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Abstract: In this article, we are interested in character-
izing graphs with three distinct arithmetic–geometric
eigenvalues. We provide the bounds on the arithmetic–
geometric energy of graphs. In addition, we carry out a
statistical analysis of arithmetic–geometric energy and
boiling point of alkanes. We observe that arithmetic–geo-
metric energy is better correlated with a boiling point
than the arithmetic–geometric index.
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1 Introduction

A graph G G V E,( )= consists of a vertex set V G( ) =

v v v, , , n1 2{ }… and an edge set E G( ). We consider only
simple and undirected graphs unless otherwise stated.
The number of elements in V G( ) is the order n, and the
number of elements in E G( ) is the size m of G. By u v∼ ,
we mean vertex u is adjacent to vertex v, and we also
denote an edge by e. The neighborhood N v( ) of v V G( )∈

is the set of vertices adjacent to v. The degree dv of a vertex
v is the number of elements in the set N v( ). A graph G is
called r-regular if the degree of every vertex is r. For two
distinct vertices u and v in a connected graph G, the dis-
tance d u v,( ) between them is the length of the shortest
path connecting them. The largest distance between any
two vertices in a connected graph is called the diameter of
G. We denote the complete graph by Kn, the complete
bipartite graph by Ka b, , the star K n1, 1( )

−
by Sn, the star

plus edge S en( )+ by Sn
+, the complete t-multipartite graph

by Kp p p, , , t1 2 …
, and the complete split graph byCSω n ω, −

. We

follow the standard graph theory notation, and more graph
theoretic notations are found in the study by Cvetković
et al. (2010).

The adjacency matrix A G( ) of G is a square matrix,
indexed by the vertices ofG, with i j,( )-th entry equals 1, if
i j∼ and 0 otherwise. Clearly, A G( ) is a real symmetric
matrix and its set of eigenvalues including multiplicities
is known as the spectrum of G. Let λ i n, 1,2, ,i = … be the
eigenvalue of A G( ), and we can label them such that
λ λ λn1 2≥ ≥…≥ . The eigenvalue λ1 of A G( ) is known as
the spectral radius of G, and more about this matrix can
be seen in the study by Brouwer and Haemers (2010).

The energy (Gutman, 1978) of G is defined by:

G λ
i

n

i
1

( ) | |∑=

=

E

For more about the energy of G, including the recent
development, studies by Jahanbani (2018), Li et al. (2010),
and Wang and Gao (2021) can be referred.

The arithmetic–geometricmatrix A GAG( ) (or AG-matrix)
of a graph G, introduced by Zheng et al., (2020), is a square
matrix of order n defined by:

A G a
d d

d d
u v

2
, if

0, otherwise
AG n n

u v

u vij( ) ( )
⎧

⎨

⎩

= =

+

∼

×

The AG-matrix is real symmetric, so its eigenvalues
are real. We denote its eigenvalues by η i n, 1,2, ,i = … ,
such that η η ηn1 2≥ ≥…≥ . The multiset of all eigenvalues
of AG-matrix is known as the AG-spectrum of G, and the
largest eigenvalue η1 is called the AG-spectral radius ofG.
If an eigenvalue say η of AG-matrix occurs with multi-
plicity α 2≥ , then we denote it by ηα. Zheng et al. (2020)
gave several bounds for η1 and AG-energy and provided
some AG equienergetic graphs. Guo and Gao (2020)
obtained sharp bounds for η1 and AG-energy and char-
acterized the corresponding extremal graphs. AG-energy
of some specific graphs and Nordhaus–Gaddum-type
relations were obtained in the study by Zheng and Jin
(2021) proved that AG-spectral radius of any tree lies
between the AG-spectral radius of path and the AG-spectral
radius of star. In the same article, they also proved that
AG-spectral radius of any unicyclic graph lies between 2
and the AG-spectral radius of Sn

+.
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The arithmetic–geometric index (shortly AG-index)
of G is a topological index (Shegehall and Kanabur,
2015), defined as:

AG AG G d d
d d2u v

u v

u v
( ) ∑= =

+

∼

The AG-index is used in studying the properties of
chemical graphs and is considered in the QSPR/QSAR
research studies. For recent developments about AG-index
and some applications, we refer to studies by Rodríguez
et al. (2021) and Vujošević et al. (2021), and the references
cited therein. The motivation for studying the matrices
based on topological indices comes from the quantitative
structure–property relationships (QSPR). For instance, it
was shown that the energy of topological-based matrices
is better correlated with the physical properties of alkanes,
especially boiling point, molar volume, surface tension,
critical temperature, and other properties (Estrada, 2008;
Hosamani et al., 2017; Raza et al., 2016; Rodriguez and
Sigarreta, 2015; Rather and Imran, 2022).

The arithmetic–geometric energy (AG-energy, for short)
of G is defined by:

G η
i

n

iAG
1

( ) | |∑=

=

E

For recent work regarding the AG-energy see Guo
and Gao (2020), Wang and Gao (2020), and Zheng et al.
(2021), and the references cited therein.

In Section 2, we characterize graphs with two distinct
AG-eigenvalues, bipartite, multipartite and uncyclic graphs
with exactly three distinct AG-eigenvalues. In Section 3, we
give the upper and the lower bounds on the AG-energy of
graphs. In Section 4, we give a statistical analysis of
AG-energy and boiling point.

2 AG-eigenvalues of graphs

A natural problem in the spectral theory of graph matrices
is the following.

Problem 1. For a connected graph G of order n 2,≥ let
M G( ) be a graphmatrix associated withG and k k n1 ,( )≤ ≤

be a positive integer. the graphs having exactly k distinct
M G( )-eigenvalues are characterized.

This problem has been considered for the adjacency
matrix, the normalized Laplacian matrix, the distance
matrix, etc., for a small value of k, see the studies by
Alazemi et al. (2017), Huang and Huang (2019), Huang
et al. (2018), Qi et al. (2020), Rowlinson (2017), and

Pirzada et al. (2022). In fact, various articles can be found
in the literature regarding this problem for the mentioned
matrices when k 4,≤ see the studies by Chen (2018), Liu
and Shiu (2015), Sun and Das (2021), and Tian and Wang
(2021), and the references therein.

It is trivial that nK1 is the only complete graph with
exactly one AG-eigenvalue and its AG-spectrum is 0 n{ }[ ] .

The following well-known result provides a relation-
ship between the number of distinct eigenvalues in a
graph and its diameter. It can be found in Brouwer and
Haemers (2010).

Theorem 2.1. LetG be a connected graph with diameter D.
Then,G has at least D 1+ distinct (adjacency) eigenvalues,
at least D 1+ distinct Laplace eigenvalues, and at least
D 1+ distinct signless Laplace eigenvalues (Brouwer and
Haemers, 2010).

The proof provided in Brouwer and Haemers (2010)
shows that the above result is true for any nonnegative
symmetric matrix M Mij n( )= indexed by the vertices of a
graph G, in which M 0ij > if and only if v vi j∼ . So, the next
corollary follows immediately.

Corollary 2.2. If G is a graph of diameter D and has k
distinct AG-eigenvalues, then k D 1.≥ +

Another immediate consequence is next stated.

Corollary 2.3. Let G be a connected graph of order n 2.≥

Then,G has exactly two distinct AG-eigenvalues if and only
if G K .n≅

Proof. The AG-matrix of Kn is its adjacency matrix. So, it
is trivial that Kn has exactly two distinct AG-eigenvalues.

Conversely, if G has exactly two distinct eigenvalues,
from Corollary 2.2 its diameter is 1. Therefore, G is neces-
sarily Kn.

A set S V G( )⊆ of pairwise non-adjacent vertices is
called an independent set. It is said to be a clique if every
two vertices of S are adjacent to G. The cardinality of the
largest possible independent set in G is called the inde-
pendence number of G, and the cardinality of the largest
possible clique in G is called the clique number of G. □

Next, we have a result that helps us in finding some
AG-eigenvalues, provided G has some special structure.

Theorem 2.4. Let G be a connected graph with vertex
set V G v v v, , , n1 2( ) { }= … and let S v v v, , , I1 2{ }= … be a
subset of G such that N v v N v vi j j i( ) ( )− = − , for all i j, ∈

I1, 2, ,{ }… . Then, the following statements hold:
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1. if S is a clique of G, then −1 is the AG-eigenvalue of G
with multiplicity at least I −1,

2. if S is an independent set of G, then 0 is the AG-eigen-
value of G with multiplicity at least I −1.

Proof. We prove point 1 in Theorem 2.4, and then point 2
in Theorem 2.4 can be proved similarly. Suppose that
vertices of S form a clique. As vertices of S share the
same neighborhood, it follows that d d dI1 2= = ⋯= . We
first index the vertices of S, so that the AG-matrix of G can
be put as:

AG G
M

M C

0 1 1
1 0 1

1 1 0

I n I

I n I
T

n I n I

( )

⎛

⎝

⎜

⎜

⎜
⎜ ( )

⎞

⎠

⎟

⎟

⎟
⎟

( )

( ) ( ) ( )

=

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

× −

× − − × −

For i I2, 3, ,= … , let X x x x1, , , , , 0, 0, 0, ,0i i i iI
n I

T
1 2 3   ( )= − … …

−

−

be

the vector in Rn such that x 1ij = if i j= and 0 otherwise.
Clearly, X X X, , , I1 2 1…

−
are linearly independent vectors.

Noting that the rows of M are identical, we see that:

AG G X X1, 1, 0, ,0, 0, ,0 1T
1 1( ) ( )= − … … = −

Similarly, we can easily see that X X X, , , I2 3 1…
−

are
eigenvectors of AG G( ) corresponding to the eigenvalue
−1. This proves point 1 in Theorem 2.4.

Next, if S forms an independent set, then with the
same set of vectors, we can see that 0 is the AG-eigenva-
lues of G with multiplicity I − 1.

Theorem 2.4 helps us to obtain the AG-eigenvalues of
some well-known families of graphs. In the following
result, we mention some of these families. □

Proposition 2.5. Let G be a connected graph of order n.
Then, the following statements hold:
1. The AG-spectrum of Kp q, , with n p q= + and p q, 1≥ , is:

n0 ,
2

n 2[ ]
{ }

±

−

2. The AG-spectrum of the complete split graph CSω n ω, −
,

with clique number ω and independence number n ω−

is:

ω ω n D
ω n

0 , 1 , 1
2 1

n ω ω1 1
2

⎧
⎨⎩

( )
( )( )

( )
⎫
⎬⎭

[ ] [ ]
−

− − ±

−

− − −

where D n n n n ω n n n1 3 4 3 1 3 32 3 4 2 2 3( ) ( )= − + − + + − + − +

ω n ω n ω1 1 .3 4 5( ) ( )+ − + + −

3. The AG-spectrum of K en − , where e is an edge, is:

4. The AG-spectrum of Sn
+ consists of the simple eigenva-

lues 1− , the eigenvalue 0 with multiplicity n 4− and the
zeros z z z1 2 3≥ ≥ of the following polynomial:

p x x x n n n
n

x n n
n

2 2 1
4 1

3
4 1

3 2
3 2 3 2

( )
( ) ( )

= − −

− + +

−

+

−

−

Proof.
1. As Kp q, consists of two independent sets of cardinal-

ities p and q, where any two vertices from the same
independent set share the same neighborhood. So, 0 is
the AG-eigenvalue of Kp q, with multiplicity p q 2+ − .
The other two eigenvalues are the eigenvalues of the
following quotient matrix:

q p q
pq

p p q
pq

0
2

2
0

⎛

⎝

⎜

⎜
⎜

( )

( )

⎞

⎠

⎟

⎟
⎟

+

+

which are p q
2−

+ and p q
2
+ .

2. As ω vertices of CS nω, ω−
form a clique in which any

two vertices satisfy the condition in Theorem 2.4-(1),
it follows that 1− is an AG-eigenvalue of CSω n ω, −

with
multiplicity ω 1− . Also, the graph CSω n ω, −

has an
independent set on n ω− vertices sharing the same
neighborhood. It follows that 0 is an AG-eigenvalue
of CSω n ω, −

with multiplicity n ω 1− − . The other two
AG-eigenvalues of CSω n ω, −

are the eigenvalues of the
following quotient matrix:

ω n ω n ω
n ω

p p q
pq

w n ω
n ω

1 1
2 1

2
1

2 1
0

⎛

⎝

⎜

⎜

⎜

( )( )

( )

( ) ( )

( )

⎞

⎠

⎟

⎟

⎟

−

− + −

−

+ + −

−

3. It follows from (ii), with ω n 2= − .
4. As above, we can verify that 0 is an AG-eigenvalue

with multiplicity n 4− and 1− is a simple AG-eigen-
value of Sn

+ corresponding to an independent set of
cardinality n 3− and clique of size 2.
The other three AG-eigenvalues of Sn

+ are the eigen-
values of the following equitable quotient matrix:

n
n

n
n

n n
n

n
n

1 1
2 2 1

0

1
2 1

0 3
2 1

0
2 1

1

⎛

⎝

⎜

⎜

⎜

⎜

⎜

( )

( )

( )

( )

⎞

⎠

⎟

⎟

⎟

⎟

⎟

+

−

+

−

−

−

−

(1)

n n n n n n n n n
n n

0, 1 , 6 11 6 36 108 121 58 6 4
2 3 2

n 2
3 2 2 3 4 5 6

2
⎧

⎨
⎩

( )
( )

⎫

⎬
⎭

[ ]
−

− + − ± − + − + − − +

− +

−
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The characteristic polynomial of the above matrix is:

p x x x n n n
n

x n n
n

2 2 1
4 1

3
4 1

3 2
3 2 3 2

( )
( ) ( )

= − −

− + +

−

+

−

−

For n 4,≥ it can be easily seen that:

p n n n n
n2

1 5 20 9 18
8 1

0
3 2

⎛
⎝

⎞
⎠ ( )

− − =

+ − −

−

>

p n n n n
n2

1 3 8 2
8 1

0
3 2

⎛
⎝

⎞
⎠ ( )

− + = −

− + −

−

<

p n n
n

0 3
4 1

0
2

( )
( )

( )
= −

−

−

<

p n
n

1 1
4 1

0
2

( )
( )

( )
=

+

−

>

p n n n n
n2

1 3 16 33 18
8 1

0
3 2

⎛
⎝

⎞
⎠ ( )

− =

− + −

−

>

p n n n n
n2

1 5 4 9 2
8 1

0
3 2

⎛
⎝

⎞
⎠ ( )

+ = −

− − −

−

<

From the above calculations and by intermediate
value theorem, it follows that the matrix in Eq. 1 has three
distinct eigenvalues.

From point 1 in Proposition 2.5, we can state the fol-
lowing observation. □

Remark 2.6. All complete bipartite graphs on the same
order n share the same spectrum:

n n
2

, 0 ,
2

n 2[ ]
{ }

−

−

We observe that the AG-matrix of the bipartite graph
G can be written as:

B
B
0

0T
⎛
⎝

⎞
⎠

If η is an eigenvalue of AG G( ) with associated eigen-
vector X x x, T

1 2( )= , then it is clear that AG G X ηX( ) = . Also,
it is easy to see that AG G X ηX ,( ) ′ = − ′ where X x x, .T

1 2( )′ = −

This implies that AG-eigenvalues of a bipartite graph
are symmetric about the origin.

The next result (Liu and Shiu, 2015) states the distinct
eigenvalues of irreducible non-negative symmetric realmatrix.

Theorem 2.7. Let M be an n n× irreducible non-negative
symmetric matrix with real entries and let a1 be the max-
imum eigenvalue of M with its corresponding unit Perron–
Frobenius eigenvector X . Then, M has k k n2( )≤ ≤ distinct
eigenvalues if and only if there exit k 1− real numbers
a a a a a a, , , n n2 3 1 2( )… > > …> such that:

M a I a a XX
i

k

i n
i

k

i
T

2 2
1( ) ( )∏ ∏− = −

= =

Further, a a ak1 2> >…> are precisely the k distinct
eigenvalues of M.

Corollary 2.8. Let G be a connected graph of order n 3,≥

and let X be the unit eigenvector corresponding to the
AG-spectral radius η1. Then, G has k k n, 2( )≤ ≤ distinct
AG-eigenvalues if and only if there exist k 1− real numbers
l l l, , , k2 3 … with η l l lk1 2 3> > >…> such that:

AG G l I η l XX
i

k

i n
i

k

i
T

2 2
1( ( ) ) ( )∏ ∏− = −

= =

Further, η l l l, , , , k1 2 3 … are precisely the k distinct
AG-eigenvalues of G.

Proof. Since AG G( ) is an irreducible non-negative sym-
metric real matrix, by applying Theorem 2.7 to AG G( ), the
result follows.

Corollary 2.2 plays the fundamental role in character-
izing graphs with distinct eigenvalues and helps in sol-
ving Problem 1 for k 3= . □

Corollary 2.9. Let G be a connected graph of order n 3.≥

Let η1 be the AG-spectral radius of G with its associated

unit eigenvector X x x x, , , .n
T

1 2( )= … Then G has three dis-
tinct AG-eigenvalues η η η1 2 3> > if and only if the fol-
lowing three conditions hold:

1. η η η η η η x ,v N v
d d

d d i4 2 3 1 2 1 3
2

j i

i j

i j

2
( )( )

( )

( )
∑ = − + − −

∈

+

for every

vertex v .i

2. η η

η η η η x x ,

v N v N v
d d

d d
d d

d d
d d

d d

i j

2 2 2 3 2

1 2 1 3

k i j
i k

i k

j k

j k

i j

i j
⎛
⎝

⎞
⎠

( )⎛
⎝

⎞
⎠

( )( )

( ) ( )( )
∑ = +

+ − −

∈ ∩

+
+ +

for

every pair of adjacent vertex vi and v .j

3. η η η η x xv N v N v
d d

d d
d d

d d i j2 2 1 2 1 3k i j
i k

i k

j k

j k
⎛
⎝

⎞
⎠

( )( )
( ) ( )( )

∑ = − −

∈ ∩

+
+

,

for every pair of non-adjacent vertex vi and v .j

Proof. By Corollary 2.8, G has three distinct AG-eigenva-
lues if and only if the following equation holds:

AG G AG G η η η η I η η η η XXn
T2

2 3 2 3 1 2 1 3( ( )) ( )( ) ( )( )− + + = − −

Now, comparing the diagonal entries and the off-
diagonal entries of the above equation, we get the desired
result. □

Suppose we have a matrix M in some block form and
we form a new matrix Q known as the quotient matrix,
whose entries are the average of the rows (columns) of
the blocks of the original matrix M . In general, the eigen-
values of Q interlace the eigenvalues of M , while if the
row sums of every block of the original matrix is some
constant, then each eigenvalue of Q is an eigenvalue of
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M , and in such case, Q is known as the regular (equi-
table) quotient matrix (see Brouwer and Haemers, 2010).

For graphs with diameters greater or equal to three,
Corollary 2.2 confirms that G has more than three distinct
AG-eigenvalues. For the graphs of diameter at most two,
we have the following result.

Proposition 2.10. Let G be a graph of order n 4.≥ Then,
the following holds:
1. if G is bipartite, then G has three distinct AG-eigenva-

lues if and only if G is the complete bipartite graph.
2. if G is the complete multipartite graphs Kp p p, , , t1 2 …

,
then G has three distinct AG-eigenvalues if and only if
p p pt1 2= = …= , where p 2.≥

3. if G is unicyclic, then it has three distinct AG-eigenva-
lues if and only if G C4≅ or G C5≅ .

Proof. Assume that G has 3 distinct AG-eigenvalues.
We note that any two non-adjacent vertices of G must
have the same neighbor; otherwise, if a vertex u has
neighbor w not adjacent to v, then w along with
uv-path induces the path P4 subgraph, which is a contra-
diction to the fact that the diameter ofG is 2 and has more
than three distinct AG-eigenvalues. Therefore, it follows
that any two non-adjacent vertices in G share the
common neighbor, and it implies that G is the complete
bipartite graph.

Conversely, ifG Kp q,≅ with n p q= + , then by point 1
of Proposition 2.5, G has exactly three distinct AG-eigen-
values, and the result holds in this case.

Next, G is the complete multipartite graph Kp p p, , , t1 2 …

with n pi
t

i1= ∑

=

and p p p t2, 3.t1 2≥ ≥…≥ ≥ ≥ We will
show that G has exactly three distinct AG-eigenvalues if
and only if p p p .t1 2= =…= First, we consider the tripar-
tite case: for the tripartite graph, G Kp p p, ,1 2 3≅ with
n p p p ,1 2 3= + + by Theorem 2.4, gives that 0 is the
AG-eigenvalue with multiplicity n 3.− The other three
AG-eigenvalues of Kp p p, ,1 2 3 are the eigenvalues of the fol-
lowing equitable quotient matrix:

p p p p
p p p p

p p p p
p p p p

p p p p
p p p p

p p p p
p p p p

p p p p
p p p p

p p p p
p p p p

0 2
2

2
2

2
2

0 2
2

2
2

2 2
2

0

2 1 2 3

1 3 2 3

3 1 2 3

1 2 2 3

1 1 2 3

1 3 2 3

3 1 2 3

1 3 1 2

1 1 2 3

1 3 2 3

2 1 2 3

1 3 1 2

⎛

⎝

⎜

⎜

⎜

⎜

⎜
⎜

( )

( )( )

( )

( )( )

( )

( )( )

( )

( )( )

( )

( )( )

( )

( )( )

⎞

⎠

⎟

⎟

⎟

⎟

⎟
⎟

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

(2)

If p p p p1 2 3= = = , then the eigenvalues of (2) are
p p2 , ,2{ ( ) }[ ]

− and there are three distinct AG-eigenvalues.
If p p p1 2= = and p q p,3 = ≠ then in this case, the char-
acteristic polynomial of Eq. 2 is:

x x p p q pq q
p q

pq p q
p q

4 13 6
4

3
4

3
3 2 2 3 2

⎜ ⎟
⎛

⎝ ( )
⎞

⎠

( )

( )
−

+ + +

+

−

+

+

(3)

Noting that the polynomial

x l x l3
1 2+ +

has three distinct real zeros if and only if the discriminant
D l l4 271

3
2
2

= − − is positive. Now, from Eq. 3, we see that:

D p p q pq q p p q pq q
p q

8 6 10 6
16

0
3 2 2 3 2 3 2 2 3

3
( ) ( )

( )
=

− + + + + + +

+

>

and it proves that Eq. 2 has three distinct AG-eigenvalues,
which implies that K p q,p p q, , ≠ has more than three dis-
tinct AG-eigenvalues. For the case p p p ,1 2 3≠ ≠ the char-
acteristic polynomial of Eq. 2 is:

x x p p p p p
p p p p

p p p p p
p p p p

p p p p p
p p p p

p p p p p p p p p p p p
p p p p p p

2
4

2
4

2
4

2 2 2
4

3 2 3 1 2 3
2

1 2 1 3

1 3 1 2 3
2

1 2 2 3

1 2 1 2 3
2

1 3 2 3

1 2 3 1 2 3 1 2 3 1 2 3

1 2 1 3 2 3

⎜

⎟

⎛

⎝

( )

( )( )

( )

( )( )

( )

( )( )
⎞

⎠

( )( )( )

( )( ( ))

−

+ +

+ +

+

+ +

+ +

+

+ +

+ +

−

+ + + + + +

+ + +

It can be easily verified that the above expression
has a positive determinant, which gives us that Kp p p, ,1 2 3

has more than three distinct AG-eigenvalues. Thus, we
observe that by taking distinct cardinalities of the com-
plete tripartite graph, the number of distance AG-eigen-
values increases.

For the general case of G Kp p p, , , t1 2≅
…

, with n p1= +

p pt2 + …+ . Clearly, G has t independent sets, where
each vertex of every independent set shares the same
neighborhood. Thus by Theorem 2.4, we get the
AG-eigenvalue 0 with multiplicity n t− . The remaining
t eigenvalues of AG-matrix of Kp p p, , , t1 2 …

are given by the
following matrix:

p n p p
n p n p

p n p p
n p n p

p n p p
n p n p

p n p p
n p n p

p n p p
n p n p

p n p p
n p n p

0 2 2

2 0 2

2 2 0

t t

t

t t

t

t

t t t

2 1 2

1 22
1

12

1 1 2

1 22
2

22

1 1 2

1 22
2 2

22

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜
⎜

( )

( )( )

( )

( )( )

( )

( )( )

( )

( )( )

( )

( )( )

( )

( )( )

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟
⎟

− −

− −

⋯

− −

− −

− −

− −

⋯

− −

− −

⋮ ⋮ ⋱ ⋮

− −

− −

− −

− −

⋯

×

(4)

For G K p, 2p p p p, , ,≅ ≥
…

, matrix (Eq. 4) takes the form:

p p p
p p p

p p p
p p p

0
0

0
0 t t

⎛

⎝

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟
⎟

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮

⋯

⋯

×

and it is easy to see that p− is its eigenvalue with multi-
plicity t 1− and the other simple eigenvalue is t p1 .( )−
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Thus, K p, 2p p p p, , , ≥
…

has exactly three distinct AG-
eigenvalues. Next, in order to show that Kp p p, , , t1 2 …

have
more than three distinct AG-eigenvalues, it is enough to
prove that K_ p p p q p q, , , , ,( )… ≠ has more than three
distinct AG-eigenvalues, since we have observed in the
tripartite case that the number of distinct AG-eigenvalues
increase as we increase the number of distinct cardinal-
ities of partite sets. With this assumption, the equitable
quotient matrix of Kp p p q, , , ,…

is:

p p

p p

p p

0

0

0

0

q n p q
n p n q

q n p q
n p n q

q n p q
n p n q

p n p q
n p n q

p n p q
n p n q

p n p q
n p n q t t

2
2

2
2

2
2

2
2

2
2

2
2

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟
⎟

( )

( )( )

( )

( )( )

( )

( )( )

( )

( )( )

( )

( )( )

( )

( )( )

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮

⋯

⋯

− −

− −

− −

− −

− −

− −

− −

− −

− −

− −

− −

− −

×

(5)

Consider X x x x1, , , , , 0 ,i i i i t1 2 3 1( )( )= − …
− −

where:

x i j1, if
0, otherwiseij ⎧

⎨⎩
=

=

for i t2, 3, , 1= … − . Now,we can easily verify that X X, , t1 2…
−

are the eigenvectors corresponding to the AG-eigenvalue
p− . The other two eigenvalues of Eq. 5 with the given

blocks are the eigenvalues of the following equitable quo-
tient matrix:

p t q n p q
n p n q

p t n p q
n p n q

2 2
2

1 2
2

0

⎛

⎝

⎜

⎜

⎜

( )
( )

( )( )

( )( )

( )( )

⎞

⎠

⎟

⎟

⎟

−

− −

− −

− − −

− −

and it is clear that it has two distinct eigenvalues. Thus
the biregular complete multipartite has more than three
AG-eigenvalues. Therefore it follows that Kp p p q, , , ,…

has
more than three distinct AG-eigenvalues.

Lastly, if G is a unicyclic graph, then as above the
diameter of G is exactly 2. So, G must be one of the fol-
lowing graphs:C C S, , .n4 5

+ By Proposition 2.5, the graph Sn
+

has more than three distinct AG-eigenvalues. Also, the
graph C4 is bipartite and follows by point 2 in Proposition
2.10. Further, for the graph C5, the AG-spectrum of C5 is:

2, 0.618034 , 1.618032 2{ ( ) ( ) }[ ] [ ]
−

and so the result follows in this case. □

Remark 2.11. There exists graphs, other than those char-
acterized in Proposition 2.10 with exactly three distinct
AG-eigenvalues. For example, Petersen graph H and the
graph H1 as shown in Figure 1. The AG-spectra of these
graphs are:

Hσ 3, 1 , 25 4( ) { ( ) }[ ] [ ]
= −

Hσ 4, 1 , 21
4 4( ) { ( ) }[ ] [ ]

= −

Further, we see that their complements also have
three distinct AG-eigenvalues.

Above remark give an insight that there can be more
graphswith exactly three distinct AG-eigenvalues. Therefore,
the following problem remains.

Problem 2. Characterize all graphs having exactly three
distinct AG-eigenvalues.

3 AG-energy of graphs

Let η η ηn1 2≥ ≥…≥ be the AG-eigenvalues ofG. Then it is
easy to see that:

η
d d

d d
B1

2
2

i

n

i
v v

v v

v v1

2
2

i j

i j

i j

⎛

⎝
⎜

⎞

⎠
⎟∑ ∑=

+

=

= ∼

where

B
d d

d d2v v

v v

v v

2

i j

i j

i j

⎛

⎝
⎜

⎞

⎠
⎟∑=

+

∼

Our first result gives an upper bound on the AG-energy
in terms of the parameters B, the order n, and the
AG-eigenvalues.

Theorem 3.1. Let G be a graph of order n and t be the
positive integer such that ηt is positive. Then:

Bn n
B

η η η B2 2
tAG 1

2
2
2 2 2( )≤ − + + …+ −E (6)

Proof. Using the fact that η η η ηt t1
2

2
2 2

1
2

+ + …+ + +

+

η B2n
2

…+ = , we have:

η η η B η η η

η η

η η η η η η

1
2

1
2

.

t t

t n

n n

1
2

2
2 2

1
2

2
2 2

1
2 2

1 1 2 2

(

( ))

( | | | | | |)

+ + …+ − = + + …+

− + …+

= + + …+

+

Now, using the above information, inequality (Eq. 6)
is equivalent to:

n
B η η η B

B
B η η η η η η

B

2 2

2 2

AG t

n n

2 2
1
2

2
2 2 2

2 1
4 1 1 2 2

2

( )

( | | | | | |)

≤

− + + …+ −

=

− + + …+

E

Recall that η 0i
n

i1∑ =

=

and η B2i
n

i1
2

∑ =

=

, we have the
following observation:
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B
B η η η η η η

B η η η η η η η η
B η η η η η η
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i n n i
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=
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=

Lastly, using all the above information, we have:

n
G

B
B η η η η η η

G
B

B η η η η η η

G
B

B η η η η η η

2
4

1 2
4

1 2
4

0

AG n n

i

n

AG i

n

n n

i

n

n n

2 2
1 1 2 2

2

1
2

1
2

1 1 2 2
2

2

1
2

1 1 2 2
2

2

E

E

EAG
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⎜ ⎟

( ) ( | | | | | |)

( )

⎛

⎝
⎜

⎛

⎝ ( | | | | | |)

⎞

⎠
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⎟
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⎞

⎠
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∑

−
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≥

= =

=

thus proves the result. □

The following result is the immediate consequence of
Theorems 3.1 and 4.3 of Guo and Gao (2020).

Corollary 3.2. Let G be a graph with exactly one positive
AG-eigenvalue. Then:

G B B n
n

2 2
AGE ( ) ≤ +

− (7)

equality holding if and only if G K2≅ .

Proof. From the proof of Theorem 4.3 of Guo and Gao
(2020), we have:

G
d d

d d
B4AG

v v

v v

v v

2

2

i j

i j

i j

E ( )
⎛

⎝
⎜

⎞

⎠
⎟∑≥

+

=

∼

with equality if and only if η ηn1 = − and η η2 3= = …=

η 0.n 1 =

−

Also, from Theorem 3.1, we have:

G Bn n
B

η B2 2
AG 1

2 2E ( ) ( )≤ − −

By comparing these two expressions, we obtain:

B nB n
B

η B4 2 2
1
2 2( )≤ − −

which implies that:

η B B n 2
21 ≤ +

−

Therefore, by definition of AG-energy, we have:

Figure 2: Linear regression Bp versus AG.

Figure 1: Graphs with three distinct AG-eigenvalues.
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G B B n2η 2 2
2AG 1( ) = ≤ +

−

E

Since, for graphs with exactly one positive AG-eigen-
value, G 2λ ,AG 1( ) =E which from above inequality is possible
if n 2= and B λ ,1

2
= which is true if and only if G is K2. □

Remark 3.3. From the proof of Theorem 4.1 from Guo and
Gao (2020), we have:

G n d d
d d

n B nB
2 2

4 2AG
v v

v v

v v

2

j j

i j

i j

( )
⎛

⎝
⎜

⎞

⎠
⎟∑≤

+

+

= =E

with equality if and only if G K .2≅ Comparing it with
the bound obtained in Corollary 3.2, we have:

B B n
n

nB4 2 2⎜ ⎟
⎛

⎝

⎞

⎠
+

−

≤

which gives us n2 2n
n

2
≤ −

− , which is further equiva-
lent to n n2 42

− − and true for n 4.≥ Thus, for graphs
having exactly one positive AG-eigenvalue, the bound
(Eq. 7) is better than the bounds of Guo and Gao (2020)
(Theorem 4.1 therein). We say a graph is AG non singular
if all its AG-eigenvalues are non zero, and by Mdet( ) we
mean the determinant of matrix M . The following result
gives the lower bounds for AG-energy of graphs.

Theorem 3.4. Let G be a non-singular graph with n ver-
tices. Then, the following hold:

1. G n AG1 ln det ln ,AG
m
n

m
n

2 2
( ) (| ( )|)

( )
≥ + − + −E

2. G n AG1 ln det ln ,AG
M G

n
M G

n
1 1( ) (| ( )|)( ) ( )

( )
≥ + − + −E where

M G di
n

v1 1
2
i

( ) = ∑

=

is known as the Zagreb index of G.

Proof. As G is non singular, so ηi| |, for i n1, 2, ,= … and
AG ηdet 0.i

n
i1| ( )| | |= ∏ >

=

Now, consider the function:

f x x x ln xx , for 02( ) ( )= − − >

It is easy to verify that f x( ) is increasing on 1,( )∞

and decreasing on 0,1( ). Thus, f x f 1( ) ( )≥ implies that
x x xln2 ( )≤ − for x 0> , with equality if and only if
x 1= . Now, using this information, we have:

G η η η n η1 lnAG
i

n

i
i

n

i1
2

1
2

( ) | | (| |)∑ ∑= + ≥ + − +

= =

E

η n η1 ln
i

n

i1
2

⎜ ⎟
⎛

⎝

| |
⎞

⎠

∏= + − +

=

η n AG η1 ln det ln .1 1(| ( )|) ( )= + − + − (8)

Recalling that η m
n1

2
≥ (Lemma 6 in Wang and

Gao (2020)) and noting that g x x n 1( ) = + − +

AG xln det ln(| ( )|) ( )− is an increasing function for
n1,[ ], we have:

g x g m
n

m
n

n AG

m
n

x m
n

2 2 1 ln det

ln 2 , for 2

( ) ⎛
⎝

⎞
⎠

(| ( )|)

⎛
⎝

⎞
⎠

≥ = + − +

− ≥

Combining the above inequality with Eq. 8, we obtain
the required inequality (point 1 in Theorem 3.4).

Figure 3: Linear regression Bp versus .AGE
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For the second part, proceeding as above and using

the fact that η ,M G
n1
1( )

≥ the second lowe bound can be

established. □

4 Statistical analysis

We carried out a statistical study to compare the correla-
tion of the boiling point of chemical compounds with the
arithmetic–geometric index AG, on one side, and with

arithmetic-geometric energy AGE , on the other side. For
the regression model, we considered the most used:
linear, logarithmic, and quadratic.

Our data, given in Table 1, consist of the boiling point
Bp, the arithmetic–geometric index AG, the arithmetic–
geometric energy εAG of chemical graphs up to 8 vertices.
The boiling points are taken from the study by Rücker
and Rücker (1999), see also Aouchiche and Ganesan
(2020) and Aouchiche and Hansen (2012). The values of
AG and εAG were calculated using the AutoGraphiX III
system (Caporossi, 2017).

Figure 4: Logarithmic regression Bp versus AG.

Figure 5: Logarithmic regression Bp versus AGE .
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The most important observation is that AGE energy is
best correlated with boiling point Bp than that of the
topological index AG in all respective regressions.

Figure 2 illustrates the linear regression between the
boiling point and AG index, with rounded equation:

Bp AG20.651 66.819= −

Figure 3 shows the linear regression between the
boiling point and AG-energy, with rounded equation:

Bp ε20.694 93.887.AG= −

The linear regression shows that the correlation of
the boiling point is better with AGE , where R 0.87372

= ,
than with AG, where R 0.7347.2

=

Figure 4 illustrates the logarithmic regression
between the boiling point and AG index, with rounded
equation:

Bp AG122.53 ln 153.98( )= −

Figure 6: Quadratic regression Bp versus AG.

Figure 7: Quadratic regression Bp versus .AGE
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Table 1: Boiling point, AG index, and AGE energy of alkanes up to order 8

Name Bp AG AGEE Name Bp AG AGEE Name Bp AG AGEE

n1 −161.5 0 0 1tbc3 80.5 7.8016 8.67379 b2mc3 124 8.27722 10.3517
n2 −88.6 1 2 11ec3 88.6 7.36396 9.27722 1nepec3 106 8.87252 9.74915
n3 −42.1 2.12132 3 1e23mc3 91 7.39068 8.99593 5msbc3 115.5 8.50534 10.3518
c3 −32.8 3 4 1m1ipce 81.5 7.69108 9.01389 1e2pc3 108 8.2038 10.3045
n4 −0.5 3.12132 4.69042 11m23c3 79.1 7.67292 8.90465 ib2mc3 110 8.54658 9.86825
2mn3 −11.7 3.4641 4 12m1ec3 85.2 7.61766 9.05318 11m2pc3 105.9 8.67292 9.91127
1mc3 −0.7 4.19594 5.23802 1123mc3 78 7.83013 9.18966 1m12epc3 108.9 8.54425 10.5422
c4 12.6 4 4 1122mc3 76 8.12132 8.41765 11m2ipc3 94.4 8.90104 9.9405
bc110b 8 5.08248 5.20317 1pc4 100.7 7.12252 8.28829 112m2ec3 104.5 8.99262 10.0879
n5 36 4.12132 5.65685 1ipc4 92.7 7.35064 7.72793 11223mc3 100.5 9.17543 10.2962
2mn4 27.8 4.39068 5.76105 1e3mc4 89.5 7.31846 8.52598 1ibc4 120.1 8.39188 9.33738
22mn3 9.5 5 5 1e2mc4 94 7.27722 8.63449 p3mc4 117.4 8.31846 9.52741
1ec3 35.9 5.12252 6.60537 1ec5 103.5 7.12252 9.09223 1sbc4 123 8.27722 9.41768
12mc3 32.6 5.35064 6.34632 13mc5 91.3 7.39188 8.84221 12ec4 119 8.2038 9.51732
11mc2 20.6 5.62132 6.31872 12mc5 95.6 7.35064 8.94888 1234mc4 114.5 8.6188 10.7289
1mc4 36.3 5.19594 5.89327 11mc5 87.9 7.62132 8.81715 1133mc4 86 9.24264 9.05821
c5 49.3 5 6.47214 1mc6 101 7.19594 8.96625 1pc5 131 8.12252 10.2194
bc111p 36 6.12372 5 c7 118.4 7 8.98792 1ipc5 126.4 8.35064 10.134
bc210p 46 6.08248 6.44846 dcprm 102 8.12372 9.76269 1e3mc5 121 8.31846 10.3594
s22p 39 6.24264 7.3589 bc221h 105.5 8.12372 9.76269 1e2mc5 124.7 8.27722 10.3557
mbc110b 33.5 6.42292 6.56159 bc311h 110 8.12372 9.2473 124mc5 115 8.54658 9.94485
n6 68.7 5.12132 7.20036 bc320h 110.5 8.08248 9.01277 1e1mc5 121.5 8.49264 10.4653
2mn5 60.3 5.39068 6.65235 bc410h 116 8.08248 9.75124 123mc5 117 8.50534 10.6077
3mn5 63.3 5.31726 7.40948 s33h 96.5 8.24264 7.92745 113mc5 104.5 8.81726 9.8801
23mn4 58 5.6188 6.8313 s24h 98.5 8.24264 9.33053 112mc5 114 8.74634 10.0141
22mn4 49.7 5.87132 6.79126 2mbc310hx 100 8.23718 9.72558 1ec6 131.8 8.12252 10.6021
1pc3 69 6.12252 7.71721 6mbc310hx 103 8.19594 9.68638 14mc6 121.8 8.39188 10.476
1ipc3 58.3 6.35064 7.65407 mbc210hx 81.5 8.49384 9.08634 13mc6 122.3 8.39188 9.9193
1e2mc3 63 6.27722 7.83428 mbc310hx 92 8.42292 9.55002 12mc6 126.6 8.35064 10.4828
1e1mc3 57 6.49262 7.9621 13mbc111p 71.5 8.86396 8.26628 11mc6 119.5 8.62132 9.95609
123mc3 63 6.4641 8.08827 14mbc210p 74 8.74264 9.45753 1mc7 134 8.19594 10.2688
112mc3 52.6 6.74634 7.38891 11ms22p 78 8.74262 9.46973 c8 149 8 9.65685
1ec4 70.7 6.12252 6.75811 122mbcb 84 8.85201 9.5329 bcprm 129 9.12372 10.9685
13mc4 59 6.39188 6.99982 tc410024h 105 9.12372 10.349 bc330o 137 9.08248 10.5425
12mc4 62 6.35064 7.78216 tc311024h 107 9.12372 9.6418 bcb 136 9.08248 9.31797
11mc4 53.6 6.62132 7.03562 tc221026h 106 9.12372 10.3583 bc4200 133 9.08248 10.4596
1mc5 51.8 6.19594 7.74106 tc410027h 110 9.04124 10.3032 bc510o 141 9.08248 10.5556
c6 80.7 6 8 tc410013h 107.5 9.22453 10.4529 2mbc221h 125 9.27842 10.8884
bc211hx 71 7.12372 7.6929 tec320h 108.5 10.0412 10.2998 S34o 128 9.24264 10.2471
bcpr 76 7.08248 8.39864 tec410h 104 10.0412 10.7088 7mbc320h 128 9.23718 11.1892
bc220hx 83 7.08248 7.7735 n8 125.7 7.12132 9.7278 2mbc320h 130.5 9.23718 10.0441
bc310hx 81 7.08248 8.4923 2mn7 117.6 7.39068 9.27007 s25o 125 9.24264 11.0911
s23hx 69.5 7.24264 7.75831 3mn7 118.9 7.31726 9.9114 1mbc221h 117 9.49384 10.9527
mbc210p 60.5 7.42292 8.20672 4mn7 117.7 7.31726 9.26915 7mbc410h 138 9.19594 11.1487
13mbcb 55 7.74264 7.71752 25mn6 109.1 7.66004 9.31019 1mbc410h 125 9.42292 10.94
n7 98.5 6.12132 8.25402 3en6 118.5 7.24384 9.83204 33mbc310hx 115 9.7038 10.4437
2mn6 90 6.39068 8.25215 24mn6 109.4 7.58662 9.3399 14mbc211hx 91 9.86396 10.2359
3mn6 92 6.31726 8.35197 23mn6 115.6 7.54538 9.41305 66mbc310hx 126.1 9.56197 10.7436
3en5 93.5 6.24384 8.36575 34mn6 117.7 7.47196 10.106 2244mbcb 104 10.0415 10.4453
24mn5 80.5 6.66004 7.62489 22mn6 106.8 7.87132 9.27384 1223mbcb 105 10.1213 10.7638
23mn5 89.8 6.54538 8.46557 3e2mn5 115.6 7.47196 9.35947 tc510035o 142 10.165 11.3133
22mn5 79.2 6.87132 7.65211 234mn5 113.5 7.7735 9.51778 tc510024o 149 10.1237 11.4555
33mn5 86.1 6.74264 8.52444 33mn6 112 7.74264 9.40615 tc3210o 136 10.1237 11.6894
223mn4 80.9 7.06976 7.8603 224mn5 99.2 8.14068 8.61401 tc3300o 125 10.0825 11.1747
1bc3 98 7.12252 9.11395 3e3mn5 118.2 7.61396 10.1466 3mtc2210h 120.5 10.2372 11.636
1sbc3 90.3 7.27722 9.29729 223mn5 109.8 7.99634 9.48833 ds2121o 103 10.4853 11.1026

(Continued)
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Figure 5 shows the logarithmic regression between
the boiling point and AG-energy, with rounded equation:

Bp ε145.24 ln 223.03AG( )= −

The logarithmic regression shows that the correlation
of the boiling point is better with εAG, where R 0.80772

= ,
than with AG, where R 0.6134.2

=

Figure 6 illustrates the quadratic regression between
the boiling point and AG index, with rounded equation:

Bp AG AG2.2291 49.886 153.552( )= − · + · −

Figure 7 shows the quadratic regression between the
boiling point and AG-energy, with rounded equation:

Bp ε ε1.2306 39.154 156.35AG
2

AG( )= − · + · −

The quadratic regression shows that the correlation
of the boiling point is better with AG-energy, where
R 0.90732

= , than with AG, where R 0.8186.2
=

The study shows that in each regression model, the
boiling point is better correlated with the arithmetic–
geometric energy than with the arithmetic–geometric
index. Comparing the models, the logarithmic regression
gives a better correlation. Overall, the best correlation
with boiling point is obtained with the arithmetic–
geometric energy using the logarithmic regression.

5 Conclusions

The result in this article characterizes certain classes of
graphs with three distinct AG-eigenvalues and gives sev-
eral bunds on AG-energy. Statistical analysis of boiling
point and AG-energy of chemical graphs up to eight ver-
tices shows that AG-energy is better correlated with a
boiling point than AG-index.
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