
— Type Tg: e = Au € Eg(G(T')) such that A € Q§ and y € Q’z‘
forj=0,1, k=0,1,and j + k.

Let e is of type T;: Since ecc(A) = 2 and ecc(u) = 2, so:

No) = {4}, Q) = V(G(T)) — Q5, No(A) = Qf — {A}
No(u) = {uh, Ni) = V(G(D)) — %, No) = QF — {1}

Accordingly, Remark 1 implies that:

No) = {3, o) = QF - {u}, No(D) = @
NoG) = {u}, Nu(u) = Q% — (A}, Ny() = @

and hence n,(e|G(I')) = 2 and 1,,(e|G(I")) = 2. Let t; be the
number of edges of type T,. Since the partition of Q; with
parts Q% induces a complete multipartite graph, so for
any A € Qf, dQA) =2 @njzl) =n - 4 in the subgraph
of Gr induced by the set | J;2 Q. Since |Q}] = 2 and there
are "=2 such sets, so by the formula of handshake
lemma, t; = %2("_4)

Let e is of type T,: Since ecc(d) = 2 and ecc(u) = 2, so:

No) = {4}, i) = V(G(D)) - Qf, N = Qf - {4}
No(u) = {1}, Ny(u) = V(G(D) - Q}, No(p) = Qb — {pu}
Accordingly, Remark 1 implies that:
No(d) = {4}, NvQ) = Q) — {u}, b(A) = &
No(w) = {3, Np(u) = Q5 — A}, No(u) = @

and hence 17,(e|G(D)) = % and n,(e|G(I")) = 2. Let t, be the
number of type T, edges, then t, = |Q,]| x |Qs3| = n(n - 2).
Let e is of type T3: Since ecc(d) =1 and ecc(y) = 2, so:
No(A) = {A}, Ni(A) = V(G(D)) - {A}
No(w) = {u}, N(w) = V(G(D)) - Q3, Ny(u) = Qf - {u}

Accordingly, Remark 1 implies that:

DE GRUYTER

No(D) = {A}, NvQ) = Q5 — {u}, No o) = {}
Ny(u) = &, Ny() = &

and hence n,(e|G(T)) = 2 and n,(e|G(I')) = 1. Let t; be the
number of type T; edges, then t; = [{(T)| x |Q3] = 2(n - 2).
Let e is of type T,: Since ecc(A) =1 and ecc(u) = 2, so:
No(A) = {A}, Ni(A) = V(G(D)) - {A}
No(u) = {p}, Ny(u) = V(G(D)) — 5, Ny(u) = Q) — {u}

Accordingly, Remark 1 implies that:

No(D) = A}, Ni(A) = Qb — {u}, No'(u) = {13

Nv(p) = Np(p) = &
and hence n,(e|G(I)) = % and 1,(e|G(I") = 1. Let t, be the
number of type T, edges, then t, = |[{(T)| x |Q,| = 2n.

Let e is of type T5: Note that N[A] = V(G(T)) = N[u].
Thus, A and u are true twins, so Proposition 3 yields that
na(elGr) = 1 = n,(elGr). Let t; be the number of type Ts
edges. Since {(I') induces a complete graph K5, so t; = S
K = 1.

Let e is of type T,: Since ecc(A) =2 and ecc(p) =2, so:

NoA) = {A}, Ni(A) = V(G(D)) - @b, N,A) = Q) - {4}
No(u) = {u}, Ni() = V(G(D)) - QF, No(u) = Q5 - 13
Accordingly, Remark 1 implies that:
No/() = {A}, Np(A) = Q5 - {u}, Na(A) = @
No(u) = {1}, Nu(u) = Q) - A}, Na(u) = &

and hence 17,(e|G(D)) = % and 17,(e|G(I)) = % Let t; be the
f 2
number of type T, edges, then t; = |Q}| x |Qk| = "Z
Now, the Mostar index of G(T') is:

6
Y Y ImelGm) - n,lelGM))

Mo(G(I)) =
i=1AueE(G())
- tR2-2+t g—z +E2 -1
n n n
+l | = -1 +6[1-1]+t|= - =
= 511 - 1] el2 2|

= (H;Z)(n2—2n+4)

Theorem 6. For n > 2, let I be a semi-dihedral group.
Then:

4(2n - 1)(4n* — 2n + 1), when n is even

16(n - )(n®> - 2n + 4), when n is odd

Mo(G(T)) = {
Proof. From conjugacy classes, written in Egs. 2 and 3,
the number of conjugacy classes of order 1, 2 and, n is 4,
2n - 2, and 4, respectively, whenever n is odd, and the
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number of conjugacy classes of order 1, 2, and 2nis 2,2n -1,
and 2, respectively, whenever n is even. Thus, the non-
conjugate graph on I' = SDg,, can be expressed as follows:

K1, 22,2 ,nnnn ifnisodd
S5l

G(F) — 2n-2- times

Ki1,22,...,2 20,5 if n is even

2n-1- times

Here Ki1.1.1,2,2,....2.n.n.nn is @ complete(2n + 6)-partite
2n-2-times

graph having n — 1 parts ® for odd i; n-1 parts @ for

even i; four parts from {(T'); and four parts ®). Similarly,

Ki1,22,...,2.n2n iS @ complete (2n + 3)-partite graph

it
2n-1-times

having n parts @} for odd i;

n — 1 parts ¢>§ for even i; two parts from {(I'), and two
parts @} and @3,

Now, we discuss the following two cases. O

Case 1 (n is odd):

Let E(Ig) =
type T3}
— Type Ty: e = Au € E;(G(I")) such that A € @}, and y € %
fori+ k.
— Type Ty: e = Au € E5(G(T)) such that A € (Dg and u € d)é.
~ Type T5: e = Ay € E5(G(T")) such that A € {(T') and y € @5,
- Type T,: e = Au € E4(G(T")) such that A € {(T') and u € <D§.
- Type Ts: e = Au € E5(G(I)) such that A € {(I') and p € {(T’).
— Type Te: e = Au € E¢(G(I)) such that A € ®} and u € ®%
forj # k.

© Ei(Tg) with E{T'g) = {e € E(Tg)|e is of

Let e is of type T;: Since ecc(A) = 2 and ecc(u) = 2, so
accordingly, Remark 3 implies that:

No(A) = A}, Np(A) = @5 - b, No(D) = @
No(W) = (i}, Nu() = @ — A}, No(u) = @

and hence na(e|G(T)) = 2 and n,(e|G(I')) = 2. Let t; be the
number of edges of type T;. Since the partition of Q; with
parts @5 induces a complete multipartite graph, so for
any A € ®L, dA) =2(2n-2-1)=4n - 6in the subgraph of
G(T) induced by the set{3gd ;-1 @5 5 i-2n+1P5U e i-2D5-
Since || = 2 and there are 2n — 2 such sets, so by the
formula of handshake lemma, t; = (2n — 2)(4n - 6).

Let e is of type T,: Since ecc(d) = 2 and ecc(u) = 2, so:

No(A) = {A}, Ny(A) = V(G(T)) — @i, Ny(A) = D — {A}
No(u) = {13, Ny(u) = V(G(D)) — @), Ny(u) = D), — {u}
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Accordingly, Remark 3 implies that:

NoQ) = A}, NiA) = @) — {u}, No(Q) = &
No(u) = {u}, Nu(u) = @5 - A}, No(u) = &
and hence n3(e|G(I')) = n and n,(e|G(I')) = 2. Let ¢, be the
number of type T, edges, then t, = |Q,| x |Qs| = 4n(n — 4).
Let e is of type T3: Since ecc(A) = 1 and ecc(u) = 2, so:
No(A) = {A}, Ni(A) = V(G(D)) - {A}
No) = {1}, i) = V(G(D)) — @5, No(p) = @} — {3

Accordingly, Remark 3 implies that:

NoQ) = {A}, Ni(A) = @5 — {ub, No(u) = {3, No(u) = Nor(p)
=@
and hence n,(e|G(I')) = 2 and 7,(e|G(I")) = 1. Let t; be the
number of type T5 edges, then t3= |{(T')| x |Qs| = 4(4n — 4).
Let e is of type T,: Since ecc(A) =1 and ecc(u) =2, so:
No(A) = {A}, Ni(A) = V(G(D)) - {A}
No() = {u}, M) = V(G(T)) - @}, No(p) = D} — {ui}

Accordingly, Remark 3 implies that:

No(d) = A}, Np(A) = @) — {u}, No(u) = {p}, Nue(u) = Nor(p)
=0
and hence na(e|lGr) = n and 7,(e|G(I')) = 1. Let t, be the
number of type T, edges, then t, = |{(T)| x |Q,| = 16n.
Let e is of type Ts: Note that N[A] = V(G(T)) = N[u].
Thus, A and y are true twins, so Proposition 4 yields that
na(elGr) = 1 = n,(elGr). Let t5 be the number of type Ts
edges. Since {(T') induces a complete graph Ky, so f; =S
(Ky) = 4.
Let e is of type T,: Since ecc(A) = 2 and ecc(u) = 2, so:

No(A) = {3, M) = V(G(D)) - DI, Ny(A) = D - {A}
No(l) = {3, Ny(u) = V(G(T)) — DX, Ny(u) = % — {1}

Accordingly, Remark 3 implies that:

NoA) = A}, NiQ) = @5 - {3, Na(A) = @
No(u) = {13, Ny(u) = 5 - {4}, Nor(u) = @

and hence 1,(e|G(I')) = n and 7,(e|G(T)) = n. Let ¢ be the

number of edges of type T¢. Since the partition of Q, with

parts d>£ induces a complete multipartite graph, so for

any A € @), dA) = 3n in the subgraph of G(T') induced

by the set U?=0CD£. Since |®)| = n and there are 4 such

sets, so by the formula of handshake lemma, t¢ = 6n’.
Now, the Mostar index of G(T) is:
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6
Y Y ImG@) - n,elGm)

i=1 ApeE(G(T)

62 -2+ tin-2 +n(T-3)2-1

+ (T - 4)n—-1] + |1 - 1] + tgjn — n|
16(n - 1D(n* - n+1)

Mo(G(T))

Case 2 (n is even):
Let E(Tg) = S Ei(Tg) with EyT') = {e € E(Tg)|e is of
type Ti}.
~ Type T;: e = Au € E;(G(I)) such that A € @, and y € ®%
fori + k.
— Type T»: e = Au € E5(G(I')) such that A € (Dé and yu € <D£.
— Type T3: e = Au € E5(G(I')) such that A e {(T) and u € CDg.
— Type Tu; e = Au € E4(G(I) such that A € {(I) and u € @),
— Type Ts: e = Au € E5(G(T)) such that A € {(I') and u € {(T').
— Type Tg: e = Ay € E¢(G(T')) such that A € (Dé and y € (D’z‘
forj # k.

Let e is of type T;: Since ecc(A) = 2 and ecc(u) = 2, so:

No(d) = {A}, i) = V(G(D)) - @, ) = @Y - {A}
No(w) = {u}, M) = V(G(D)) — @K, No(p) = @k — {3

Accordingly, Remark 3 implies that:

No() = (A}, M) = @5 ~ {u}, o) = &

Noi(u) = {1}, Ny(u) = @ — {A}, Ny() = &
and hence n,(e|G(I')) = 2 and 1n,(e|G(I")) = 2. Let t; be the
number of edges of type T,. Since the partition of Q; with
parts @} induces a complete multipartite graph, so for
any A € ®%, d(A) =2(2n — 1 - 1) = 4n — 4 in the subgraph of
G(I) induced by the set 3gd ;-1 @5 sdd i-2n+1 P53 ten i—2D5-
Since @} = 2 and there are 2n — 1 such sets, so by the
formula of handshake lemma, t; = (2n - 2)(4n - 2).

Let e is of type T,: Since ecc(A) = 2 and ecc(u) = 2, so:
No() = A3, (D) = V(G(D)) - @5, NyA) = D - {4}
No(w) = {u}, M) = V(G(D)) - @}, No(u) = @) — {3

Accordingly, Remark 3 implies that:

No'(A) = {A}, Ni(Q) = @) - {u}, NoA) = &
No() = {u}, Nu(u) = @5 — (A}, Nor(p) = &

and hence n,(e|G(I)) = 2n and n,,(e|G(T)) = 2. Let t, be the
number of type T, edges, then t, = |Q,| x |Q3]| = 4n(n - 2).
Let e is of type T3: Since ecc(d) = 1 and ecc(y) = 2, so:
No(D) = {A}, Ni(AD) = V(G(D)) - {A}
No(u) = {u}, Ni(p) = V(G(I)) — D3, No(p) = D4 — {u}

Accordingly, Remark 3 implies that:
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No(d) = {A}, NuvQA) = @5 - {3
No() = {p}, Nu(u) = &, Ny(u) = @
and hence na(e|G(I')) = 2 and 7,(e|G(I')) = 1. Let t; be the
number of type T; edges, then t3= |{(T')| x |Qs| = 4(2n - 1).
Let e is of type T,: Since ecc(d) =1 and ecc(u) = 2, so
No(d) = {A}, Ni(A) = V(G(D)) - {A}
No(u) = {u}, Ny(u) = V(G(D)) - D, No(p) = @} - {1}

Accordingly, Remark 3 implies that:

No(D) = {4}, NvQ) = @} — {1}

No (W) = {u}, Nv(u) = &, Ny(p) = &
and hence n,(e|Gr) = 2n and n,(e|lG(T)) = 1. Let t, be the
number of type T, edges, then t, = |{(T')] x |Q,| = 8n.

Let e is of type T5: Note that N[A] = V(G(T)) = N[u].
Thus, A and y are true twins, so Proposition 4 yields that
na(elGr) = 1 = n,(elGr). Let ts be the number of type Ts
edges. Since {(T') induces a complete graph K, so t; = S
(Ky) = 1.

Let e is of type Tg: Since ecc(A) = 2 and ecc(u) = 2, so:

No) = {4}, M(D) = V(G(T)) - @}, No(A) = @} - {A}
Nou) = {u}, Ns(u) = V(G(D)) — @5, Ny(u) = 5 — {1}
Accordingly, Remark 3 implies that:
No'(A) = {A}, Ni(Q) = @5 — {3, No(A) = @
No() = i}, Nu(u) = @) - {A}, Nau) = @

and hence n,(e|G(I')) = 2n and n,,(e|G(T')) = 2n. Let t; be the
number of type T¢ edges, then tg = |d>£| X |CD’2‘| = 4n2.
Now, the Mostar index of G(I') is:

Mo(G(T))

6
Y Y ImelGm) - n,(elGM))|

i=1AueE(G(D))
t2 -2l + 6]2n = 2| + 6|2 — 1| + t42n - 1]
+ ts|1 — 1| + tg|2n — 2n|
42n — 1)(4n? - 2n + 1)

6 Conclusion

A classical field of study associating graphs with alge-
braic structures is extended by exploring graph distance
neighborhood-based property (which is also known as a
bond-additive property) of commuting, non-commuting,
and non-conjugate graphs associated with the group of
symmetries of regular polygon and its semi version. In
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fact, we determined the Mostar index of these graphs.
Basic theme of this work was to propose a different tech-
nique which is quite easy and interesting as compares
with any of the other direct methods to measure the per-
ipherality of edges. It is based upon the distance structure
of a graph captured through observing distance degree
neighborhoods. Researchers working on the peripherality
measurement of edges of various graphs, especially graphs
having twins, can get a remarkable help by understanding
the proposed technique.
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