Pavel Anatolyevich Nikolaychuk\*

# Is calomel truly a poison and what happens when it enters the human stomach? A study from the thermodynamic viewpoint

DOI 10.1515/mgmc-2015-0040

Received October 17, 2015; accepted February 5, 2016; previously published online March 8, 2016

**Abstract:** The chemical and electrochemical equilibria involving mercurous and mercuric chlorides in the conditions, corresponding to the human stomach environment, were studied from the point of view of chemical thermodynamics. The Gibbs free energies of formation of various mercury and chlorine compounds, the equilibrium constants, and the electrode potentials of reactions involving these compounds at 37°C were calculated. The potential-pH diagrams of  $Hg_2^{2+}$ - $H_2O$ , Cl- $H_2O$ , and  $Hg_2^{2+}$ -Cl- $H_2O$  systems were plotted. The question of how toxic is calomel when ingested was discussed.

**Keywords:** calomel; human stomach; mercury chlorides; Pourbaix diagram; toxicity.

### Introduction

In his recent paper titled 'Mercury(I) Chloride *In Vivo* Oxidation: A Thermodynamic Study', Mousavi (2015) discussed the medical usage and the toxicity of mercurous and mercuric chlorides. He raised the hypothesis that when calomel enters the stomach, it will almost entirely be converted to HgCl<sub>2</sub>. Then he presented the thermodynamic calculations that, in the author's opinion, 'prove' this hypothesis and assumed that Napoleon's death could had been caused by administering calomel into his body. Later he published another paper (Burke et al., 2015), in which he assumed the responsibility of calomel ingestion for another historical death.

Unfortunately, the thermodynamic calculations performed by Mousavi (2015) are very tenuous, and his conclusions are crude and premature. In fact, he only calculated the equilibrium constant for the reaction

Department of Analytical and Physical Chemistry, Chelyabinsk State University, Bratyev Kashirinykh Street 129, Chelyabinsk 454001, Russian Federation, e-mail: npa@csu.ru  $2Hg_2^{2+}$  (aq)+ $4H^+$  (aq)+ $O_2$  (g) $\rightarrow 4Hg^{2+}$  (aq)+ $2H_2O$  (l) at 37°C using the van't Hoff isochore equation (van't Hoff, 1884), observed that it has the order of magnitude of  $10^{19}$ , and concluded that calomel in the human stomach would be completely converted to  $HgCl_2$ . However, such hypotheses cannot be based only on the analysis of a single reaction. At least the possible side reactions and the alternative products of mercury (I) oxidation should be taken into consideration. The influence of concentration of the species on equilibrium conditions should not be disregarded. Therefore, this study aims to perform the more rigorous thermodynamic analysis of mercury (I) oxidation in human stomach and to extend the approach given by Mousavi (2015).

#### Results and discussion

## Thermodynamic data on aqueous mercury and chlorine compounds

Mercury in an aqueous environment can form the following species: Hg (aq), Hg $_2^{2+}$  (aq), Hg $_2^{2+}$  (aq), HgOH $_2^{+}$  (aq), HGO $_2^{+}$  (aq), HCI (aq), Cl $_2^{-}$  (aq), ClO $_2^{-}$  (aq), HCIO $_2^{-}$  (aq), Mercury (II) can form not only the chloride HgCl $_2^{-}$  (aq) but also the cation HgCl $_2^{+}$  (aq) and the anions HgCl $_3^{-}$  (aq) and HgCl $_2^{-}$  (aq). In addition, the solid Hg $_2$ Cl $_2$  and HgO; the liquid Hg and H $_2$ O; the gaseous H $_2$ , O $_2$ , and Cl $_2$ ; and the aqueous H $_2^{+}$  and OHcan be present in the system (Schweitzer and Pesterfield, 2010).

The average temperature inside the stomach is equal to the human core body temperature of 37.6°C (Cagnacci et al., 1997; Houdas and Ring, 2013). The gastric fluid consists primarily of HCl (Prout, 1824; Davies, 1951), which average concentration is about 0.5% or 0.14 mol L<sup>-1</sup> (MacLean and Griffiths, 1928; Ash, 2011). Sodium and potassium chlorides are also present in the gastric fluid (Hollander, 1952; Torosov, 1966), which raises the average

<sup>\*</sup>Corresponding author: Pavel Anatolyevich Nikolaychuk,

concentration of chloride ions in the stomach up to 0.2 mol L<sup>-1</sup> (Lee et al., 1955; Strong et al., 1960; Mößeler et al., 2010). The gastric gas present in the stomach includes up to 16% of oxygen (Dunn and Thompson, 1923; Forth and Adam, 2001; Kanner and Lapidot, 2001) and no more than 3·10-6% of hydrogen (Borgeskov et al., 1966; Urita et al., 2006).

The standard Gibbs energies and the standard enthalpies of formation of the aforementioned mercury and chlorine compounds were collected from various sources (Wagman et al., 1982; Bard et al., 1985; Chase et al., 1998; Speight, 2005; Schweitzer and Pesterfield, 2010). Because the difference between the human core body temperature (310.75 K) and the reference temperature (298.15 K) is small, the enthalpies and entropies of formation may be treated as constant and independent of temperature, and the Gibbs energies of formation of compounds may be calculated according to the Helmholtz-Gibbs equation (Helmholtz, 1882, 1883) as follows:

$$\begin{split} & \Delta_{\rm f} G_{310.75} \!=\! \Delta_{\rm f} H_{298.15} \!-\! 310.75 \!\cdot\! \Delta_{\rm f} S_{298.15} \\ & =\! \Delta_{\rm f} H_{298.15} \!-\! 310.75 \!\cdot\! \frac{\Delta_{\rm f} H_{298.15} \!-\! \Delta_{\rm f} G_{298.15}}{298.15}. \end{split} \tag{1}$$

The calculated values of  $\Delta_{\rm f}G_{_{310.75}}$  are listed in Table 1.

The ionic strength of the intestinal solution is determined by the concentration of the chlorides, and the assumption was made that it is equal to 0.2 mol L<sup>-1</sup>. The activity coefficient of the chloride ion was calculated according to the extended Debye-Hückel equation (Debye and Hückel, 1923). The values of the effective radii of the ions were taken from the paper of Kielland (1937), and the value of dielectric constant of water at 310.75 K needed

**Table 1:** The Gibbs energies of formation of compounds in  $Hg_2^{2+}$ -Cl -H<sub>2</sub>O system at 310.75 K and 1 bar.

| Compound               | $\Delta_{\rm f} G_{_{310.75}}$ (J mol $^{-1}$ ) | Compound               | Δ <sub>f</sub> G <sub>310.75</sub> (J mol <sup>-1</sup> ) |
|------------------------|-------------------------------------------------|------------------------|-----------------------------------------------------------|
| Hg (l)                 | 0                                               | Cl <sub>2</sub> (g)    | 0                                                         |
| Hg (aq)                | 39370                                           | Cl <sub>2</sub> (aq)   | 8220                                                      |
| Hg <sup>2+</sup> (aq)  | 164120                                          | ClO (aq)               | 42880                                                     |
| $Hg_{2}^{2+}$ (aq)     | 152720                                          | ClO, (aq)              | 122010                                                    |
| HgO (s)                | -57050                                          | ClO; (aq)              | 20740                                                     |
| HgOH⁺ (aq)             | -50940                                          | $ClO_{3}^{-}$ (aq)     | -3890                                                     |
| Hg(OH), (aq)           | -271400                                         | ClO <sub>4</sub> (aq)  | -3410                                                     |
| $Hg(OH)^{-}_{3}(aq)$   | -427200                                         | HCl (aq)               | -129710                                                   |
| HgCl+ (aq)             | -4830                                           | HClO (aq)              | -78170                                                    |
| HgCl <sub>2</sub> (aq) | -171380                                         | HClO <sub>2</sub> (aq) | 8340                                                      |
| HgCl <sub>3</sub> (aq) | -305740                                         | 0, (g)                 | 0                                                         |
| HgCl <sup>2</sup> (aq) | -442270                                         | H <sub>2</sub> (g)     | 0                                                         |
| $Hg_{2}Cl_{2}(s)$      | -208440                                         | OH <sup>-</sup> (aq)   | -154150                                                   |
| Cl <sup>-</sup> (aq)   | -129710                                         | $H_2O(l)$              | -235070                                                   |

for calculation of the parameters in Debye-Hückel equation was collected from the papers of Coolidge (1899), Wyman (1930), and Malmberg and Maryott (1956). The calculated value of the activity coefficient equals 0.610, leading to  $a_{Cl^{-}(ao)} = 0.122 \text{ mol } L^{-1}$ . The concentration of mercurous ions in the stomach is determined by the maximum solubility of solid calomel at 310.75 K and equals 1.2·10<sup>-6</sup> mol L<sup>-1</sup>. At such low concentrations, the solution can be treated as the ideal one, and the activity is assumed equal to concentration. Because the concentrations of the other mercury and chlorine ions that can be formed from Hg<sub>2</sub><sup>2+</sup> (produced by calomel) and Cl (from the gastric fluid) cannot exceed the concentrations of these two ions, the assumption was made and used in further calculations that the activities of all chlorine ions are equal to 0.1 mol L<sup>-1</sup>, and the activities of all mercury ions except those containing both mercury and chlorine are equal to 10<sup>-6</sup> mol L<sup>-1</sup>. Liquid mercury is a pure substance, and its activity is equal to unity.

## Equilibria involving mercuric and chloride ions

The interaction of Hg<sup>2+</sup> with Cl<sup>-</sup> may result in the following reactions:

$$Hg^{2+}(aq)+Cl^{-}(aq) \rightleftharpoons HgCl^{+}(aq),$$
 (2)

$$HgCl^{+}(aq)+Cl^{-}(aq) \rightleftharpoons HgCl_{2}(aq),$$
 (3)

$$HgCl_{3}(aq)+Cl^{-}(aq) \rightleftharpoons HgCl_{3}^{-}(aq),$$
 (4)

$$HgCl_{\alpha}^{*}(aq)+Cl^{*}(aq) \rightleftharpoons HgCl_{\alpha}^{2*}(aq).$$
 (5)

The values of equilibrium constants of Equations 2–5 at 310.75 K were calculated from the values of the Gibbs energies of formation of compounds using the van't Hoff isotherm equation (van't Hoff, 1884). The following values were obtained:  $K_{(2)}$ =3944847 L mol¹,  $K_{(3)}$ =1554731 L mol¹,  $K_{(4)}$ =6.0433 L mol¹, and  $K_{(5)}$ =14.0301 L mol¹. The values of the thermodynamic activities of the ions are related to one another with the expressions of equilibrium constants and the equation of the material balance as follows:

$$\frac{a_{\text{HgCl}^{+}(\text{aq})}}{a_{\text{Hg}^{2+}(\text{aq})} \cdot a_{\text{Cl}^{-}(\text{aq})}} = 3944847 \text{ mol } L^{1},$$
 (6)

$$\frac{a_{\text{HgCl}_{2}(\text{aq})}}{a_{\text{HgCl}^{+}(\text{aq})} \cdot a_{\text{Cl}^{-}(\text{aq})}} = 1554731 \text{ mol } L^{-1},$$
(7)

$$\frac{a_{\text{HgCl}_{3}(\text{aq})}}{a_{\text{HgCl}_{2}(\text{aq})} \cdot a_{\text{Cl}^{-}(\text{aq})}} = 6.0433 \text{ mol L}^{-1},$$
(8)

$$\frac{a_{\text{HgCl}_{a}^{2}(\text{aq})}}{a_{\text{HgCl}_{a}(\text{aq})} \cdot a_{\text{Cl}^{-}(\text{aq})}} = 14.0301 \text{ mol } L^{-1},$$
(9)

$$a_{\text{HgCl}_{3}^{2+}(\text{aq})} + a_{\text{HgCl}_{4}^{+}(\text{aq})} + a_{\text{HgCl}_{2}(\text{aq})} + a_{\text{HgCl}_{3}^{-}(\text{aq})} + a_{\text{HgCl}_{3}^{2+}(\text{aq})} = 10^{-6} \text{ L mol}^{-1}.$$
(10)

After substituting the condition  $a_{\rm Cl}$ =0.1 mol L¹ into Equations 6–10, they transfer to the system of five equations with five variables, which have the following unambiguous solution:  $a_{\rm HgCl^+(aq)}$ =6.649·10<sup>-18</sup> mol L¹,  $a_{\rm HgCl^+(aq)}$ =2.623·10<sup>-12</sup> mol L¹,  $a_{\rm HgCl^-(aq)}$ =4.078·10<sup>-7</sup> mol L¹,  $a_{\rm HgCl^-(aq)}$ =3.458·10<sup>-7</sup> mol L¹.

When the mercuric and the chloride ions coexist in a solution, the predominant forms of their existence are neutral  $\mathrm{HgCl}_2$  and the anions  $\mathrm{HgCl}_3^{\cdot}$  and  $\mathrm{HgCl}_4^{2\cdot}$  with approximately equal ratio between them. The cationic forms  $\mathrm{Hg}^{2+}$  and  $\mathrm{HgCl}^+$  exist in a much smaller degree.

## Equilibria in Hg2+-H,O and Cl-H,O systems

The most compact way of presentation of the chemical and electrochemical equilibria in the aqueous redox systems is the potential-pH diagram, initially proposed by Pourbaix (1945, 1963) and Delahay et al. (1950). The procedure of constructing the Pourbaix diagrams was described in detail several times; the most recent description was made by Schweitzer and Pesterfield (2010). The equations of electrochemical equilibria can be calculated using the Nernst equation (Nernst, 1887, 1889), and the expression similar to Henderson-Hasselbalch equation (Henderson, 1908; Hasselbalch, 1917) is used for calculating pH (Sørensen, 1909a,b) of chemical equilibria. The values of the Gibbs energies of formation of compounds from Table 1 were used in calculations.

The potential-pH diagram of  $\mathrm{Hg_2^{2^+}}$ - $\mathrm{H_2O}$  system at 310.75 K, 1 bar, and  $a_{\mathrm{[Hg] (aq)}}$ = $10^{-6}$  mol  $\mathrm{L^{-1}}$  is presented in Figure 1, and the potential-pH diagram of  $\mathrm{Cl^--H_2O}$  system at 310.75 K, 1 bar, and  $a_{\mathrm{[Cl] (aq)}}$ =0.1 mol  $\mathrm{L^{-1}}$  is presented in Figure 2. The calculated characteristics of the chemical and electrochemical equilibria are listed in Table 2.

The Pourbaix diagram for mercury shows that it can form both mercurous and mercuric cations or be oxidized to aqueous  $\mathrm{Hg(OH)}_2$  or  $\mathrm{Hg(OH)}_3$ , whereas aqueous  $\mathrm{HgOH}^+$  and solid  $\mathrm{HgO}$  are thermodynamically unstable. The diagram for chlorine indicates that the only stable forms

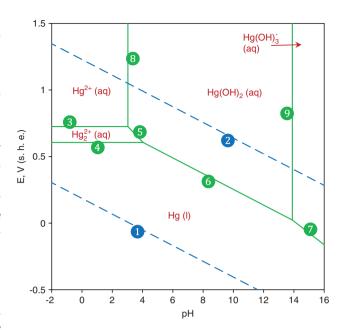



Figure 1: The potential-pH diagram of  $\mbox{Hg}_2^{2+}\mbox{-H}_2\mbox{O}$  system at 310.75 K and 1 bar.

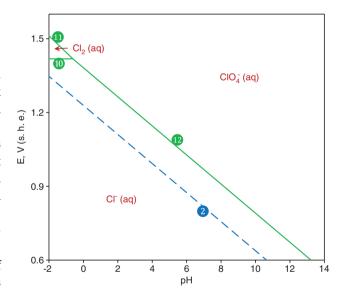



Figure 2: The potential-pH diagram of Cl<sup>-</sup>H<sub>2</sub>O system at 310.75 K and 1 bar.

of chlorine in solution are the chloride and the perchlorate ion and the aqueous elemental chlorine.

## Equilibria in $Hg_2^{2+}$ -Cl $^-$ - $H_2^-$ O system

The method of constructing the potential-pH diagrams of the multielement systems is described by Thompson et al. (2011). The diagram of  $Hg_2^{2+}$ -Cl<sup>-</sup>-H<sub>2</sub>O system was

**Table 2:** The thermodynamic characteristics of basic chemical and electrochemical equilibria in  $Hg_2^{2+}$ - $H_2O$ ,  $Cl^-H_2O$ , and  $Hg_2^{2+}$ - $Cl^-H_2O$  systems at 310.75 K and 1 bar.

| Line at figures | Equilibrium reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Activities $(a, mol L^1)$ or partial pressures $(p, bar)$ of the components                                                                                                                                                                                                                                                                                                                                                                       | E, V (s. h. e.), or pH<br>of the solution |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 0               | $2H^{+}(aq)+2e^{-} \rightleftharpoons H_{2}(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $p_{H_2(g)} = 3.10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                          | E=0.170-0.0309·pH                         |
| 2               | $O_{2}(g)+4H^{+}(aq)+4e^{-} \rightleftharpoons 2H_{2}O(l)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $p_{0_2(g)} = 0.16; a_{H_20(i)} = 1$                                                                                                                                                                                                                                                                                                                                                                                                              | E=1.206-0.0309·pH                         |
| 3               | $2Hg^{2+}(aq)+2e^{-} \rightleftharpoons Hg_2^{2+}(aq)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $a_{{\rm Hg}^{2+}({\rm aq})} = 10^{-6}; \ a_{{\rm Hg}^{2+}_{2}({\rm aq})} = 10^{-6}$                                                                                                                                                                                                                                                                                                                                                              | E=0.725                                   |
| •               | $Hg_2^{2+}(aq)+2e \rightleftharpoons 2Hg(l)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $a_{{\rm Hg}_{2}^{2+}({\rm aq})} = 10^{-6}; \ a_{{\rm Hg}(0)} = 1$                                                                                                                                                                                                                                                                                                                                                                                | E=0.606                                   |
| 6               | $2Hg(OH)_{2}(aq)+4H^{+}(aq)+2e^{-} \rightleftharpoons Hg_{2}^{2+}(aq)+4H_{2}O(l)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $a_{{\rm Hg(OH)}_2({\rm aq})} = 10^{-6}; a_{{\rm Hg}_2^{2+}({\rm aq})} = 10^{-6}; a_{{\rm H}_2{\rm O}({\rm I})} = 1$                                                                                                                                                                                                                                                                                                                              | E=1.083-0.1234·pH                         |
| 6               | $Hg(OH)_{2}(aq)+2H^{+}(aq)+2e^{-} \rightleftharpoons Hg(I)+2H_{2}O(I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $a_{{\rm Hg(OH)_2(aq)}} = 10^{-6}; a_{{\rm Hg(I)}} = 1; a_{{\rm H_2O(I)}} = 1$                                                                                                                                                                                                                                                                                                                                                                    | E=0.845-0.0617·pH                         |
| •               | $Hg(OH)_{3}^{-}(aq)+3H^{+}(aq)+2e^{-} \rightleftharpoons Hg(I)+3H_{2}O(I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $a_{{\rm Hg(OH)}_{3}({\rm aq})} = 10^{-6}; \ a_{{\rm Hg(I)}} = 1; \ a_{{\rm H}_{2}{\rm O(I)}} = 1$                                                                                                                                                                                                                                                                                                                                                | E=1.256-0.0926·pH                         |
| 8               | $Hg(OH)_{2}(aq)+2H^{+}(aq) \rightleftharpoons Hg^{2+}(aq)+2H_{2}O(I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $a_{{\rm Hg(OH)_2(aq)}} = 10^{-6}; \ a_{{\rm Hg^{2+}(aq)}} = 10^{-6}; \ a_{{\rm H_2O(I)}} = 1$                                                                                                                                                                                                                                                                                                                                                    | pH=2.909                                  |
| 9               | $Hg(OH)_{3}^{-}(aq)+H^{+}(aq) \rightleftharpoons Hg(OH)_{2}(aq)+H_{2}O(I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $a_{_{\mathrm{Hg(OH)}_{_{3}}(\mathrm{aq})}} = 10^{-6}; \ a_{_{\mathrm{Hg(OH)}_{_{2}}(\mathrm{aq})}} = 10^{-6}; \ a_{_{\mathrm{H_{2}O(I)}}} = 1$                                                                                                                                                                                                                                                                                                   | pH=13.320                                 |
| 0               | $Cl_2(aq)+2e \rightleftharpoons 2Cl (aq)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $a_{\rm Cl_2(aq)} = 0.1; a_{\rm Cl'(aq)} = 0.1$                                                                                                                                                                                                                                                                                                                                                                                                   | E=1.418                                   |
| •               | $2ClO_{4}^{\cdot}(aq)+16H^{+}(aq)+14e^{-} \rightleftharpoons Cl_{2}(aq)+8H_{2}O(l)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $a_{{\rm ClO}_4({\rm aq})} = 0.1; \ a_{{\rm Cl}_2({\rm aq})} = 0.1; \ a_{{\rm H}_2{\rm O}({\rm I})} = 1$                                                                                                                                                                                                                                                                                                                                          | E=1.377-0.0705·pH                         |
| •               | $ClO_{4}^{\cdot}$ (aq)+8H <sup>+</sup> (aq)+8e <sup>-</sup> $\rightleftharpoons$ Cl <sup>-</sup> (aq)+4H <sub>2</sub> O(l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $a_{{\rm ClO}_{\rm (aq)}^-}$ =0.1; $a_{{\rm Cl}^-({\rm aq})}$ =0.1; $a_{{\rm H_2O(l)}}$ =1                                                                                                                                                                                                                                                                                                                                                        | E=1.382-0.0617·pH                         |
| 8               | $\begin{aligned} & \text{Hg}^{2+}\left(aq\right) + 2e \rightleftharpoons \text{Hg}\left(l\right) \\ & \text{HgCl}^{+}\left(aq\right) + 2e \rightleftharpoons \text{Hg}\left(l\right) + \text{Cl}^{-}\left(aq\right) \\ & \text{HgCl}_{2}\left(aq\right) + 2e \rightleftharpoons \text{Hg}\left(l\right) + 2\text{Cl}^{-}\left(aq\right) \\ & \text{HgCl}_{3}^{-}\left(aq\right) + 2e \rightleftharpoons \text{Hg}\left(l\right) + 3\text{Cl}^{-}\left(aq\right) \\ & \text{HgCl}_{4}^{2-}\left(aq\right) + 2e \rightleftharpoons \text{Hg}\left(l\right) + 4\text{Cl}^{-}\left(aq\right) \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{split} &a_{\rm Hg^{2+}(aq)} = 6.649\cdot 10^{\cdot 18};  a_{\rm HgCl^+(aq)} = 2.623\cdot 10^{\cdot 12}; \\ &a_{\rm HgCl_2(aq)} = 4.078\cdot 10^{\cdot 7};  a_{\rm HgCl_3(aq)} = 2.464\cdot 10^{\cdot 7}; \\ &a_{\rm HgCl_4^{2-}(aq)} = 3.458\cdot 10^{\cdot 7};  a_{\rm Cl^+(aq)} = 0.1; \ a_{\rm Hg(l)} = 1 \end{split}$                                                                                                                 | E=0.321                                   |
| •               | $\begin{cases} \operatorname{Hg(OH)}_{2}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) &\rightleftharpoons \operatorname{Hg^{2+}}(\operatorname{aq}) + 2\operatorname{H}_{2}\operatorname{O}(\operatorname{I}) \\ \operatorname{Hg(OH)}_{2}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + \operatorname{Cl}^{-}(\operatorname{aq}) &\rightleftharpoons \operatorname{HgCl^{+}}(\operatorname{aq}) + 2\operatorname{H}_{2}\operatorname{O}(\operatorname{I}) \\ \operatorname{Hg(OH)}_{2}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 2\operatorname{Cl}^{-}(\operatorname{aq}) &\rightleftharpoons \operatorname{HgCl_{2}}(\operatorname{aq}) + 2\operatorname{H}_{2}\operatorname{O}(\operatorname{I}) \\ \operatorname{Hg(OH)}_{2}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 3\operatorname{Cl}^{-}(\operatorname{aq}) &\rightleftharpoons \operatorname{HgCl_{3}^{2-}}(\operatorname{aq}) + 2\operatorname{H}_{2}\operatorname{O}(\operatorname{I}) \\ \operatorname{Hg(OH)}_{2}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 4\operatorname{Cl}^{-}(\operatorname{aq}) &\rightleftharpoons \operatorname{HgCl_{4}^{2-}}(\operatorname{aq}) + 2\operatorname{H}_{2}\operatorname{O}(\operatorname{I}) \end{cases}$ | $\begin{split} &a_{\rm Hg^{2+}(aq)} \!=\! 6.649 \cdot \! 10^{\cdot 18}; \   a_{\rm HgCl^+(aq)} \! =\! 2.623 \cdot \! 10^{\cdot 12}; \\ &a_{\rm HgCl_2(aq)} \! =\! 4.078 \cdot \! 10^{\cdot 7}; \   a_{\rm HgCl^+_3(aq)} \! =\! 2.464 \cdot \! 10^{\cdot 7}; \\ &a_{\rm HgCl^+_2(aq)} \! =\! 3.458 \cdot \! 10^{\cdot 7}; \   a_{\rm Cl^-(aq)} \! =\! 0.1; \\ &a_{\rm Hg(OH)_2(aq)} \! =\! 10^{\cdot 6}; \   a_{\rm H_2O(l)} \! =\! 1 \end{split}$ | pH=8.496                                  |

constructed using the diagrams of  $\mathrm{Hg_2^{2^+}}$ - $\mathrm{H_2O}$  and  $\mathrm{Cl}$ - $\mathrm{H_2O}$  systems and the data on the equilibria in  $\mathrm{Hg^{2^+}}$ - $\mathrm{Cl}$ - system and presented in Figure 3. The calculated characteristics of the chemical and electrochemical equilibria are listed in Table 2. The diagram shows that both the solid  $\mathrm{Hg_2Cl_2}$  and the aqueous  $\mathrm{Hg_2^{2^+}}$  have no domains of thermodynamic stability in the presence of the chloride ions.

The dashed lines in Figures 1–3, described by Equations 1 and 2 in Table 2, represent the equilibria corresponding to the hydrogen and the oxygen electrodes in the human stomach environment. The domain between these lines corresponds to the area of the electrochemical stability of water.

## Conclusion

The acidity in a human stomach varies from pH 1 to 5, depending on time of a day and the condition of the digestive tract (Kong and Singh, 2008a,b, 2009; Beasley et al., 2015). This variety of environments is depicted in Figure 3 as the hatched area. As can be seen, either the mixture of  $Hg^{2+}$  (aq),  $HgCl^+$  (aq),  $HgCl^-$  (aq),  $HgCl^-$  (aq), and  $HgCl^{2-}$  (aq) or the liquid mercury is thermodynamically stable in the gastric fluid environment, depending on the equilibrium potential in the system. Therefore, the hypothesis raised by Mousavi (2015) is only a partial case. When the solid calomel enters the stomach, it will be oxidized

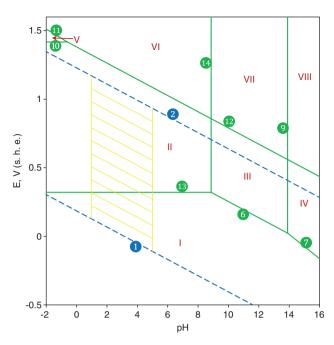



Figure 3: The potential-pH diagram of Hg<sub>2</sub><sup>2+</sup>-Cl<sup>-</sup>-H<sub>2</sub>O system at 310.75 K and 1 bar.

The domains of thermodynamic stability: I-Hg (I)+Cl- (aq); II-Hg<sup>2+</sup> (aq), HgCl<sup>+</sup> (aq), HgCl<sup>-</sup> (aq), HgCl<sup>2-</sup> (aq), Cl<sup>-</sup> (aq); III-Hg(OH), (aq), Cl (aq); IV-Hg(OH), (aq), Cl (aq); V-Hg<sup>2+</sup> (aq), HgCl<sup>+</sup> (aq), HgCl<sub>2</sub> (aq), HgCl<sub>4</sub> (aq), Cl<sub>2</sub> (aq); VI-Hg<sup>2+</sup> (aq), HgCl<sup>+</sup> (aq),  $HgCl_{3}$  (aq),  $HgCl_{4}^{2}$  (aq),  $ClO_{4}$  (aq);  $VII-Hg(OH)_{3}$  (aq), ClO<sub>4</sub> (aq); VIII-Hg(OH), (aq), ClO<sub>4</sub> (aq).

to the various mercury (II) and chloride complexes or will be reduced to the liquid metallic mercury. Because the solubility of calomel is low, most probably only the small part of it dissolves and forms the mercuric compounds and the rest of it reduces to the metal. The liquid mercury is however relatively harmless (Saunders, 2008; Schmidt, 2013) because it quickly passes through the intestinal tract toward the rectum due to its high density. In the 18th and 19th centuries, both solid calomel and liquid mercury were extensively used as the purgatives (Geffner and Sandler, 1980; Saunders, 2008). Moreover, calomel was very widely used in medicine since the Dark Ages and till the 20th century (Blair et al., 1720; Clay, 1841; Harrison, 1847; Jones, 1888; Beatty, 1899; Patwardhan et al., 2005; Clarkson and Magos, 2006; Schmid, 2008; Bachour, 2015; Gerke, 2015; Preckel, 2015; Sébastia, 2015; Thomann, 2015; Trambaiolo, 2015; Walker, 2015; Wujastik, 2015a,b), and another mercury compound, cinnabar (HgS), which has a behavior in the intestinal tract very similar to that of calomel (Liu et al., 2008; Lu et al., 2011), is still widely used in traditional Chinese medicine (Wong and Koh, 1986; Chi et al., 1993; Espinoza et al., 1995; Bleasdell et al., 1996; Ernst and Coon, 2001; Wong, 2004; Liu et al., 2008; Lu et al., 2011; Zhang et al., 2012). If it had provided a significant lethal effect, it would have caused mass deaths and thus would have been withdrawn from medical usage very quickly. Indeed, mercury is extremely toxic in large doses (Kang-Yum and Oranski, 1992; Chan and Critchley, 1996; Ernst, 1998, 2002; Langford and Ferner, 1999; Davis, 2000; Broussard et al., 2002; Clarkson and Magos, 2006; Wong, 2008; Byard, 2010; Keil et al., 2011; Wu et al., 2013; Yu et al., 2015), and modern medicine does not use it. However, the accurate and careful ingestion of calomel, as patients did two centuries ago, is not harmful.

An implication of calomel in the Napoleon's death is also questionable. Several studies of the specimens obtained from his hairs (Forshufvud et al., 1964; Keynes, 1994, 2004; Weider and Fournier, 1999, 2000; Corso et al., 2000; Lin and Henkelmann, 2003; Lin et al., 2004; Mari et al., 2004; Kintz et al., 2006) indicate that arsenicals rather than mercurials are most likely responsible for it. Probably, Mousavi (2015) overestimated the decisive effect of ingesting calomel as poison resulting in murder in history.

### References

Ash, M. The role of HCL in gastric function and health. Clin. Educ. **2011.** Available at http://www.clinicaleducation.org/resources/ reviews/the-role-of-hcl-in-gastric-function-and-health (accessed February 5, 2016).

Bachour, N. Healing with mercury: the uses of mercury in Arabic medical literature. Asiatische Studien-Études Asiatiques 2015, 69, 831-866.

Bard, A. J.; Parsons, R.; Jordan, J. Standard Potentials in Aqueous Solutions; Marcel Dekker Inc.: New York, 1985.

Beasley, D. E.; Koltz, A. M.; Lambert, J. E.; Fierer, N.; Dunn, R. R. The evolution of stomach acidity and its relevance to the human microbiome. PLoS One 2015, 10, e0134116. DOI: 10.1371/journal. pone.0134116.

Beatty, W. Mercury in diseases of the heart. Trans. R. Acad. Med. Ireland 1899, 17, 34-44.

Blair, P.; Jackson, J.; Bell, E.; Browne, C.; Anthone, G. A discourse concerning a method of discovering the virtues of plants by their external structure. By the same. Philos. Trans. R. Soc. London **1720**, *31*, 30-38.

Bleasdell, B.; Espinoza, E. O.; Cox, M.; Mann, M. J.; DeKorte, S. Toxic metals in selected traditional Chinese medicinals. J. Forensic Sci. 1996, 41, 453-456.

Borgeskov, S.; Lockwood, K.; Bertelsen, S.; Hasner, E. Simultaneous pressure and hydrogen ion measurements in the esophagus and stomach. A preliminary report. Acta Chir. Scand. Suppl. 1966, 356B, 105-112.

Broussard, L. A.; Hammett-Stabler, C. A.; Winecker, R. E.; Ropero-Miller, J. D. The toxicology of mercury. Lab. Med. 2002, 33, 614-625.

Burke, N.; Golas, M.; Raafat, C. L.; Mousavi, A. A forensic hypothesis for the mystery of al-Hasan's death in the 7th century: mercury(I)

- chloride intoxication. Med. Sci. Law. 2015, published ahead of print; DOI 10.1177/0025802415601456.
- Byard, R. W. A review of the potential forensic significance of traditional herbal medicines. J. Forensic Sci. 2010, 55, 89-92.
- Cagnacci, A.; Kräuchi, K.; Wirz-Justice, A.; Volpe, A. Homeostatic versus circadian effects of melatonin on core body temperature in humans. J. Biol. Rhythms 1997, 12, 509-517.
- Chan, T. Y.; Critchley, J. A. Usage and adverse effects of Chinese herbal medicines. Hum. Exp. Toxicol. 1996, 15, 5-12.
- Chase, M. W. Jr.; Davies, C. A.; Downey, J. R. Jr.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. JANAF-NIST Thermochemical Tables, 4th ed.; J. Phys. Chem. Ref. Data. 1998. Monograph 9. Available online at http://kinetics.nist.gov/janaf/janaf4pdf.html (accessed February 5, 2016).
- Chi, Y. W.; Chen, S. L.; Yang, M. H.; Hwang, R. C.; Chu, M. L. Heavy metals in traditional Chinese medicine: ba-pao-neu-hwangsan. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi. 1993, 34, 181-190.
- Clarkson, T. W.; Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 2006, 36, 609-662.
- Clay, C. On the exhibition of small doses of mercury in effecting ptyalism. Lancet 1841, 2(938), 751-753.
- Coolidge, W. D. Dielektrische Untersuchungen und elektrische Drahtwellen. Wiedemann's Annalen der Physik und Chemie. **1899**, 69, 123-166.
- Corso, P. F.; Hindmarsh, J. T.; Stritto, F. D. The death of Napoleon. Am. J. Forensic Med. Pathol. 2000, 21, 300-303.
- Davies, R. E. The mechanism of hydrochloric production by the stomach. Biol. Rev. 1951, 26, 87-120.
- Davis, L. E. Unregulated potions still cause mercury poisoning. West. J. Med. 2000, 173, 19.
- Debye, P.; Hückel, E. Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physikalische Zeitschrift. 1923, 24, 185-206.
- Delahay, P.; Pourbaix, M.; van Rysselberghe, P. Potential-pH diagrams. J. Chem. Educ. 1950, 27, 683-688.
- Dunn, A. D.; Thompson, W. The carbon dioxide and oxygen content of stomach gas in normal persons. Arch. Intern. Med. 1923, 31,
- Ernst, E. Harmless Herbs? A review of the recent literature. Am. J. Med. 1998, 104, 170-178.
- Ernst, E. Toxic heavy metals and undeclared drugs in Asian herbal medicines. Trends Pharmacol. Sci. 2002, 23, 136-139.
- Ernst, E.; Coon, J. T. Heavy metals in traditional Chinese medicines: a systematic review. Clin. Pharmacol. Ther. 2001, 70, 497-504.
- Espinoza, E. O.; Mann, M.-J.; Bleasdell, B. Arsenic and mercury in traditional Chinese herbal balls. N. Engl. J. Med. 1995, 333,
- Forshufvud, S.; Smith, H.; Wassén, A. Napoleon's illness 1816-1821 in the light of activation analyses of hairs from various dates. Arch. Toxikol. 1964, 20, 210-219.
- Forth, W; Adam, O. Uptake of oxygen from the intestine-experiments with rabbits. Eur. J. Med. Res. 2001, 6, 488-492.
- Geffner, M. E.; Sandler, A. Oral metallic mercury. A folk medicine remedy for gastroenteritis. Clin. Pediatr. 1980, 19, 435-437.
- Gerke, B. Biographies and knowledge transmission of mercury processing in twentieth century Tibet. Asiatische Studien-Études Asiatiques 2015, 69, 867-899.
- Harrison, J. B. Mercury as a remedy. Boston Med. Surg. J. 1847, 36, 101-102.

- Hasselbalch, K. A. Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen Kohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochemische Zeitschrift. Beiträge zur chemischen Physiologie und Pathologie. 1917, 78, 112-144.
- Helmholtz, H. Die Thermodynamik chemischer Vorgänge. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin 1882, 22-39, 825-836.
- Helmholtz, H. Die Thermodynamik chemischer Vorgänge, Sitzunasberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin 1883, 647-665.
- Henderson, L. J. Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am. J. Physiol. **1908**, 21, 173-179.
- Hollander, F. Gastric secretion of electrolytes. Fed. Proc. 1952, 11, 706-714.
- Houdas, Y.; Ring, E. F. J. Human Body Temperature: Its Measurement and Regulation; Springer Science & Business Media: Amsterdam, 2013.
- Jones, T. Mercury As a diuretic. Br. Med. J. 1888, 2, 660-663.
- Kang-Yum, E.; Oranski, S. H. Chinese patent medicine as a potential source of mercury poisoning. Vet. Hum. Toxicol. 1992, 34,
- Kanner, J.; Lapidot, T. The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. Free Radic. Biol. Med. 2001, 31, 1388-1395.
- Keil, D. E.; Berger-Ritchie, J.; McMillin, G. A. Testing for toxic elements: a focus on arsenic, cadmium, lead, and mercury. Lab. Med. 2011, 42, 735-742.
- Keynes, M. Did Napoleon die from arsenical poisoning? Lancet 1994, 2(8917), 276.
- Keynes, M. The death of Napoleon. J. R. Soc. Med. 2004, 97,
- Kielland, J. Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 1937, 59, 1675-1678.
- Kintz, P.; Ginet, M.; Cirimele, V. Multi-element screening by ICP-MS of two specimens of Napoleon's hair. J. Anal. Toxicol. 2006, 30,
- Kong, F.; Singh, R. P. Disintegration of solid foods in human stomach. J. Food Sci. 2008a, 73, R67-R80.
- Kong, F.; Singh, R. P. A model stomach system to investigate disintegration kinetics of solid foods during gastric digestion. J. Food Sci. 2008b, 73, E202-E210.
- Kong, F.; Singh, R. P. Modes of disintegration of solid foods in simulated gastric environment. Food Biophys. 2009, 4, 180-190.
- Langford, N.; Ferner, R. Toxicity of mercury. J. Hum. Hypertens. 1999, 13, 651-656.
- Lee, P. R.; Code, C. F.; Scholer, J. F. The influence of varying concentrations of sodium chloride on the rate of absorption of water from the stomach and small bowel of human beings. Gastroenterology. 1955, 29, 1008.
- Lin, X.; Henkelmann, R. Contents of arsenic, mercury and other trace elements in Napoleon's hair determined by INAA using the k0-method. J. Radioanal. Nucl. Chem. 2003, 257, 615-620.
- Lin, X.; Alber, D.; Henkelmann, R. Elemental contents in Napoleon's hair cut before and after his death: did Napoleon die of arsenic poisoning? Anal. Bioanal. Chem. 2004, 379, 218-220.
- Liu, J.; Shi, J.-Z.; Yu, L.-M.; Goyer, R. A.; Waalkes, M. P. Mercury in traditional medicines: is cinnabar toxicologically similar to common mercurials? Exp. Biol. Med. 2008, 233, 810-817.

- Lu, Y.-F.; Wu, Q.; Yan, J.-W.; Shi, J.-Z.; Liu, J.; Shi, J.-S. Realgar, cinnabar and An-Gong-Niu-Huang Wan are much less chronically nephrotoxic than common arsenicals and mercurial. Exp. Biol. Med. 2011, 236, 233-239.
- MacLean, H.; Griffiths, W. J. The factors influencing the concentration of hydrochloric acid during gastric digestion. J. Physiol. 1928, 65(1), 63-76.
- Malmberg, C. G.; Maryott, A. A. Dielectric constant of water from 0° to 100°C. J. Res. Natl. Bur. Stand. 1956, 56, 1-8.
- Mari, F.; Bertol, E.; Fineschi, V.; Karch, S. B. Channelling the emperor: what really killed Napoleon? J. R. Soc. Med. 2004, 97, 397-399.
- Mößeler, A.; Köttendorf, S.; Liesner, V. G.; Kamphues, J. Impact of diets' physical form (particle size; meal/pelleted) on the stomach content (dry matter content, pH, chloride concentration) of pigs. Livest. Sci. 2010, 134, 146-148.
- Mousavi, A. Mercury(I) chloride in vivo oxidation: a thermodynamic study. Main Group Met. Chem. 2015, 38, 121-124.
- Nernst, W. Über die electromotorischen Kräfte, welche durch den Magnetismus in von einem Wärmestrome durchflossenen Metallplatten geweckt werden. Wiedemann's Annalen der Physik und Chemie. 1887, 31, 760-789.
- Nernst, W. Zur Theorie umkehrbarer galvanischer Elemente. Sitzungsberichte der Königlich Preusßichen Akademie der Wissenschaften zu Berlin 1889, 1889, 83-98.
- Patwardhan, B.; Warude, D.; Pushpangadan, P.; Bhatt, N. Ayurveda and traditional Chinese medicine: a comparative overview. Evid. Based Complement. Alternat. Med. 2005, 2, 465-473.
- Pourbaix, M. J. N. Thermodynamique des solutions aqueuses diluées: représentation graphique du rôle du pH et du potentiel. Dissertation. Technische hoogeschool de Delft, Meinema, 1945.
- Pourbaix, M. Atlas d'équilibres électrochimiques. Publication de Centre belge d'étude de la corrosion "Cebelcor", Gauthier-Villars, 1963.
- Preckel, C. Cinnabar, calomel and the art of kushtasāzī: mercurial preparations in unani medicine. Asiatische Studien-Études Asiatiques. 2015, 69, 901-932.
- Prout, W. On the nature of the acid and saline matters usually existing in the stomachs of animals. Philos. Trans. R. Soc. London. 1824, 114, 45-49.
- Saunders, M. Not all mercury is equal. Chem. Eng. News. 2008, 86, 6. Schmid, J. Beautiful black poison: the history of calomel as medicine in America. Wise Traditions in Food, Farming and the Healing Arts. 2008, 9, 17-31.
- Schmidt, F. Just how dangerous is mercury, anyway? Deutsche Welle. 15. 01. 2013. Available online at http://dw.com/p/17KFn (accessed February 5, 2016).
- Schweitzer, G. K.; Pesterfield, L. L. The Aqueous Chemistry of the Elements; Oxford University Press: Oxford, 2010.
- Sébastia, B. Preserving identity or promoting safety? The issue of mercury in Siddha medicine: a brake on the crossing of frontiers. Asiatische Studien-Études Asiatiques. 2015, 69, 933-969.
- Sørensen, S. P. L. Études enzymatiques. II. Sur la mesure et l'importance de la concentration des ions hydrogène dans les réactions enzymatiques. Comptes rendus des travaux du laboratoire Carlsberg. 1909a, 8, 1-162.
- Sørensen, S. P. L. Enzymstudier II. Om Maalingen og Betydningen af Brintionkoncentrationen ved enzymatiske Processer. Meddelelser fra Carlsberg Laboratoriet. 1909b, 8, 1-153, 313-317.
- Speight, J. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Education: New York, 2005.

- Strong, J. A.; Cameron, D.; Riddell, M. J. The electrolyte concentration of human gastric secretion. Q. J. Exp. Physiol. Cogn. Med. Sci. 1960, 45, 1-11.
- Thomann, J. Early Persian medical works on antisyphilitic mercury medicines. Asiatische Studien-Études Asiatiques. 2015, 69, 971-996.
- Thompson, W. T.; Kaye, M. H.; Bale, C. W.; Pelton, A. D. Pourbaix Diagrams for Multielement Systems. In Uhlig's Corrosion Handbook. Wiley: Hoboken, New Jersey, 2011; 103-110.
- Torosov, T. M. Analysis of the chloride-secreting function of the stomach in experimental animals and in man. Bull. Exp. Biol. Med. 1966, 62, 1227-1229.
- Trambaiolo, D. Antisyphilitic mercury drugs in early modern China and Japan. Asiatische Studien-Études Asiatiques. 2015, 69, 997-1016.
- Urita, Y.; Ishihara, S.; Akimoto, T.; Kato, H.; Hara, N.; Honda, Y.; Nagai, Y.; Nakanishi, K.; Shimada, N.; Sugimoto, M.; et al. Hydrogen and methane gases are frequently detected in the stomach. World J. Gastroenterol. 2006, 12, 3088-3091.
- van't Hoff, M. J. H. Études de dynamique chimique. Recueil des Travaux Chimiques des Pays-Bas. 1884, 3, 333-336.
- Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm, R. H.; Halow, I. B.; Sylvia, M.; Churney, K. L.; Nuttal, R. L. The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C, and C, organic substances in SI units. J. Phys. Chem. Ref. Data. 1982, 11 (Suppl 2).
- Walker, T. Medicinal mercury in early modern Portuguese records: recipes and methods from eighteenth-century medical guidebooks. Asiatische Studien-Études Asiatiques. 2015, 69, 1017-1042.
- Weider, B.; Fournier, J. H. Activation analyses of authenticated hairs of Napoleon Bonaparte confirm arsenic poisoning. Am. J. Forensic Med. Pathol. 1999, 20, 378-382.
- Weider, B.; Fournier, J. H. The death of Napoleon. Am. J. Forensic Med. Pathol. 2000, 21, 303-305.
- Wong, H. C. G. Mercury and Chinese herbal medicine. B. C. Med. J. 2004, 46, 442.
- Wong, H. C. G. Side-effects of CAM/Chinese herbal meds. B. C. Med. J. 2008, 50, 59.
- Wong, M. K.; Koh, L. L. Mercury, lead, and other heavy metals in Chinese medicines. Biol. Trace Elem. Res. 1986, 10, 91-97.
- Wu, M.-L.; Deng, J.-F.; Lin, K.-P.; Tsai, W.-J. Lead, mercury, and arsenic poisoning due to topical use of traditional Chinese medicines. Am. J. Med. 2013, 126, 451-454.
- Wujastik, D. Mercury as an antisyphilitic in ayurvedic medicine. Asiatische Studien-Études Asiatiques. **2015a**, *69*, 1043–1067.
- Wujastik, D. Histories of mercury in medicine across Asia and beyond. Asiatische Studien-Études Asiatiques. 2015b, 69, 819-830.
- Wyman, J. Jr. Measurements of the dielectric constants of conducting media. Phys. Rev. 1930, 35, 623-634.
- Yu, W.-H.; Zhang, N.; Qi, J.-F.; Sun, C.; Wang, Y. H.; Liu, M. Arsenic and mercury containing traditional Chinese medicine (Realgar and Cinnabar) strongly inhibit organic anion transporters, Oat1 and Oat3, in vivo in mice. BioMed Research International. 2015, 2015, Article ID 863971, 1-7. DOI 10.1155/2015/863971.
- Zhang, L.; Yan, J.; Liu, X.; Ye, Z.; Yang, X.; Meyboom, R.; Chan, K.; Shaw, D.; Duez, P. Pharmacovigilance practice and risk control of traditional Chinese medicine drugs in China: current status and future perspective. J. Ethnopharmacol. 2012, 140, 519-525.