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Abstract: For any simple connected graph G of order n,
having eigen spectrum μ1 ≥ μ2 ≥ ⋯ ≥ μn with middle eigen-
values μH and μL, where H = ⌊(n + 1)/2⌋ and L = ⌈(n + 1)/2⌉,
the HOMO–LUMO gap is defined as as ΔG = μH = μL. In this
article, a simple upper bound for the HOMO–LUMO gap
corresponding to a special class of connected bipartite
graphs is estimated. As an application, the upper bounds
for the HOMO–LUMO gap of certain classes of nanotubes
and nanotori are estimated.
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1 Introduction

Let G be a simple connected graph on n vertices. The
eigenvalues of G, μ1 ≥ μ2 ≥ ⋯ ≥ μn are the eigenvalues
of adjacency matrix A(G) of graph G arranged in des-
cending order as μ1 ≥ μ2 ≥ ⋯ ≥ μn and is referred to as
eigen spectrum of G. The eigen spectrum of different
families of graphs is widely studied. There is extensive
work on finding the smallest, largest, and middle eigen-
values of the graph in literature. The middle eigenvalues
have a great deal in theoretical chemistry, especially in
the Huckel molecular orbital model of Π-electron system.
For graph G, let H = ⌊(n + 1)/2⌋ and L = ⌈(n + 1)/2⌉. Then,
HOMO–LUMO gap is defined as ΔG = μH − μL. HOMO and

LUMO denote highest occupiedmolecular orbital and lowest
unoccupied molecular orbital, respectively. HOMO–LUMO
gap relates to the kinetic stability of molecules. The larger
the value of HOMO–LUMO, the higher the kinetic stability
and the lower the chemical reactivity. As a number of mole-
cular graphs, like acyclic alkanes, certain nanotubes and so
on, are bipartite so it is important to study the HOMO–LUMO
gap on bipartite graphs in general.

Any bipartite graph G with its vertex set V(G) can be
partitioned into two classes of starred and un starred
vertices that is V*(G) = {v1, v2, ⋯, vr} and V(G) = V°(G) =
{vr+1, vr+1, ⋯, vn}, respectively. The bi adjacency matrix of
G is the r × (n − r) matrix B(G) = (bij), where bij = 1, if vivj ∈
E(G), vi ∈ V*(G) and vj ∈ V*(G) and otherwise bij = 0.
The adjacency matrix of the graph G can be written as:

( ) ⎛
⎝

⎞
⎠

=A G O B
B OT

Mohar (2013) proved that the median eigenvalues of
every bipartite planar graph of maximum degree at most
three belong to the interval [−1, 1], and Mohar (2016)
showed that the same result holds for all bipartite graphs
of degree at most three except Heawood graph whose
median eigenvalues are ±√2. Later, Mohar (2015) pro-
vided rather tight lower and upper bounds on the max-
imum value of the HOMO–LUMO index among all graphs
with a given average degree. In the study by Mohar and
Tayfeh-Rezaie (2015), the upper bound of maximummedian
eigenvalues (HOMO–LUMO index) of connected bipartite
graphs with maximum degree Δ(G) ≥ 3 is estimated. Jaklic
et al. (2012) studied bounds on HOMO–LUMO index for
chemical and general graphs and exhibited the existence
of graphs with sufficiently large HOMO–LUMO index. For
more details on the HOMO–LUMO index and HOMO–LUMO
maps, refer to Fowler and Pisanksi (2010a, 2010b) and Li
et al. (2013). So far, not much work has been done on the
HOMO–LUMO gap. The bounds for the HOMO–LUMO gap
for sub-graphenic and sub-buckytubic species are esti-
mated by Klein et al. (2015). In Ahmad and Hameed
(2018), the bounds for C4C8 nanotubes and nanotoros are
proposed. The polyenes with maximumHOMO–LUMO gap
were studied in Fowler et al. (2001). HOMO–LUMO gaps
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and molecular structures of polycyclic aromatic hydrocar-
bons in soot formation were discussed by Xu et al. (2021).
The aim of this article is to find the upper bound of
HOMO–LUMO gap for a specific class of connected bipar-
tite graphs.

Let B be the set of connected bipartite graphs. For any
graph G belonging to B whose vertices are partitioned
into V**(G) and V°(G), we construct two new graphs G*
and G°° by drawing an edge corresponding to each path
of length 2 between any two vertices of V**(G) (respec-
tively V°(G)). For example, consider a tree on 14 vertices
which is connected bipartite graph which is shown in
Figure 1. The corresponding graphsT14

⁎ and °T14 are shown
in Figures 2 and 3, respectively.

Let � denote the class of connected bipartite graph
G for which the corresponding graphs G* (respectively
G°) is four partite, i.e.

� { ( )}= ∈ °G B G G: respectively is four partite⁎

Since the graphsT14
⁎ and °T14 shown in Figures 2 and 3

are four partite, the graph T14 as shown in Figure 1
belongs to class �  . For �∈G , V** can be partitioned
into four classes V V V, , ,α β γ

⁎ ⁎ ⁎ andVδ
⁎ in which the vertices

of one class are adjacent to the vertices of remaining
three classes only, and similarly, the vertex set V° can
be partitioned into four classes.

In Section 2, the upper bounds of the HOMO–LUMO
gap for the class � are estimated, and as an application
in Section 3, the upper bounds for the HOMO–LUMO gap

for the special class of nanotubes and nanotori C4(m,n)
and HRC4(S)(m,n), where m, n > 1 are estimated.

Theorem 1.1. (Rayleigh Ritz quotient)
Let M ∈ Cn×n be a Hermitian matrix. Then, the least eigen-
value μmin(M) of M is:

( ) =

∈ ≠

μ M v Mv
v v

min
v C vmin , 0

†

†n

where v† denotes the conjugate transpose of v. Further, we
often abbreviate V(G), E(G),V*(G), V°(G), A(G), and B(G) to
V, E, V*, V°, A and B, respectively.

2 Upper bound for the
HOMO–LUMO gap of the class

For any �∈G , the graph G* is four partite in which the
vertices in one class are adjacent to the remaining three
classes only, and the adjacency matrix of G* is given in
Lemma 2.1.

Lemma 2.1. For any �∈G , the adjacency matrix of G* is
given by:

( )

⎛

⎝

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟
⎟

=A G

O A A A
A O A A

A A O A

A A A O

αβ αγ αδ

αβ
T

βγ βδ

αγ βγ
T

γδ

αδ βδ
T

γδ
T

⁎
T

T

where each entry Aωη = (dij) of A(G*) is a matrix defined as
dij = the number of edges between ∈V Vi ω

⁎ and ∈V Vj η
⁎ in G*.

As the adjacency matrix A(G) of G ∈ B can be written as:

( ) ⎛
⎝

⎞
⎠

=A G O B
B OT

Therefore, the eigenvalues of A2 are the eigenvalues of C* and
C° where C* = BBT and C° = BTB.

Figure 1: Tree T14.

Figure 2: Graph T14
⁎ .

Figure 3: The graph T °14.
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Lemma 2.2. The matrix C* corresponding to the graph
�∈G is given by:

⎛

⎝

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟
⎟

=C

D A A A
A D A A

A A D A

A A A D

α αβ αγ αδ

αβ
T

β βγ βδ

αγ
T

βγ
T

γ γδ

αδ
T

βδ
T

γδ
T

δ

⁎

where D D D, ,α β γ, and Dδ are diagonal matrices with diag-
onal entries as vertex degrees, and each entry ( )=A dωη ij
of C* is a matrix where dij is the number of edges between

∈V Vi ω
⁎ and ∈V Vj η

⁎ and in G*.

Lemma 2.3. Let G ∈ B be a connected bipartite graph, μmin

(C*) and μmin(C°) be the least eigenvalues of C* and C°,
respectively. Then:

( ) { ( ) ( ) }=   °G μ C μ CΔ 2 min ,min
⁎

min

where C* and C° are defined as above.

Theorem 2.1. For the matrix C* of the graph �∈G , the
minimum eigenvalue of C* satisfies:

( )
| ( )| | ( )|

| |
≤

− /μ E G E G
v

C 3
min

⁎
⁎

⁎

Proof. Let VJ
⁎, where { }∈J α β γ δ, , , has j elements, and

let Vj be the column vectors of order j × 1 all of whose
entries are 1 s. Further, suppose Mij

⁎ denotes the number

of edges betweenVI
⁎ andVJ

⁎, where { }∈I J α β γ δ, , , , and:

( ){ }=
∈

M Mmaxγδ I J α β γ δ IJ
⁎

, ,, , ,
⁎

Consider the fourth roots of unity, i.e., { } −1, 1, ϵ, ϵ2

with ϵ and ϵ2 conjugate to each other and:

⎛

⎝

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

=

−

V

V
V

V
V

ϵ
ϵ

.

α
2

β

γ

δ

Then we have:

( )

⎛

⎝

⎜
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⎟
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= ∈ ∈ −

−

V V V V V V

V
V

V
V

ϵ
ϵ
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β
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γ
T

δ
T
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β

γ

δ

† 2
2

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

= + + +

= + + + =
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δ
†
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Hence, we can write:

( ) (∣ ( )∣ | ( )| )∑= − ≤ − /V C V V d G M E G E Gϵ 2 3
v

v γδ
† ⁎ ⁎ ⁎ ⁎

i

i

Using Theorem 1.2 (Rayleigh Ritz quotient):

( ) ( )
∣ ( )∣

∣ ∣

∣ ( )∣

= = ≤

−

∈ ≠

μ M μ M v Mv
v v

E G
V

min
v C v

E G

min min , 0

†

†
3

⁎n

⁎

Now, using Lemma 2.3 and Theorem 2.1, we have
Corollary 2.1.

Corollary 2.1. For any graph G ∈ � :

( ) { | ( )| | ( )| ) ∣ ∣

| ( )| | ( )| ) ∣ ∣ }

≤ − / /

− ° / / °

G E G E G V

E G E G V

Δ 2 min 3 ,

3

⁎ ⁎
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3 Applications

Iijima (1991) discovered carbon nanotubes (CNTs) as
multi-walled structures. These nanostructures are allo-
tropes of carbon in a cylindrical shape. CNTs exhibit
remarkable mechanical characteristics and are found to
be one of the stiffest and most elastic known materials.
Nanotubes are studied extensively in solid-state physics
due to their immense applications in nanotechnology,
electronics, optics, materials science, and architecture.
In this section, the upper bounds for HOMO–LUMO gap
of two families of nanotubes and nanotori, one is covered
by C4 (squares) and other is covered by rhombus; i.e.,
C4[m,n] and HRC4[m,n] are estimated. The two-dimen-
sional (2D)-lattice of first family of nanotubes and nano-
tori is a plane arrangement of C4 (square). The tilling of C4
can cover either a cylinder (nanotube) or a torus (nano-
torus). This family of nanotubes is denoted by TUC4[m,n],
in which m is the number of squares in a row and n is
the number of squares in a column. A 2D representation
of TUC4[m,n] nanotube is depicted in Figure 4. Let G be
the molecular graph of a C4 (square) lattice. The graph
is bipartite, and its vertex set V(G) can be partitioned
into two classes V*(G) and V°(G) consisting of starred
and circled vertices. Now, we construct starred graph G*
(respectively circled G°) by drawing an edge corresponding
to each path of length 2 between any two starred (respec-
tively circled) vertices of G. The graph G* is in fact C3C4 net
and is four partite. It is shown in Figure 5. Hence, the vertex
set V*(G) partitions into four classes V V V, , ,α β γ

⁎ ⁎ ⁎ andVδ
⁎ in

which the vertices of one class are adjacent to the vertices of
the remaining three classes only, and similarly, the vertex
set V°(G) can be partitioned into four classes.

Theorem 3.1. For { }· ∈ −m n N 1 and ( )≡m n mod, 0 4 , let
N and H be molecular graphs of nanotube [ ]TUC m n,4 and
nanotorus [ ]C m n,4 . Then:

( ) ≤NΔ 2 2

and

( ) ≤Δ H 2 2

Proof. The edge set cardinalities of N N H H, , ,⁎ ⁎, and
vertex set cardinalities of N*, H* are given as follows:

∣ ( )∣

∣ ( )∣
( )

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= +

= +

+

+ + − =

E N mn m

E N mn m n n m n m mn

2

2 1
2 2 2 2

1
2

3⁎

∣ ( )∣

∣ ( )∣ ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

=

= + + + − + =

E H mn

E H mn mn n m n m m mn

2

2
2 2 2 2

1
2 2

3⁎

∣ ( )∣
( )

=

+V N m n 1
2

⁎

and

∣ ( )∣ =V H mn
2

⁎

Since ( )≡m n mod, 0 4 , the graphs N and H are
bipartite and starred graphs N* and H* are four partite
which further implies that �∈N H. . Now by using
Corollary 2.1, we have:

( ) ≤NΔ 2 2

andFigure 4: 2D representation of TUC4[12,8] nanotube.

Figure 5: Starred graph G∗ of TUC4[12,8] nanotube.
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HΔ 2 2( ) ≤

The 2D-lattice of second family of nanotubes and
nanotori is a plane arrangement of C4 (rhombus). It can
either cover a cylinder (nanotube) or a torus (nanotorus).
The constructed nanotube is denoted by TUHRC4[m,n], in
which m is the number of squares in a row and n is the
number of squares in a column as shown in. A 2D repre-
sentation of TUHRC4[m,n] nanotube and its starred graph
are depicted in Figures 6 and 7.

Theorem 3.2. For m n m n mod1, , 0 2 ,( )· > ≡ let graphs
G1 and H1 be molecular graphs of nanotube TUHRC4[m,n]
and corresponding nanotorus. Then:

NΔ 2 31( ) ≤

and

Δ H 2 31( ) ≤

Proof. Here:

E G mn E G mn m E H mn
E H m n n m m n

m n

4 , 6 4 4 ,
2 1 2 1 2 1
6 1

1 1
⁎

1

1
⁎

∣ ( )∣ ∣ ( )∣ ∣ ( )∣

∣ ( )∣ ( ) ( ) ( )

( )

=   = − =

  = − + − + −

= −

E H mn
E H m n n m m n m n

4 ,
2 1 2 1 2 1 6 1

1

1
⁎

∣ ( )∣

∣ ( )∣ ( ) ( ) ( ) ( )

=

= − + − + − = −

and

V G mn V H mn,1
⁎

1
⁎∣ ( )∣ ∣ ( )∣= =

By the same reasoning as used in proof of Theorem 3.1,

N H,1 1 ∈ � . Hence by Corollary 2.1, NΔ 2 31( ) ≤ and
HΔ 2 31( ) ≤ .

4 Conclusions

The upper bounds of the HOMO–LUMO gap for a special
family of bipartite graphs are estimated. The estimated
upper bound helps to find the upper bound of the HOMO–
LUMO gap for certain nanotubes. In particular, it is shown
that the HOMO–LUMO gap for nanotube TUHRC4, and its

corresponding nanotorus is found to be 2 3, and for
nanotube TUC4 and its corresponding nanotorus, it is
2 2 . This might be more convenient and helpful in the
theoretical study of the molecular orbital theory of nano-
tubes as compared to Density functional Theory, which
only gives programming-based numerical approximations
of the HOMO–LUMO gap.
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Figure 6: 2D Representation of TUHRC4[6,8] nanotube.

Figure 7: Starred graph G∗ of TUHRC4[6,8] nanotube.
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