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Abstract: The Wiener index, due to its many applications
is considered to be one of very important distance-based
index. But the Padmaker-Ivan (PI) index is kind of the
only distance related index linked to parallelism of edges.
The PI index like other distance related indices has great
disseminating power. The index was firstly investigated
by Khadikar et al. (2001), they have probed the chemical
applications of the PIindex. They proved that the proposed
Pl index correlates highly with the physicochemical prop-
erties and biological activities of a large number of diverse
and complex chemical compounds and the Wiener and
Szeged indices. Recently, the vertex Padmarkar-Ivan (PI )
index of a chemical graph G was introduced as the sum
over all edges uv of a molecular graph G of the vertices of
the graph that are not equidistant to the vertices u and v.
In this paper, the vertex PI index of certain triangular tes-
sellation are computed by using graph-theoretic analysis,
combinatorial computing, and edge-dividing technology.

Keywords: PI index, triangular tessellation, hexagonal
network
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1 Introduction

The first molecular topological index that used in chemistry
was Wiener index. It was in 1947, when Harold Wiener
introduced a topological descriptor, known as the Wiener
index that later become one of most useful and popular
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molecular descriptor. Wiener applied this index to determine
the physical properties of certain types of alkanes known as
paraffins. The Wiener index, due to its many applications
is considered to be one of very important distance based
index. But, the Padmaker-Ivan (PI) index is kind of the only
distance related index linked to parallelism of edges.

There are many degree based and distance based
topological indices that are defined by the mathematician
and a lots of work has been done in this regard. Topological
properties of molecular graphs in this regard are explored.
The details about the work done in this direction can be
found in Ali et al. (2017), Ashrafi and Loghman (2008),
Baig et al. (2015), Caporossi et al. (2003), Estarda et al.
(1998), Gao et al. (2016), Ghorbani and Hosseinzadeh
(2010), Graovoc et al. (2011), Gutman and Das (2004),
Gutman and Trinajstc (1972), and Kartica et al. (2012).

By introducing these topological indices, the graph
theory has provided the chemist with a variety of very
useful tool to investigate the chemical properties of certain
chemical networks. Formally, a topological index is a
numeric quantity from the structural graph of a molecule.
There are many applications of these indices which are
found in chemistry, pharmaceutics, and biology. For
a thorough survey on this topic, consult the work of
Mansour and Schork (2009).

In Amié¢ et al. (1998), the authors defined a new
distance related molecular topological index and named
it as Padmarker-Ivan index. The newly defined index was
abbreviated as PI . This newly defined index was a distances
related index and does not coincide with Wiener index in
general and in particular, for acyclic (trees) molecules.
One important property of the purposed index PI is that it
simple in calculation and has similar impact as that of the
Wiener index, for detail see Ashrafi and Loghman (2006).

2 Preliminaries

We consider throughout the text that G is a simple
undirected connected graph with vertex and edge sets,
V(G) and E(G), respectively. d(x,y) denote the distance
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between two vertices x and y and it is defined to be the
length of the path that contain least edges between the
vertices x and y. The distance of an edge e=uve E(G)
to the vertex weV(G) is defines as the minimum of the
distances of its ends vertices to w, that is:

d(w,e)=min{d(w,v),d(w,u)}.

The vertices which have shorter distance from the
u than to v of the edge e are denoted by n (e | G) and
similarly, the vertices which have shorter distance to the
vertex v than to the vertex u are denoted by nv(e | G). Thus:

n (e|G):=|{aeV(G)|d(u,a)<d(v,a}|

Similarly, we can define n (e| G). The vertex Padmarker-
Ivan (PI ) index (Mansour and Schork, 2009) of a graph G is
defined as:

PI(G):= Y n,(e|G)+n,(e|G),

ecE(G)

From definition, it is clear that the vertices lying
at equal distance from u and v are not counted. These
vertices are said to be parallel to e. Thus, we can write:

PL(G)= ) n,(G).

ecE(G)

3 The vertex Pl index of graph
derived from hexagonal networks

The graph derived from hexagonal networks are finite
subgraphs of the triangular grid. In this section, the PI
index of graph of hexagonal network is computed.

The graph of hexagonal network of dimension n is
denoted by HX(n). The graph contain 3n’ —3n+1 vertices
and 9n*> —15n+6 edges, where n is the number of vertices
on one side of the hexagon (Ashrafi and Loghman, 2006).
There is only one vertex vwhich has distance n — 1 from every
other corner vertices. This vertex is said to be the center of
HX(n) and is represented by O. In this section, The vertex
PI index of hexagonal network HX(n) will be computed.
We assume that V = V(HX(n)) is the set of vertices of HX(x)
and for everye =uv; R ={xeVl|d,(u,x)=d, (v,x)}:

PL(HX(M)= Y n(HXm)= Y |EIVI-IN,],

ecE(HX(n)) ecE(HX(n))

where |V |=3n’-3n+1. Manuel et al. (2008) proposed
a co-ordinate system in which direction of each
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Y-axis

X-axis

Figure 1: Hexagon networks.

correspond to an axis denoted by X, Y, and Z and the
angle between any two axes is 120. It is therefore enough
to calculate |N,| for every ecE. To calculate N, we
divide the hexagon into six equilateral triangles S;i =1,
2,3 and S’s5i =1, 2, 3. Let N (x,) denote the number of
vertices in the k™ row of HX(n) which are equidistance
to edge e. Consider top left triangle S,. Now, we see that
there are three types of edges, that are, horizontal edges
e* parallel to X-axis, edges e’ parallel to Y-axis and
edges e parallel to Z-axis. It is easy to see that N, for
edges parallel to X-axis and Z-axis in S, and S’, are same.
Similarly, N, for edges parallel to Y-axis and Z-axis in
S, and S’, are same. N, for edges parallel to X-axis and
Y-axis in S, and S’, are same.

Lemma 3.1 1
Let e is an horizontal edge in S, then |Ne|=E

(Sn“ —10n° +7n’ —2n).

Proof. Let V(S,)={x, :1<1<n,1<m<lI} be the set of
vertices of S, and E*(S,)={e; :2<1<n,1<m<I-1} be the
set of edges parallel to X-axis in S,. Let X, denotes
the number of vertices in the p™ row of the graph HX(n).
Since the graph HX(n) has 2n-1 rows, therefore the
number of vertices in the p* row of the graph HX(n) which
are equidistance to end vertices of edge e; are:

m for 1< p<l-m,
N - l-p for I-m+1< p<l,
e |p-1 for I+1<p<n+m,
n—-(1-m) for n+m+1<p<2n-1.
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Now:
2n-1
IN |= 2xp
€Im p=1
I-m 1 n+m 2n-1
Sl S 4SS x,
p=1 p=(l-m)+1 p=l+1 p=n+m+1
M
I-m 1 n+m 2n-1
=Zm+ Z l-m+ Zp—l+ Z n—(-m)
p=1 p=(I-m)+1 p=l+1 p=nt+m+l
1(3n* —n(l+m+3l-3m+1)
20 +2m-2m-2m+P+1)
Now:
n -1
INI=>ON )
o ma m
n -1
_1 Z 2(3# ~1(4n-1)+m(2n-2)
2454 = —n+2lm-2m*+1%)
= i(Sn“ —-10n° +7n* - Zn).
12
Corollary 3.1

Lete,, be the edge on central line then N = %[lm3 —6n’+2n].

Proof.Lete’ Dbe the edge on the central line. By putting
l=nin Eq. 1 we get:

IN _ |=2nm-m’-m.
e

nm

Now:

n-1
IN,| =22nm—m2 -m
m=1

= %[4n3 —6n’+ 2n].

Lemma 3.2
Let e/ is an edge of S, parallel to Y-axis then
2 1
IN |==n* A2 1y
¢ 3 3 6 6

Proof. Let V(S,)={x, :0<m<1,0<1<n-1} be the set
of vertices of S, and E’(S,)={e, :1<m<[,1<I<n-1} be
the set of edges parallel to Y-axis in S,. Let, the number
of vertices in p-th row is denoted by x, of the graph
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HX(n). Since the graph HX(n) has 2n - 1 rows, therefore
the number of vertices in the graph HX(n) which are
equidistance to end vertices of edge e, are:

For2<i<n-1 andlSm{éJ

n+p-1 for 1<p<m,

n+m-1 for m+1<p<l-m+1,
d  |n-p+l for I-m+2<p<n+l,

p-n-1 for n+l+1<p<2n-1.

For 2<1<n-1 and {5J+1£mgl

n+p-1 for 1<p<l-m+1,

_|n+m-1 for l-m+2<p<m,

e{m_ n-p+l for m+1<p<n+l,
p-n-1 for n+l+1<p<2n-1.

Forl=1,3,5,...and m=1+71

n-1+p for 1<p<m,
Ney =n+l-p for m+1<p<n+l,
" Ap-l-n for n+l+1<p<2n-1.
Therefore:
2n-1
B>
oY p
Im p=1
m (I-m)+1 n+l 2n-1
Sl Sl Sl X
P P r P
p=1 p=m+1 p=(l-m)+2 p=(n+)+1

(I-m)+1

+

i(rwp)—l

n+l

+

p=(l-m)+2

=(nm-m)+

Y (n-p)+l

(m*+m)

2(n+m)—1

p=m+1

2n-1

Y (p-n)-1

p=(n+1)+1

+

+((n+m)-1(-2m+1)

+(n+D)(n+m-1)-[(l-m)+2+...(1-m)

+m+n]l-n+D(n-1-D)+[(n+D+1+...+(n+])

+n-1-1]

=%[l2 —1-2m” +2m+2Ilm+2n’ - 2n).
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Forl=1,3,5,...and m= HTl Therefore:

2n-1
1=
o p
Im p=1
m n+l 2n-1
xS 3
p p p
p=1 p=m+1 p=(n+l)+1
n+l 2n-1
= Z(n+p) 1|+ Z(n p)+l+ Z p—n-I
p=m+1 p=n+l+1

1
=5[212 +2m? = 2lm+2n*-2n).

Now,
n-1 1
INJ=2 DN
e ey
=1 om=1 Im
H H
n-1 2 2
=2 2N, N, SN
Ey Ey ey
llisodd | me1 Mo g I 3 i
2 2
!
n-1 2 1

_zziw +ziw +222N

I-3lisodd m=1 M |- lllsodd _+1 im I=2liseven m=1

Case 1. When n is even:
-1
n-1 2
=2

I1=3lisodd m=1

5 Z ZN %[lz—l—2m2+2m

I-3lisodd m-1 M +2Im+2n* -2n]

n-1
= z {313——12 (—+n —nJl n +n—11
3 3 4

1=3lisodd

1
1 2 _ 2 _ 2 _ l _
+[§+n n](L 1) (n n+ 4J(L 1)

where the number of terms are denoted by L. Putting L =§
gives:

=§(L2(2L2 1) [(L(2L+1)(2L 1) 1]

o l;l 1
23 DN, =g+

I-3lisodd m=1 M
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Now:

[}

I+1
Z ZN = "21 i(nz—n+lz+m2—lam)

1= lhsodd 1+1 m I-llisodd 141
"y
n-1
= 2 (n* -n)@)+r@)+ (IHJ 1[”_1J
I-1lisodd 2 2
" 3, 1
= 2 n*-n)+=P+—
I=1lisodd 4 4
el LeL+n@eL-1) )
4 4 3

Putting L =§ gives:

1+1

n-1 2
5

y

e;

I-lisodd 1+ M 8
™7

N~

S 1| P -1-2m +2m+ 20
3 S, 2 3 L

I=1liseven m=2 1=2llseven m=1

1l
- 204
S (L
I=1llseven 2 2 6
l1+2 11+2
2,07 AT (g
402 2 +(2n 2n)l
2 2 2

n-1
= 2 EI3+(§+n2—n)l

I=1llseven

8 2 (1, s
ZEZ(L(LH) +[§+n —nJL(L+1)

-2
where L is number of terms. By putting L = nT we get:

1

n-1 2
11 1
Z n3+—n2——n.
I=1liseven m=2 1 12 6
. . 2 4
By adding above equations, we get: INE|=§n
4 55 1
——n’+=n’—=n.
3 6 6
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Case 2. When n is odd:

-1
n-1 2
2 ZNely =21

=3lisodd m=1 m

2
!

=3lisodd m=1

- lzl 1
Z 2[5[12—l—2m2+2m+21m+2n2—2n]]

o I l; [1_21+1j(1—1+1)
-3 =111,
[=3lisodd 2 2 6

A

Lo —2n)(l_71j

I1=3lisodd

=3(L2(2L2_1)_1)_3[(L(2L+1)(2L-1)
3 4

1 2 2 _ 2 l _
+(§+n n](L 1) (n n+4J(L 1)

. . n-1 .
where L is number of terms. Putting L= > gives:

- g
2 N ==
z 3 24 24 24

I-3lisodd m=1 M

Now:

1+1 1+1

i iNey = i i(nz—n+lz+m2—lam)

I-lisodd  1+1 M [-lisodd 11
"y Py

- Z (n —n)(1)+12(1)+(

I=1lisodd
—l( I+ 1J
2
1

= Z (nz—n)+212+—
I=1lisodd 4 4

n-1

=(n2—n+le+i[L(2L)(2L_l)
4 4

Lo 815 010 3,

n-1
= z [313—212+(1=n2—n]1—n2+n—11
3 4 |3 4

1

8

1+1
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. -1 .
Putting L= nT gives:

[}
n-1 2

N =£rl3 u 2+Z _l
Flisodd L+ %m 8 8 8 8
2
Now:
!
n-1 2 n-1 3 .
2 N, = —P+| —+n’-n|l
l:l%en; el);'n l:léen 12 (3 ]

:%Z(L(LH))2 +(%+n2 —nJL(L+1)

where the number of terms are denoted by L. By putting

-1l get:
2
1
n-1 2 1 1 . .
2 N :_n4 __n3__n2+_n.
l=1éen% el};" 3 4 3 4

2
By addling above equations, we get INe|=§n“
—in3+£nz—ln.
3 6 6

Lemma 3.3
Forn>2then|N,|=9n"-22n’ +18n’ - 5n.
Proof. It is easy to see that:

eXIns |_| e“Ins |=| eXIns, |=|NezlnS, _| e/ Ins
1 1 1 1 2
= z |:| Yine :| Z1n¢ = X
e lnS2 e lnS2 e lnS2 e lnS3
N 4 1nS3 N e* lnS; N 124 lns; | ’

Moreover, it is easy to see that:

This implies:

IN [=12|N |+6|N [-6IN |.
€ e'XlnS1 eylnS1 €
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We conclude from Lemma 3.1, Lemma 3.2, and
Corollary 3.1 that:

|IN |=[5n"—10n3+7n2—2nJ+6 En"—in3+£n2—ln
¢ 3 3 6 6
—6[4n3 —6n’ +2n]

=9n* -22n’ +18n* - 5n.

Theorem 3.1
If G is the graph of hexagonal networks HX(n) then
PI (G)=8n"-50n" +54n° —28n for n>2.

Proof. Since:

PL(G)=IV(®IEG)|-IN,]|

Using |V(G)|=3n*>-3n+1, |E(G)|=9n*-15n+6 and
IN, |=9n" —22n’ +18n’ —5n, we get

PI (G)=18n" —50n’ +54n° —28n+6.

4 The vertex Pl index of the graph
derived from triangular mesh

This section will start with the definition and properties
of triangular mesh. The radix-n triangular mesh
network, denoted by Tn, has the set of vertices
V(Tn)={x, :0<1<n-1,0<m<I} and the set of horizontal
edges E*(Tn)={e; :1<I<n-1,1<m<lI}.

The number of vertices of the graph Tn is n(n+1)/2.
The degree of vertices are two, four, or six. The vertices

Z-axis Y-axis

./ (00)

(4,0) (4,4)

X-axis

Figure 2: Triangular mesh.
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which have degree two are three and we call them as
corner vertices. In Figure 2, the corner vertices are labeled
by a, b, and c. The number of edges of Tnis 3n(n—-1)/2.

Lemma 4.1
If G is a graph of triangular mesh Tn and e be the horizontal
1 1
edge then |N |=—n"-—n’.
¢ 12 12

Proof. Let e, be the horizontal edge of Tn. Let X,
denotes the number of vertices in the p* row of Tn which
are equidistance to end vertices of edge e; . Then:

For2£l$n—1and1£ms{éJ

p for 1<p<m,
N m for m+1<p<l-m+1,
& |l-p-1 for I-m21< p<l,
p-1-1 for l+1<p<n.

Forzslgn—landEJHSmSl

p for 1<p<l-m+1,
for I-m+2<p<l,
for l+1<p<n.

l-m+1
p-1-1

For1=1,3,5,... andm=1+71

for 1<p<m,
for m+1<p<l,
for [+1<p<n.

=
I
TS

, =il-p-

1
p-1-1

1

%

p=l-m+2

i I-p-1

p=l-m+2

1-m+1

X%,

p=m+1

n

pys

p=l+1

m
2
p

p=1

+ + +

l-m+1

Y m

p=m+1

m

3y

p=1

n

Zp—l—l

p=l+1

+ + +

ML) | s m -2+ D+ [(-m+2)

+...+(l-m+m)]

+[({+D)+...+(+n=-D]-1+D(n-0)

=lm—m2+m+%{n2—21n+lz+l—n}.
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Forl=1,3,5,.. Landm=1"1 {L(2L+1)(2L—1) 1}
2 "
N |=
| lmI ZX“ o Llpel, L (I’ -1)
- 4 4 3

2%,

b>|l<4

o

p=1 p=m+1 p=l+1
_ Z Zl p-1l+ Zp -1 where the number of terms are denoted by L. Putting
n
p=m+1 p=l+1 L=E’ we get:

=%(m(m+l))+(l+1)(l—m)—[(m+ 1)

+..+m+(-m)-(1+1)(n-D a1 2

2 2 ZNX ISR NS ST
+A+D+...+1+(n=D] Pmea s w2424 2412

1+1

Z ZN = Z 2 Z[28 +2m? —2lm+2(1-n)l

Ilhsodd 1 im llhsodd l+1

=%[212 +2m? =2lm+2(1-n)l +n*-n].

Now: 2 2
+n’—n]
n-1 1
INJ-D DN,
€Im 113, 1, 5
L mel = 2 —|=F+@2-2n)l+=+n°-n
- 2
1+1 I=1lisodd
N + N + N
1| 2( LRL+1)(2L-1
2 2|3 3
1
n-1 E 1 1
+ +|=+n’-n|L
PIPIIA I (3=
=2llseven m= m77+1
1 L . n
nl 2 where the number of terms are denoted by L, putting L= 3
=2 z ZN + Z ZN +2 2 ENeX, we get:
I=3lisodd m=1 M= 1hsodd _1 im I=2liseven m=1 M
1
n-1
Case 1. When n is even: ZZ‘N 1
m 8

e
I-llisodd  [+1 1M
)

ZZZN —ZZZlam m’ +m o % L
lisodd met A 3lisodd ml 2 z zNex = z ZIam m +m+= {n —2In+P +1-n}

1 I=2liseven m=1 M I=2llseven m=1
+E{n2 —2In+1+1-n}

— 1 n* n
n-1 3 2,
1 1 1 1 =2 E _[ L___jl (__{____]1
= E —P+ [ le ( n +—n——)l I=leseven3 2 2 6 4 4

[=3lisodd 8 2
M tpenl Lorwsry+| L1 2LL+DEL+D
4 4 8 3 2 2 3
=2
= l 2 2 _ — l_ﬁ + l+n_2_£ L+1
_2{3(L(2L 1) I)J{s Zﬂ [6 4 4( )
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where the number of terms are denoted by L. Putting where the number of terms are denoted by L, putting

n-2 _
L=Twe get: L=nTl, we get:

1 1+1

n-1 2

1 1 1, 1 11, 1, 1 1
2 N =—n‘——n’+-n*+-n. N, =_[_“ Nt
Z Z <24 2% 6 6 zuzﬁd;‘l an 204 44 4

2

|Ne |=%n4 _%nz. I=2liseven m=1 I= Zliselven ;l— 1 1 ,
=2 z P8 L 0 (L
. I=leseven3 2 2 6 4 4
Case 2. When n is odd:
l 1
2 l(ZLZ(L+1)2)+ 1 n 2L(L+1)(2L+1)l2
2 2 ZZam m +m+— {n —2In+1* +1-n} 3 2 2 3
1=3lisodd m=1 =2 . ,
- +[g+%—%](L+1)
-3 e S B e L -2
1:31‘15051(:13 8 2 4 4 3
where the number of terms are denoted by L. Putting
+ _an_,.ﬂ_l L=n—_1weget:
4 4 8 2
1
n-1 2
1, 151, 1 1
=2E(L2(2L2 1)- 1)+[8 ZH[—L(ZL“;(ZL ) 1} 2112 ZNelx‘Z" IRy
=2liseven m=1 m

1 1 1 Adding above equations, we get:
+| =’ +—n-— (I -1+ Apn L (L-1)

4 4 3 4 4 8 1 1
IN |=—n"——n’

where the number of terms are denoted by L. Putting

1 Corollary 4.1
L=——- we get:
2 IN |=tnt— L2,
4 4

-1

2
2 z Zlam m +m+— {n —2ln+1*+1-n}

1SO! m= 1
[SSlisodd m=1 IN,|=3|Le* |— —n*-—n’.
1, 1 5 1, 1 4
=—n"+—n’ ——n’-—n.
24 24 24 24
Theorem 4.1
- % - “71 If G is a graph of triangular mesh Tn then PI (G)— ’
2 Z 2 2%[212+2m2—21m+2(1—n)l+n2—n] Proof. Let e be the edge of G then:
I-llisodd | _I+1 m I=1lisodd_ I+1
ary "™ PI (G)=|V(G)IIE(G)|-IN,|
n-1
-y leu(z_zn)Hlmz_n} Using |V(G)l=n(n+1)/2, |E(G)|=3n(n-1)/2 and
-11liso¢ 2
Ftisoad IN, |=%n4 —%nz, we obtain:
%[L(2L+13)(2L_1)J+(2‘2”)L2 (D)3 1, 1
1 pI (G)= RN L 2
P 1 2 2 4 4
+(—+n2—nJL 1o 1
7 =—n"-=n’.
2 2

2 z ZN =2 Z Zlam m +m+;{n —2In+1+1-n}

Proof. 1t is easy to see that [N |=|N , |=|N _ |, we get:
€ e e
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5 The vertex Pl index of the graph
derived from enhanced mesh

An mxn mesh is a graph M(m,n) with vertex set
V={l,m):1<1<m,1<m<n} and edge set E={((I,m),
(I,m+1):1<l<m1<m<n-1}1u{((l,m),(I+1,m)):1<I<m
-1,1<m<n}. The graph of enhanced mesh EL(m,n) is
derived by replacing each 4-cycle of M(m,n) by a wheel.
Let hlm ,1<1<m—-1,1<m<n-1be the newly added vertices
of wheel called hub vertices. In Figure 3, the graph of
enhanced mesh EL(5,5) is shown.

Lemma5.1
If G is a graph of enhanced mesh EL(m,n) and e" be the
horizontal edge then|N , |=m-1.

Im

Proof. The only vertices which are equidistant from el’jn
are the hub vertices in the m" column. This lipless that
|N N |=m-1.

Im

Corollary 5.1
If G is a graph of enhanced mesh EL(m,n) and e" be the
vertical edge then | N . |=n-1.

Im

Proof. The only vertices which are equidistant from
e, are the hub vertices in the I" row. This lipless that
IN  |=n-1.

Im

Lemma 5.2

If G is a graph of enhanced mesh EL(m,n) and e be the

edge between x, and h, then |N, |=(n* —n)(m-=)
1 ’ ’ el,m 2

—Em(n—l)(m—l).

(1,1 (1.5

11

3.1 (3.5)

h.

31 34,

(5.1) (5,5)

Figure 3: An enhanced mesh EM(5,5).
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Proof. Lete,, =x, .h, , be the edge of EL(m,n) then the
vertices of the graph that are equidistance to end vertices
of edge e, is In-m)+Iin-m-1)+m(m-D+m(m-1-1).

Therefore:

m-1 n-1

IN, 1= > l1=m)+1(1—m~1)+ m(m~1) +m(m~1-1)

=1 m=1

=(n? —n)(m—%j—%m(n—l)(m—l).

Lemma5.3
If G is a graph of enhanced mesh EL(m,n) and e be the
edge between h, and x then [N |=(n-1)(m-1)

1+1,m+1

1 1 b
mm—m-—-—m/|.
)

Proof.Lete, =h,_x be the edge of EL(m,n) then the

I,m™" l+1,m+1

vertices of the graph that are equidistance to end vertices
ofedgee, is @2l1-1)(n-m)+(2m-1)(m-1). Therefore:

IN, |=

Im

2(21—1)(n—m)+(2m—1)(m—1)

m-1 n-1
=1 m=1

=mn(m—1)(n—1)+%m(m—1)(n—1)+(m—1)

(n—l)[g—n—m]

1 1
=(n—1)(m—1)(Mon—En—EmJ.

Theorem 5.1
If G is a graph of enhanced mesh EL(m,n) then PI (G) is:

mn-1)[mn+(m-1)n-2)]+n(m-1)[mn+n-1)(m-2)]

+(m-1)(n-1)[mn+n-1)(m-1)]

—(n’ —n)(m—%]+%m(n—l)(m—1)+(m—1)(n—1)
[mn+(n—1)(m—1)]—(n—1)(m—1)[mn +%n —%mj

Proof. To prove the statement, we partition the edges
into four sets, horizontal edges E", vertical edges E, xl,mh,ym
edges ', and h, x edges E”:

Lm""l+1,m+1

PL(G)= ) n(6)+ Y n(6)+ Y nG)+ D nG) Q)

elnEN elnEY elnE’ elnE”

The number of vertices of G is:

[V(G)|=mn+(m-1)(n-1). 3)
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|E"|=m(n-1), N, |=m(n-1)(m-1). (4)
Similarly:
|E"|=n(m=1), [N |=m(m-1)(n-1). (5)

|E’|=(m-1)(n-1), INe,|=(n2—n)(m—%)
6)
—%m(n—l)(m—l).

|E”|=(m-1)(n-1), N, |=(n-1)(m-1)
(Mon—ln—lm]. @
2 2

Using Eq. 3-7 in Eq. 2, we get:

PI (G)=m(n—-1)[Mon+(m-1)(n-2)]+n(m-1)
[Mon+(n-1)(m-2)]+(m-1)(n-1)

[Mon+(n-1)(m-1)]-(n*-n) (m —%j
+%m(n—1)(m—1)+

(m-1)(n-1)[Mon+(n-1)(m-1)]-(n-1)(m-1)

Mon+ln—lm .
2 2

6 Conclusion

In this paper, we have solved vertex PI Index of certain
triangular tessellations networks. We have considered
hexagonal networks, triangular grids and enhanced
meshes and analytical closed from results for these
triangular tessellations networks were obtained. These
results will be useful to understand the molecular topology
of these important classes of networks.
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