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Abstract: Quantitative structure property research works,
which are the essential part in chemical information and
modelling, give basic underlying topological properties
for chemical substances. This information enables con-
ducting more feasible studies between theory and prac-
tice. Connectivity concept in chemical graph theory gives
information about underlying topology of chemical struc-
tures, fault tolerance of molecules, and vulnerability of
chemical networks. In this study we first defined two
novel types of conditional connectivity measures based
on regularity notion: k-regular edge connectivity and
almost k-regular edge connectivity in chemical graph
theory literature. We computed these new graph invariants
for cycles, complete graphs, and Cartesian product of
cycles. Our results will be applied to calculate k-regular
edge connectivity of some nanotubes which are stated as
Cartesian product of cycles. These calculations give
information about fault tolerance capacity and vulner-
ability of these chemical structures.

Keywords: chemical graph theory, connectivity, condi-
tional connectivity, k-regular edge connectivity, almost
k-regular connectivity

1 Introduction

Quantitative structure property relationship/quantitative
structure activity relationship research works involve
graph theoretical analysis of chemical substances. These

investigations enable to predict physical and chemical
properties of chemical substances without conducting
very expensive experimental studies. These studies also
give the knowledge of the underlying topology of the
molecules.

The fault tolerance of a chemical network is an
important measure to conduct reliable studies in view
of chemical information and modelling. Connectivity
notion in graph theory is one of the leading means deter-
mining fault tolerance of chemical networks. But classical
connectivity is not enough to determine fault tolerance
and vulnerability of chemical networks since it assumes
every atom has equivalent role in chemical point of view.
To handle this problem, Harary posed conditional con-
nectivity notion in graph theory (Harary, 1983). There
are special desired properties held in all remaining com-
ponents for conditional connectivity measurement. After
that, many conditional connectivity measures were defined
in the literature such as cycle-edge connectivity, restricted
connectivity, extra connectivity, structure connectivity
etc. Restricted connectivity was defined by Esfahanian
and Hakimi (1988). Extra connectivity was initiated by
Fabrega and Fiol (1996). Super-connectivity and super-
edge-connectivity for some interconnection networks
were investigated by Chen et al. (2003). Restricted
h-connectivity measures for large multiprocessor systems
were studied by Latifi et al. (1994). Structure connectivity
and substructure connectivity of hypercubes were defined
by Lin et al. (2016). The following references are the latest
studies of these different conditional connectivity mea-
surements: Cheng (2022), Gao et al. (2022), Guo et al.
(2022), and Soliemany et al. (2022).

Regularity, which is a desired notion in chemical
graph theory, is an important parameter in view of che-
mical network science especially in nanotubes. We
decided to define novel conditional connectivity mea-
surements because of lack of regularity-based conditional
connectivity in graph theory literature. We first introduced
two novel connectivity measurement notions in (chemical)
graph theory literature: k-regular edge connectivity and
almost k-regular edge connectivity.We computed both these
novel conditional connectivity notions for cycles, complete
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graphs, and Cartesian product of cycles. Our results will be
applied to calculate k-regular edge connectivity of some
chemical nanotubes which are stated as Cartesian product
of cycles. These calculations give information about fault
tolerance capacity of these chemical structures.

2 Materials and method

Necessary definitions are given in order to prepare the
reader for calculations of the k-regular edge connectivity
and almost k-regular connectivity.

Let G = (V, E) be a connected graph where V is the
vertex set and E is the edge set. The degree of any vertex
(atom and node) of G is the number of edges (bond and
link) incident to this vertex and denoted as deg v for the
vertex v of V. If a graph has maximum degree of at most
four, then it is called chemical graph. If all the degrees of
the vertices of G equal r, then G is called r-regular graph.
A 3-regular graph is named as cubic graph. 2-regular
connected graphs with n-edge and n-vertex are called
cycles and denoted as Cn. If an edge is deleted from
the cycle Cn, then the path graph Pn is acquired. In an
n-vertex graph, if every vertex is adjacent to all the
other vertices, then this graph is called complete graph
and denoted as Kn. Let G and H be two simple con-
nected graphs, then Cartesian product of these graphs,
denoted as ×G H , is characterised by its vertex set

( ) ( ) ( )× = ×V G H V G V H and the edge set E(G × H) =
{(g1, h1) (g2, h2)|either g1 = g2, h1h2 ∈ E(H) or h1 = h2,
g1g2 ∈ E(G)}.

In edge connectivity of a connected graph G, ( )λ G is
the minimum number of edges whose deletion makes the
graph G disconnected.

And now we first give the definitions of two novel
conditional connectivity measures in (chemical) graph
theory: k-regular edge connectivity and almost k-regular
edge connectivity. Let G be a graph and S be a set of
edges. If G-S is disconnected and each component is
a k-regular graph, then S is called a k-regular edge cut
of G. The minimum cardinality of a k-regular edge cut of
G is called k-regular edge connectivity of G and denoted
as ( )λ Gkr .

Similar definition can be given for almost k-regular
connectivity of G. Let G be a graph and S be a set of edges.
If G-S is disconnected and |deg u − deg v| ≤ k for any two
vertices belong to any disconnected component, then S is
called an almost k-regular edge cut of G. The minimum
cardinality of an almost k-regular edge cut of G is called
almost k-regular edge connectivity of G and denoted as

( )λ Gakr . We use the symbol □ to indicate that the proof is
completed.

And now we begin to compute the k-regular edge
connectivity and almost k-regular edge connectivity for
cycles, and complete graphs as well as Cartesian product
of cycles.

We use combinatorial computing techniques and
methods in our computations.

3 Results

In this section, we first compute k-regular edge connec-
tivity and almost k-regular edge connectivity for cycles,
complete graphs, and Cartesian product of paths and
cycles. The following observations are direct conse-
quences of definition of k-regular edge connectivity
notion.

Observation 1
( ) =λ Cr

n
n1
2 for any even number for ≥n 4.

Proof. Every disconnected component must be isomorphic
to K2 after the application of the definition for 1-regular
edge connectivity. Thus, suitable but not neighbouring
edges deletion gives the result directly. □

Observation 2

( )
( )

=
−λ Kr

n
n n1 2

2 for any even number for ≥n 4.

Proof. As in the proof of Observation 1, we want to get n
2

number of disconnected K2 after the application of
1-regular edge connectivity definition. We know that

Kn has ( )−n n 1
2

edges. Therefore, it must be necessary to

delete ( )−n n 2
2

suitable edges. □

Observation 3

( )
( )

=
−λ Kr

n
n n2 3

2 for any integer for ≥n 4.

Proof. We must disconnect Kn into at least two cycle
components. Let these disconnected components be C3
and −Cn 3. The number of all edges are n2 in C3 and −Cn 3.

Therefore, deletion of ( )−n n 3
2

suitable edges gives the

result. □

Observation 4

( )
( )

=
−λ Kr

n
n n3 4

2 for any even number for ≥n 8.
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Proof. We must disconnect Kn into at least two com-
ponents such that both of them are 3-regular graphs.
Without loss of generality we assume that one of the
disconnected component graphs is K4 and the other dis-
connected graph is 3-regular graph with −n 4 vertices.

The number of all edges are n3
2
in both the disconnected

components. Therefore, the deletion of ( )−n n 4
2

suitable

edges gives the result. □

Observation 5

( )
( )

=
−λ Kr

n
n n4 5

2 for any integer for ≥n 10.

Proof. We must disconnect Kn into at least two com-
ponents such that both of them are 4-regular graphs.
Without loss of generality, we assume that one of the
disconnected component graphs is K5 and the other dis-
connected graph is the 4-regular graph with −n 5 vertices.
The number of all edges are n2 in both the disconnected

components. Therefore, the deletion of ( )−n n 5
2

suitable

edges gives the result. □

And now we can give the generalisation formula
for computing k-regular edge connectivity of complete
graphs with suitable n and k.

Theorem 1. ( )
( )

=
− −λ Kkr

n
n n k 1

2 for suitable integers n
and k.

Proof. We must disconnect Kn into at least two com-
ponents such that both of them are k-regular graphs.
Without loss of generality, we assume that one of the
disconnected component graphs is +Kk 1 and the other
disconnected graph is k-regular graph with − −n k 1 ver-
tices. The number of all edges are kn

2
in both the discon-

nected components. Therefore, deletion of ( )− −n n k 1
2

suitable

edges gives the result. □

Observation 6

( ) =λ C 2a r
n

1

Proof. We get disconnected two paths after the deletion
of two non-neighbour edges from Cn. Notice that the dif-
ference in degrees for any two vertices in every two dif-
ferent components is equal to one or smaller than one.
That is, the difference inequality condition holds which is
stated in the definition of almost 1-regular edge connec-
tivity notions. □

Proposition 1.

( ) = −λ K n2 4a r
n

1

Proof. We know from the definition of almost 1-regular
edge connectivity that we want to disconnect Kn into at
least two disconnected graphs such that the difference in
degrees for any two vertices in every two different com-
ponents are equal to one or smaller than one. Without
loss of generality, these two disconnected components
must be K2 and −Kn 2 in order to delete minimum number
of suitable edges. Thus, it is necessary to delete at least
( )−n2 2 edges. And this gives the result. □

Corollary 1. ( ) = −λ K n2 4akr
n for ≥ ≤ ≤ −n and k n7 1 1.

Proof. The proof is the same as that of Proposition 1. □

And now we begin to investigate k-regular edge con-
nectivity for Cartesian products of paths and cycles. We
know from the definition of 1-regular edge connectivity
that if a connected simple graph has odd number of ver-
tices, then it is not possible to disconnect this graph into
disconnected K2 components. Therefore, we assume that
the following graphs, which are the Cartesian products of
paths and cycles, always must have even number of ver-
tices. The Cartesian product of paths are called as com-
plete grid graphs. The Cartesian product of ×P P5 6 is
depicted in Figure 1.

Figure 1: The Cartesian product graph of P P5 6× .

108  Süleyman Ediz and İdris Çiftçi



Proposition 2. Let Pm and Pn be two paths with m
being odd and n being even. Then, 1-regular edge con-
nectivity of the Cartesian product of these paths is

( )× = − −λ P P m nr
m n

mn1 3
2 .

Proof. Without loss of generality, if we assume that n is
odd and m is even, then we acquired the same graph
since we know that ×P Pm n is isomorphic to ×P Pn m
from the definition of the Cartesian product of graphs.
It is seen that ×P Pm n has ( )−m n1 edges horizontally
and ( )−m n 1 edges vertically from Figure 1. Our aim is
to delete enough number of edges vertically and horizon-
tally from ×P Pm n such that every disconnected compo-
nent is isomorphic to K2. Therefore, we must delete all

( )−m n1 horizontal edges and − mn 2
2 vertical suitable

edges. Thus, total value of the deleted edges equals

− −m nmn3
2 . □

Proposition 3. Let Pm and Pn be two paths with m and n
being even. Then, 1-regular edge connectivity of the Cartesian
product of these paths is ( )× = − −λ P P m nr

m n
mn1 3
2 .

Proof. Deletion of non-neighbouring suitable − nm 2
2

number of horizontal edges and − mn 2
2 number of vertical

edges gives disconnected mn
4
number components which are

isomorphic to C4 in ×P Pm n. We know that deletion of two
non-neighbour edges in C4 gives two disconnected compo-
nents which are isomorphic to K2. Therefore, deletion of

=2 mn mn
4 2 edges inallC4 gives twodisconnectedcomponents

whichare isomorphic toK2. Thus, totalvalueofdeletededges

equals +
− −nm n2
2

2
2 + = − −m m nmn mn

2
3

2 . □

Proposition 4. Let Cm and Cn be two cycles where at least
one of m or n is even. Then, 1-regular edge connectivity of

the Cartesian product of these paths is ( )× =λ C Cr
m n

mn1 3
2 .

Proof. The Cartesian product graph ×C Cm n has +m n
extra edges than the Cartesian product graph ×P Pm n.

We know that ( )× = − −λ P P m nr
m n

mn1 3
2 from Proposi-

tions 2 and 3. We proceed in the same way as in the proofs
of Propositions 2 and 3. Therefore, it is enough to delete
this +m n extra edges from the Cartesian product graph

×C Cm n, to get 1-regular edge connectivity of ×C Cm n.

Thus, ( )× =λ C Cr
m n

mn1 3
2 . □

Proposition 5. Let Cm and Cn be two cycles. Then, 2-reg-
ular edge connectivity of the Cartesian product of these
cycles is ( )× =λ C C mn.r

m n
2

Proof. We want to get disconnected components all of
which are isomorphic to either Cm or Cn. From the help
of the Cartesian product of ×P Pm n, we know that the
Cartesian product graph ×C Cm n has +m n extra edges
than the Cartesian product graph ×P Pm n. We consider
two cases separately.

Case 1
We want to get disconnected components all of which

are isomorphic to Cm. We must delete n vertical edges of
every row. The number of rows in ×C Cm n is m. Therefore,
we need to delete mn edges in total.
Case 2

We want to get disconnected components all of
which are isomorphic toCn. We must deletem horizontal
edges of every column. The number of columns in

×C Cm n is n. Therefore, we need to delete mn number
of edges in total.

There are many nano-molecules which they are stated
as Cartesian product of chemical graphs. Therefore, our
results have been used to compute fault tolerance and
vulnerability parameters for chemical graphs in view of
k-regular edge connectivity. □

4 Conclusion

Conditional connectivity measures give information about
fault tolerance and vulnerability of chemical molecules.
This information enables to conduct more feasible studies
in view of chemical information and modelling. The main
focus of this study is to define two novel conditional
connectivity invariants based on regularity notion in
chemical graph theory: k-regular edge connectivity and
almost k-regular connectivity, and to compute these novel
chemical graph invariants’ cycles, complete graphs, and
Cartesian products of cycles. These calculations for
Cartesian product of chemical graphs are essential for
understanding fault tolerance and vulnerability para-
meters in these chemical networks. There are many
novel research alternatives related about this study for
example:
– Investigating k-regular edge connectivity of metal

molecular structures,
– Computing k-regular edge connectivity of interconnec-

tion networks,
– Studying relationship between k-regular edge connec-

tivity and the other conditional connectivity instruments,
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– Calculating k-regular edge connectivity in graph
operations,

– Reckoning k-regular edge connectivity for nanotubes
which are stated via graph product.

– Defining k-regular vertex connectivity and computing
molecular graphs.

Acknowledgment: We thank the anonymous reviewers
for their careful reading of our manuscript and their
many insightful comments and suggestions.

Funding information: The authors state no funding
involved.

Author contributions: İdris Çiftçi: writing – original draft,
writing – review and editing, methodology, and formal
analysis; Süleyman Ediz: formal analysis, visualisation,
and project administration.

Conflict of interest: Authors state no conflict of interest.

Data availability statement: All data generated or ana-
lysed during this study are included in this published
article.

References

Chen Y.C., Tan J.J., Hsu L.H., Kao S.S., Super-connectivity and
super-edge-connectivity for some interconnection networks.
Appl. Math. Comput., 2003, 140, 245–254.

Cheng D., Extra connectivity and structure connectivity of 2-dimen-
sional torus networks. Int. J. Found. Computer Sci., 2022, 33(2),
155–173.

Esfahanian A., Hakimi S., On computing a conditional edge-con-
nectivity of a graph. Inf. Process. Lett., 1988, 27(4), 195–199.

Fabrega J., Fiol M.A., On the extraconnectivity of graphs. Discr.
Math., 1996, 155, 49–57.

Gao F., Song B., Wang D., Qin H., MR-DARTS: Restricted connectivity
differentiable architecture search in multi-path search space.
Neurocomputing, 2022, 482, 27–39.

Guo J., Lu M., Wang X., The (strong) structure connectivity and
(strong) substructure connectivity of the (n, k)-bubble-sort
network. Appl. Math. Comput., 2022, 425, 127078.

Harary F., Conditional connectivity. Networks, 1983, 13(3),
347–357.

Latifi S., Hegde M., Naraghi-pour M., Conditional connectivity
measures for large multiprocessor systems. IEEE Trans.
Computers, 1994, 43, 218–222.

Lin C.K., Zhang L., Fan J., Wang D., Structure connectivity and
substructure connectivity of hypercubes. Theor. Computer Sci.,
2016, 634, 97–107.

Soliemany F., Ghasemi M., Varmazyar R., Super connectivity
of a family of direct product graphs. Int. J. Computer Math.
Computer Syst. Theory, 2022, 7(1), 1–5.

110  Süleyman Ediz and İdris Çiftçi


	1 Introduction
	2 Materials and method
	3 Results
	4 Conclusion
	Acknowledgment
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


