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Abstract: tHPA-ZSM-5 nanocomposites as a superior catalyst
have been applied for the synthesis of indenopyrazolones
through a three-component reaction of phenylhydrazine,
benzaldehydes, and indan-1,2,3-trione at room temperature
in acetonitrile. The zeolite catalyst has been characterized by
X-ray diffraction, field emission scanning electronic micro-
scopes, Fourier transform infrared, energy-dispersive spec-
troscopy, thermogravimetric analysis, and N2-adsorption
analysis. The various aromatic aldehydes can be utilized in
this method. These results showed that aromatic aldehydes
with electron-withdrawing groups reacted faster than alde-
hydeswith electron-releasing groups. Experimental simpli-
city, excellent yields in short reaction times, reusability of
the catalyst, and low catalyst loading are some of the sub-
stantial features of this method.

Keywords: catalyst, indenopyrazolones, HPA-ZSM, one-
pot, zeolite

1 Introduction

Pyrazolones show anticancer (Saidachary et al., 2014),
antimicrobial (Indrasena et al., 2014), antianalgesic (Khalil
et al., 2014), antioxidant (Mazimba et al., 2014), antibac-
terial (Sivakumar et al., 2014), anti-diabetic (Mor and

Sindhu, 2020), antifungal (Mor et al., 2017), antitumor
(Rostom, 2006), and anticonvulsant (Ahsan et al., 2013)
activities. Indenofused heterocycles have received consid-
erable attention from synthetic chemists and medicinal
professionals in recent years (Kaur et al., 2020; Singh et al.,
2005, Singh, 2016). These properties make pyrazolones sub-
stantial objectives in organic synthesis. The past reports on
the synthesis of pyrazolones have mentioned such catalysts
as CH3COOH (Mor et al., 2019), [HMIM]HSO4 (Zang et al.,
2011), 3-aminopropylated silica gel (Sobhani et al., 2012),
sodium dodecyl sulfate (SDS) (Wang et al., 2005), silica-
bonded S-sulfonic acid (Niknam et al., 2010), and Ce/SiO2

composites (Akondi et al., 2016). Each of these catalysts
may have its own benefits but also suffer apparent disadvan-
tages including high reaction times, low efficiency, unwanted
reaction conditions, and the use of non-green catalysts.
Therefore, to avoid these limitations, the discovery of an
effective method for the synthesis of pyrazolones is still
favored. The facility of accomplishment multicomponent
reactions with a recyclable catalyst could advance the effi-
ciency of organic reactions (Alirezvani et al., 2019; Davoodi
et al., 2019). Heteropolyacids (HPAs) have polyoxometalate
inorganic cages, which may adopt the Keggin structure with
the common formula H3MX12O40, where X is the heteroatom
and M is the central atom. Generally, M can be either Si or P,
and X =Mo or W (Timofeeva, 2003). Immobilization of HPAs
on silica structures as support results in more stability and
increased catalytic activity (Molnár et al., 1999; Sofia et al.,
2009). HPAs have been heterogenized using immobilization
of HPAs on zirconium dioxide (Sunita et al., 2008), titanium
dioxide (Waghmare et al., 2008), silica (Izumi et al., 1999;
Safaei-Ghomi et al., 2020), zeolite (Mukai et al., 2003), and
SBA-15 or MCM-41 (Bordoloi et al., 2007; Wang and Zhu,
2004). In this context, among different solid supports, nano-
crystalline ZSM-5 zeolite is most preferred because of its
many advantageous properties such as high surface area
with different active sites, small pore sizes, short diffusion
path, excellent chemical and thermal stability, and good
accessibility (Liu et al., 2015; Su et al., 2020; Takmil et al.,
2021; Xue et al., 2012). Ideally, utilizing environmental and
green catalysts which can be easily recycled at the end of
reactions has obtained great attention in recent years
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(Ghanbari et al., 2016; Gholamian et al., 2013). Heterogeneous
catalysts are defined as solids ormixtures of solids that accel-
erate the chemical reaction without themselves undergoing
changes (Dai et al., 2021; Karimi-Maleh et al., 2020; Keyikoglu
et al., 2022; Orooji et al., 2021; Taherian et al., 2022). Nano-
structures exhibit good catalytic activity due to their large
surface area and active sites which are mainly responsible
for their catalytic activity (Masoumi et al., 2016; Nabiyouni
et al., 2015). In the current study, we investigated an easy
way for the synthesis of indenopyrazolones through three-
component reactions of phenylhydrazine, benzaldehydes,
and indan-1,2,3-trione using HPA-ZSM-5 at room tempera-
ture in acetonitrile (Scheme 1).

2 Results and discussion

The prepared catalyst was characterized by spectral tech-
niques including X-ray diffraction (XRD), field emission
scanning electronicmicroscopes (FE-SEM), Fourier transform
infrared (FT-IR), energy-dispersive spectroscopy (EDX), thermo-
gravimetric analysis (TGA), and N2-adsorption analysis, and
BET analyses.

FT-IR studies on zeolite ZSM-5 and its immobilized
catalysts were carried out (Figure 1). The unmodified pro-
duct has bands at the following wavenumbers (cm−1): 548
(δSi–O–Si), 796 (νsSi–O–Si), 1,096 (νasSi–O–Si), 1,630
(adsorbed H2O), and 3,448 (νOH). The 796 band was
shifted in the phosphomolybdic acids-modified sample to
787 cm−1 that is the result of overlapping with bands δ
Mo–O–Mo (754 cm−1) (Javidi et al., 2014). The band of
silanol groups shifted in the case of PMA-containing sample
only. In addition, a new strong band at 962 cm−1 appeared
in the spectra of modified ZSM-5. This band is typical for
Keggin’s structureofHPAsandcorresponds toνasMo–O–Mo
or νasW–O–W vibrations (Amini et al., 2006).

FE-SEM images of ZSM-5 and its immobilized catalyst
are provided in Figure 2. After the immobilization, the sur-
faces of the catalyst were covered with a white translucent

substance, and the surfaces became smoother. The particles
became larger in size, and their profiles became clearer,
indicating that HPA was immobilized on the surface of
ZSM-5. The evaluation of the used catalyst structure by
FE-SEM evidence that the morphology of the catalyst
remained unchanged after the fifth cycle (Figure 2b and c).

EDX analysis (Figure 3) of the catalyst showed the
presence of Al, P, O, Si, and Mo elements confirming
the formation of the catalytic system as visualized. Ele-
mental mapping images (Figure 3) of the catalyst showed
uniform distribution of the elements P and Mo in the
desired catalytic system.

The XRD patterns of ZSM-5 and its immobilized cat-
alyst are shown in Figure 4. In pattern (a), the peaks
of high intensity at 23.4°, 24.1°, and 24.6° are the char-
acteristic diffraction peaks of ZSM-5, indicating good
crystallinity of our synthesized ZSM-5 (JCPDS = 44-0003).
Compared with the ZSM-5 pattern, the HPA-ZSM-5 pattern
exhibits all the diffraction peaks of ZSM-5, and the shape
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Scheme 1: Synthesis of indenopyrazolones.

Figure 1: Fourier-transform infrared spectroscopy spectra of ZSM-5
and HPA-ZSM-5.
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and intensity of the diffraction peaks have negligible
changes, indicating that the prepared catalysts main-
tained the good crystallinity of ZSM-5 after the immobi-
lization of the HPA onto ZSM-5.

N2-sorption isotherms at 77 K of ZSM-5 and HPA-
ZSM-5 are indicated in Figure 5. As shown in Figure 5,
all the isotherms exhibited a typical type IV isothermwith
an H1 hysteresis loop starting from P/P0 = 0.5. The results
presented that the BET-specific surface area of ZSM-5
increased from 170 to 240m2‧g−1 after modification with
HPA.

Thermogravimetric analysis (TGA) evaluates the thermal
stability of HPA-ZSM-5 (Figure 6). A 3% decrease in weight
between 100°C and 250°C is because of losing absorbed

Figure 2: FE-SEM images of: (a) ZSM-5, (b) HPA-ZSM-5, and (c) the used HPA-ZSM-5.

Figure 3: EDS of HPA-ZSM-5.
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solvent on the external surface and molecules trapped
among HPA-ZSM-5. The curve indicated a weight loss of
about 4.5% from 350°C to 550°C due to the decomposition
of the phosphomolybdic acid grafting to ZSM-5.

We investigated the reaction of phenylhydrazine,
benzaldehyde, and indan-1,2,3-trione as a model reaction.
To obtain the ideal reaction conditions for the preparation
of compound 4a, we studied the diverse catalysts and
solvents (Table 1). Screening of different catalysts con-
taining Et3N, PTSA, nano-ZrO2, CAN, L-proline, nano-TiO2,
HPA, ZSM-5, and HPA-ZSM-5 revealed HPA-ZSM-5 (6mg)
as the most effective catalyst to perform this reaction at
room temperature (Table 1). Seeking of the reaction scope
demonstrated that various aromatic aldehydes can be uti-
lized in this method (Table 2). These results showed that
aromatic aldehydes with electron-withdrawing groups
reacted faster than aldehydes with electron-releasing
groups as expected.

The possibility of recycling the catalyst is an impor-
tant process from different aspects such as environmental
concerns and applicable commercial processes. The reu-
sability of HPA-ZSM-5 was tested for the synthesis of 4a,
and it was found that product yields reduced to a small
extent on each reuse (run 1, 92%, run 2, 92%, run 3, 92%,
run 4, 91%, run 5, 91%, run 6, 90%). After completion of
the reaction, HPA-ZSM-5 was separated from the mixture
using filtration. HPA-ZSM-5 was rinsed five times with
ethanol and dried at room temperature for 15 h.

A mechanism for the preparation of indenopyrazo-
lones using HPA-ZSM-5 is proposed (Scheme 2). First,
the activated benzaldehyde by HPA-ZSM-5 is condensed
with phenylhydrazine to give intermediate I, which attacks
indan-1,2,3-trione to afford the zwitterionic intermediate
II. Its tautomer III undergoes an intramolecular

Figure 4: XRD of ZSM-5 and HPA-ZSM-5.

Figure 5: N2 adsorption–desorption isotherms of ZSM-5 and
HPA-ZSM-5.

Figure 6: TGA curve of HPA-ZSM-5.
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nucleophilic addition reaction, which affords product by H-
atom-transfer reaction. A highly regiospecific synthesis and
crystal structure of indenopyrazolonewas reported by Yavari
et al. (2012). The cis configuration of the hydroxy groups was
proven by nuclear magnetic resonance (NMR) (both –OH
groups are involved in intramolecular H-bond and X-ray
crystal) (Lobo et al., 2011; Pilipecz et al., 2007).

3 Conclusion

In conclusion, we demonstrated an effective method for
the preparation of indenopyrazolones using HPA-ZSM-5
(6mg) through a three-component reaction of phenylhy-
drazine, benzaldehydes and indan-1,2,3-trione at room
temperature in acetonitrile. The zeolite catalyst has been char-
acterized by XRD, FE-SEM, FT-IR, EDS, and N2-adsorption
analysis. Seeking of the reaction scope demonstrated that var-
ious aromatic aldehydes can be utilized in this method. These
results showed that aromatic aldehydes with electron-with-
drawing groups reacted faster than aldehydes with electron-
releasing groups as expected. The advantages of this method
include its great yields in concise times, the retrievable of the
catalyst, low catalyst loading, and an easy work-up method.

Table 1: Optimization of reaction conditions using different cata-
lysts under different conditionsa

Entry Catalyst (amount) Solvent Time (min) Yield (%)b

1 — CH3CN 300 17
2 Et3N (5mol%) CH3CN 200 22
3 L-Proline (5mol%) CH3CN 150 25
4 CAN (4mol%) CH3CN 150 31
5 p-TSA (4mol%) CH3CN 150 40
6 Nano-ZrO2(6mg) CH3CN 140 48
7 Nano-TiO2 (7mg) CH3CN 140 42
8 HPA (4mol%) CH3CN 80 60
9 ZSM-5 (8mg) CH3CN 100 56
10 HPA-ZSM-5 (6mg) H2O 60 60
11 HPA-ZSM-5 (6mg) DMF 50 73
12 HPA-ZSM-5 (6mg) EtOH 30 79
13 HPA-ZSM-5 (4mg) CH3CN 30 84
14 HPA-ZSM-5 (6mg) CH3CN 30 92
15 HPA-ZSM-5 (8mg) CH3CN 30 92

aPhenylhydrazine (1 mmol), benzaldehyde (1 mmol), and indan-
1,2,3-trione (1 mmol).
bIsolated yield.

Table 2: Synthesis of indenopyrazolones

Entry R Product Time (min) Yield (%)a m.p. (°C)

1 H 4a 30 92 221–223
2 4-OMe 4b 50 84 211–214
3 4-Me 4c 50 86 249–251
4 4-Cl 4d 25 94 234–236
5 4-Br 4e 25 94 222–224
6 4-NO2 4f 25 95 242–244
7 3-NO2 4g 30 92 240–243
8 4-OH 4h 60 82 202–204

aIsolated yield.
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Scheme 2: Possible mechanism for the preparation of indenopyrazolones using HPA-ZSM-5.
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Experimental

Chemicals and apparatus

NMR spectra were recorded on Bruker Avance-400MHz
spectrometers in the presence of tetramethylsilane as the
internal standard. The infra red spectra were recorded on
the FT-IR Magna 550 apparatus using KBr discs. Melting
points were determined on Electrothermal 9200 and were
not corrected. The elemental analyses (C,H, N)were obtained
using a Carlo ERBA Model EA 1108 analyzer. The XRD pat-
terns were recorded on an X-ray diffractometer (PHILIPS, PW
1510, Netherlands) using Cu-Kα radiation (λ = 0.154056 nm)
in the range 2θ = 0.8–10°. FE-SEM of nanocatalyst was
visualized by SEM (MIRA3). EDS measurement was carried
out with the SAMX analyser. The N2 adsorption/desorption
analysis (BET) was performed using an automated gas
adsorption analyser (BEL SORP mini II).

Preparation of ZSM-5

The zeolite precursor was prepared by adding tetrapropy-
lammonium hydroxide, tetraethyl orthosilicate to a mixed
aqueous solution of aluminium isopropoxide [Al(ίPro)3],
and NaOH with stirring. The mixture was converted to gel.
The gel was stirred for 20 h. The mole composition of the
gel was 1Al2O3:46SiO2:4TPA:5Na2O:2,500H2O. The resulting
gel was sealed in Teflon-lined autoclaves and heated at
165°C for 72 h. The solid product was recovered by filtra-
tion, washed with deionized water several times, and
dried in an oven at 100°C overnight. The as-synthesized
material was then calcined at 550°C for 8 h to remove the
templates.

Preparation of HPA-ZSM-5

ZSM-5 zeolites (1 g) were added to the solution of 0.3 g of
phosphomolybdic acid (HPA) in ethanol (25mL), and the
reaction mixture was stirred for 24 h. The mixture was fil-
tered, washedwith deionized water several times, and dried
in an oven at 100°C overnight. The as-synthesized material
was subjected to product HPA-ZSM-5 at 400°C for 2 h.

General procedure for the synthesis of
indenopyrazolones

Amixture of phenylhydrazine (1.0 mmol), benzaldehydes
(1.0 mmol), ninhydrin (1.0 mmol) and 6mg of HPA-ZSM-5
in acetonitrile (10mL) was stirred for the appropriate

times. After completion of the reaction thin layer chro-
matography , the catalyst was separated from the mixture
using filtration. The solvent was evaporated, and the
residue was washed with cold diethyl ether to get a
pure product.

Spectra data

cis-3a,8b-Dihydro-3a,8b-dihydroxy-1,3-diphenylindeno
[1,2-c]pyrazol-4(1H)-one (4a)

Yellow solid, m.p. 221–223°C, IR (KBr): νmax = 3,433,
3,055, 1,736, 1,458 cm−1. 1H NMR (400 MHz, CDCl3):
δ (ppm) = 6.14 (s, OH), 6.19 (s, OH), 7.15 (d, J = 8.0 Hz,
1H, ArH), 7.19–7.31 (m, 3H, ArH), 7.42 (t, J = 7.6 Hz, 1H,
ArH), 7.49 (t, J = 7.6 Hz, 1H, ArH), 7.53–7.67 (m, 5H, ArH),
8.23 (d, J = 7.6 Hz, 2H, ArH), 8.49 (d, J = 7.6 Hz, 1H, ArH).
13C NMR (100MHz, CDCl3): δ (ppm) = 89.3 (C), 96.8 (C),
118.3 (2 CH), 121.5 (CH), 122.7 (CH), 123.3 (CH), 124.1 (CH),
126.3 (2 CH), 129.6 (2 CH), 130.8 (CH), 130.9 (C), 132.9
(2 CH), 133.6 (CH), 137.3 (C), 139.9 (C), 142.4 (C), 147.8 (C),
196.8 (C]O). Anal. calcd for C22H16N2O3: C, 74.15, H, 4.53,
N, 7.86%, Found C, 74.12, H, 4.58, N, 7.93%.

cis-3a,8b-Dihydro-3a,8b-dihydroxy-3-(4-
methoxyphenyl)-1-phenylindeno[1,2-c]pyrazol-4(1H)-
one (4b)

Yellow solid, m.p. 211–214°C, IR (KBr): νmax = 3,423,
3,284, 1,705, 1,593 cm−1. 1H NMR (400 MHz, CDCl3):
δ (ppm) = 3.66 (s, OCH3), 6.14 (s, OH), 6.24 (s, OH), 6.89
(d, J = 8.2 Hz, 2H, ArH), 7.06 (t, J = 7.2 Hz, 1H, ArH), 7.19
(t, J = 7.4 Hz, 2H, ArH), 7.28 (t, J = 7.2 Hz, 1H, ArH), 7.39
(t, J = 7.4 Hz, 1H, ArH), 7.51 (d, J = 7.8 Hz, 1H, ArH), 7.56
(d, J = 7.4 Hz, 1H, ArH), 7.62 (d, J = 7.8 Hz, 2H, ArH), 8.03
(d, J = 8.4 Hz, 2H, ArH). 13C NMR (100MHz, CDCl3):
δ (ppm) = 55.5 (OCH3), 90.2 (C), 96.5 (C), 113.6 (2 CH),
117.8 (2 CH), 122.4 (CH), 123.8 (CH), 124.4 (C), 125.9 (CH),
128.6 (2 CH), 129.4 (2 CH), 130.4 (CH), 135.4 (C), 136.8 (CH),
142.9 (C), 143.4 (C), 147.7 (C), 160.5 (C), 197.6 (C]O). Anal.
calcd for C23H18N2O4: C, 71.49, H, 4.70, N, 7.25%, Found C,
71.39, H, 4.63, N, 7.19%.

cis-3a,8b-Dihydro-3a,8b-dihydroxy-3-(4-methylphenyl)-
1-phenylindeno[1,2-c]pyrazol-4(1H)-one (4c)

Yellow solid, m.p. 249–251°C, IR (KBr): νmax = 3,435,
3,266, 1,719, 1,588 cm−1. 1H NMR (400 MHz, CDCl3):
δ (ppm) = 2.34 (s, CH3), 6.13 (s, OH), 6.16 (s, OH), 7.08
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(t, J = 7.8 Hz, 1H, ArH), 7.21 (d, J = 7.9 Hz, 2H, ArH), 7.35
(t, J = 7.8 Hz, 2H, ArH), 7.52 (t, J = 7.8 Hz, 1H, ArH), 7.56 (t,
J = 8.0 Hz, 1H, ArH), 7.72 (d, J = 7.9 Hz, 1H, ArH), 7.93 (d,
J = 7.8 Hz, 2H, ArH), 8.08 (d, J = 7.7 Hz, 2H, ArH), 8.48
(d, J = 7.8 Hz, 1H, ArH). 13C NMR (100MHz, CDCl3):
δ (ppm) = 21.3 (CH3), 89.5 (C), 95.6 (C), 126.1 (CH), 126.3
(2 CH), 126.7 (2 CH), 129.2 (CH), 129.5 (CH), 129.7 (2 CH),
129.8 (CH), 129.9 (2 CH), 130.8 (C), 134.6 (CH), 136.9 (C),
138.4 (C), 140.4 (C), 142.2 (C), 146.8 (C), 197.4 (C]O).
Anal. calcd for C23H18N2O3: C, 74.58, H, 4.90, N, 7.56%,
Found C, 74.48, H, 4.83, N, 7.53%.

cis-3-(4-Chlorophenyl)-3a,8b-dihydro-3a,8b-dihydroxy-
1-phenylindeno[1,2-c]pyrazol-4(1H)-one (4d)

Yellow solid, m.p. 234–236°C, IR (KBr): νmax = 3,452,
3,260, 1,699, 1,593 cm−1. 1H NMR (400 MHz, CDCl3):
δ (ppm) = 6.08 (s, OH), 6.12 (s, OH), 7.03 (t, J = 7.8 Hz,
1H, ArH), 7.33 (t, J = 7.8 Hz, 2H, ArH), 7.41–7.51 (m, 3H,
ArH), 7.53 (t, J = 7.8 Hz, 1H, ArH), 7.63 (d, J = 7.3 Hz, 1H,
ArH), 7.74 (d, J = 7.0 Hz, 1H, ArH), 7.86 (d, J = 7.1 Hz, 2H,
ArH), 8.15 (d, J = 7.7 Hz, 2H, ArH). 13C NMR (100MHz,
CDCl3): δ (ppm) = 89.7 (C), 96.7 (C), 118.2 (2 CH), 122.6
(CH), 124.5 (CH), 126.3 (CH), 128.6 (2 CH), 128.9 (2 CH),
129.4 (2 CH), 130.3 (C), 130.9 (CH), 134.9 (C), 135.6 (C),
136.8 (CH), 142.7 (C), 142.9 (C), 147.6 (C), 197.3 (C]O).
Anal. calcd for C22H15ClN2O3: C, 67.61, H, 3.87, N, 7.17%,
Found C, 67.54, H, 3.84, N, 7.13%.

cis-3-(4-Bromophenyl)-3a,8b-dihydro-3a,8b-dihydroxy-
1-phenylindeno[1,2-c]pyrazol-4(1H)-one (4e)

Yellow solid, m.p. 222–224°C, IR (KBr): νmax = 3,440,
3,255, 1,694, 1,585 cm−1. 1H NMR (400 MHz, CDCl3):
δ (ppm) = 6.03 (s, OH), 6.15 (s, OH), 7.07 (t, J = 7.8 Hz,
1H, ArH), 7.39 (t, J = 7.3 Hz, 2H, ArH), 7.51 (t, J = 7.9 Hz,
1H, ArH), 7.62 (d, J = 7.9 Hz, 2H, ArH), 7.72 (t, J = 7.1 Hz,
1H, ArH), 7.82 (d, J = 7.6 Hz, 1H, ArH), 7.91–7.99 (m, 3H,
ArH), 8.06 (d, J = 7.9 Hz, 2H, ArH). 13C NMR (100MHz,
CDCl3): δ (ppm) = 89.6 (C), 96.4 (C), 118.4 (2 CH), 122.9
(CH), 124.4 (CH), 126.3 (CH), 128.7 (2 CH), 129.3 (2 CH),
130.5 (C), 130.6 (CH), 131.7 (2 CH), 135.5 (C), 136.8 (CH),
137.2 (C), 142.3 (C),142.7 (C), 147.6 (C), 196.4 (C]O). Anal.
calcd for C22H15BrN2O3: C, 60.71, H, 3.47, N, 6.44%, Found
C, 60.64, H, 3.42, N, 6.33%.

cis-3a,8b-Dihydro-3a,8b-dihydroxy-3-(4-nitrophenyl)-1-
phenylindeno[1,2-c]pyrazol-4(1H)-one (4f)

Yellow solid, m.p. 242–244°C, IR (KBr): νmax = 3,401,
3,042, 1,718, 1,562, 1,353 cm−1. 1H NMR (400MHz, CDCl3):
δ (ppm) = 6.09 (s, OH), 6.17 (s, OH), 7.15–7.26 (m, 5H, ArH),
7.29–7.61 (m, 4H, ArH), 8.26 (d, J = 7.1 Hz, 2H, ArH),
8.38 (d, J = 7.2 Hz, 2H, ArH). 13C NMR (100MHz, CDCl3):
δ (ppm) = 89.6 (C), 97.8 (C), 118.4 (2 CH), 122.6 (2 CH),
123.3 (CH), 123.4 (CH), 125.5 (CH), 126.8 (2 CH), 128.9 (2 CH),
130.5 (CH), 134.6 (C), 136.5 (CH), 137.9 (C), 140.7 (C), 142.3 (C),
146.9 (C), 147.5 (C), 197.3 (C]O). Anal. calcd for C22H15N3O5: C,
65.83, H, 3.77, N, 10.47%, Found C, 65.74, H, 3.72, N, 10.43%.

cis-3a,8b-Dihydro-3a,8b-dihydroxy-3-(3-nitrophenyl)-1-
phenylindeno[1,2-c]pyrazol-4(1H)-one (4g)

Yellow solid, m.p. 240–242°C, IR (KBr): νmax = 3,463,
1,725, 1,591, 1,504 cm−1. 1H NMR (400 MHz, CDCl3):
δ (ppm) = 6.26 (s, OH), 6.37 (s, OH), 7.51–7.81 (m, 10H,
ArH), 8.08 (d, J = 8.1 Hz, 1H, ArH), 8.52 (d, J = 7.8 Hz, 1H,
ArH), 8.62 (s, 1H, ArH). 13C NMR (100 MHz, CDCl3):
δ (ppm) = 89.4 (C), 96.8 (C), 118.3 (2 CH), 121.6 (CH), 122.8
(CH), 123.3 (CH), 124.1 (CH), 126.3 (CH), 129.6 (2 CH), 129.7
(CH), 130.8 (CH), 132.9 (CH), 133.4 (C), 135.3 (C), 137.2
(CH), 140.9 (C), 142.8 (C), 147.7 (C), 147.4 (C), 196.8
(C]O). Anal. calcd for C22H15N3O5: C, 65.83, H, 3.77, N,
10.47%, Found C, 65.73, H, 3.69, N, 10.36%.

cis-3a,8b-Dihydro-3a,8b-dihydroxy-3-(4-
hydroxyphenyl)-1-phenylindeno[1,2-c]pyrazol-4(1H)-
one (4h)

Yellow solid, m.p. 202–204°C, IR (KBr): νmax = 3,421,
1,756, 1,535, 1,457 cm−1. 1H NMR (400 MHz, CDCl3):
δ (ppm) = 4.59 (s, OH), 6.14 (s, OH), 6.18 (s, OH), 6.96
(t, J = 7.4 Hz, 2H, ArH), 7.16–7.23 (m, 2H, ArH), 7.27 (m,
1H, ArH), 7.41–7.51 (m, 2H, ArH), 7.56–7.62 (m, 5H,
ArH), 7.94 (d, J = 7.8 Hz, 1H, ArH). 13C NMR (100 MHz,
CDCl3): δ (ppm) = 89.3 (C), 94.1 (C), 116.4 (CH), 118.5
(2 CH), 119.3 (CH), 123.9 (CH), 124.5 (CH), 125.6 (CH),
127.8 (CH), 129.4 (2 CH), 134.6 (C), 134.8 (C), 137.3 (CH),
141.2 (C), 144.9 (C), 146.3 (C), 157.5 (C), 197.3 (C]O).
Anal. calcd for C22H16N2O4: C, 70.96, H, 4.33, N, 7.52%,
Found C, 70.83, H, 4.25, N, 7.43%.
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Appendix

Figure A1: cis-3a,8b-Dihydro-3a,8b-dihydroxy-1,3-diphenylindeno[1,2-c]pyrazol-4(1H)-one (4a).
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Figure A2: cis-3a,8b-Dihydro-3a,8b-dihydroxy-3-(4-methoxyphenyl)-1-phenylindeno[1,2-c]pyrazol-4(1H)-one (4b).
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Figure A3: cis-3a,8b-Dihydro-3a,8b-dihydroxy-3-(4-methylphenyl)-1-phenylindeno[1,2-c]pyrazol-4(1H)-one (4c).
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Figure A4: cis-3-(4-Chlorophenyl)-3a,8b-dihydro-3a,8b-dihydroxy-1-phenylindeno[1,2-c]pyrazol-4(1H)-one (4d).
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Figure A5: cis-3-(4-Bromophenyl)-3a,8b-dihydro-3a,8b-dihydroxy-1-phenylindeno[1,2-c]pyrazol-4(1H)-one (4e).

70  Seyyed Mohammad Ebrahimi et al.



Figure A6: cis-3a,8b-Dihydro-3a,8b-dihydroxy-3-(4-nitrophenyl)-1-phenylindeno[1,2-c]pyrazol-4(1H)-one (4f).
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Figure A7: cis-3a,8b-Dihydro-3a,8b-dihydroxy-3-(3-nitrophenyl)-1-phenylindeno[1,2-c]pyrazol-4(1H)-one (4g).
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Figure A8: cis-3a,8b-Dihydro-3a,8b-dihydroxy-3-(4-hydroxyphenyl)-1-phenylindeno[1,2-c]pyrazol-4(1H)-one (4h).
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