Ki-Young Choi*

2D Hydrogen-bonded polymer assembled by zinc(II) tetraaza macrocyclic complex and 1,2-cyclopentanedicarboxylic acid

Abstract: The self-assembly of $[Zn(L)(H_2O)_2]\cdot Cl_2$ and 1,2-cyclopentanedicarboxylic acid generates a 2D hydrogen-bonded polymer [Zn(L)(Hcpdc)] (L=3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,0^{1.18}0^{7.12}]docosane, $H_2cpdc=1,2$ -cyclopentanedicarboxylic acid) (1). Complex 1 is characterized by X-ray crystallography, spectroscopy, and thermogravimetric analyzer. The crystal structure of 1 shows a distorted octahedral coordination geometry around the zinc (II) ion, with the four secondary amines of the macrocycle and two carboxylate oxygen atoms of the Hcpdc ligand in the *trans* position. The compound crystallizes in the monoclinic system P_2 /c with a=8.6002(10), b=10.4906(11), c=19.008(2) Å, β (°)=92.949(7)°, V=1712.6(3) ų, Z=2. The IR spectrum and TGA behavior of the compound are significantly affected by the Hcpdc ligand.

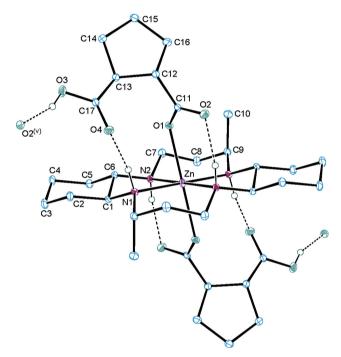
Keywords: 1,2-cyclopentanedicarboxylic acid; 2D hydrogen-bonded polymer; crystal structure; tetraaza macrocycle; zinc(II) complex.

DOI 10.1515/mgmc-2014-0016 Received June 16, 2014; accepted September 10, 2014; previously published online October 2, 2014

Introduction

The self-assembly of the coordination polymers with specific network topologies has received great attention due to its potential usage in many areas of science and technology (Tecila et al., 1990; Tsukube et al., 1991; Lehn et al., 1992; Lawrence et al., 1995; Choi et al., 1999a,b; Cotton et al., 2001; Lu et al., 2001; Park et al., 2007a,b; Kim et al., 2008; Kwag et al. 2010a,b; Sen et al., 2013). Especially, hydrogen bonding is one of the key interactions for the process of molecular aggregation and recognition in nature, which creates novel structures of molecular assembly (Lehn et al., 1992). For

example, the compound $[Ni(L)(H_2O)_2]_{0.5}[Ni(L)(H_2O)_2]_{0.5}$ (L=3,14-dimethyl-2,6,13,17-tetraazatricyclo $[14,4,0^{1.18},0^{7.12}]$ docosane) assembles in the solid state to form a 1D chain linked by an intermolecular hydrogen bond (Choi et al., 1999b). In addition, a 3D supramolecular network $[Ni(cyclam)(H_2O)_2]_3[(btc)_3]_2\cdot 24H_2O$ (btc=1,3,5-benzenetricarboxylate) was assembled by $[Ni(cyclam)(H_2O)_2]^{2+}$ and btc³⁻ ligand in water via hydrogen bonds, which is regarded as a molecular floral lace (Choi et al., 1999a). The hydrogen-bonding interactions, therefore, play a significant role in aligning the molecules and the polymer strands in the crystalline solids.


In the present paper, we report the synthesis, crystal structure, and chemical properties of the 2D hydrogen bonded polymer $[\text{Zn}(L)(\text{Hcpdc})_2]$ (1), which was assembled by $[\text{Zn}(L)(\text{H}_2\text{O})_2] \cdot \text{Cl}_2$ (L=3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,0^{1.18},0^{7.12}]docosane) and 1,2-cyclopentanedicarboxylic acid (H₂cpdc). The structure of L ligand is shown in Scheme 1.

Results and discussion

An Oak Ridge Thermal Ellipsoid Plot (ORTEP) (Farrugia, 1997) of [Zn(L)(Hcpdc)₃] (1) with the atomic numbering scheme is shown in Figure 1. Selected bond lengths and angles are listed in Table 1. The macrocyclic ligand skeleton of the present compound takes the *trans*-III(R,R,S,S) conformation with two chair six-membered and two gauche five-membered chelate rings. The zinc atom lies on a center of inversion. The coordination environment around the central zinc(II) ion is described as a distorted octahedron with four Zn-N bonds from the macrocycle and two Zn-O bonds from Hcpdc ligand. The zinc atom and four N atoms of the macrocycle are exactly in a plane. The Zn-N (secondary amine) distance of 2.077(2) and 2.118(2) Å is similar to that observed for octahedral zinc(II) complexes with 14-membered tetraaza macrocycle ligands (Choi, 1998a; Choi et al., 1997, 1998b). The axial Zn-O(1) distance of 2.290(1) Å is slightly longer than the equatorial Zn-N bond distances, giving an axially elongated octahedral

^{*}Corresponding author: Ki-Young Choi, Department of Chemistry Education, Kongju National University, Kongju 314-701, Republic of Korea, e-mail: kychoi@kongju.ac.kr

Scheme 1 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,0^{1.18}0^{7.12}]-docosane (L).

Figure 1 An ORTEP drawing (30% probability ellipsoids) of [Zn(L) $(Hcpdc)_2$] (1) with the atomic numbering scheme. The hydrogen bonds are shown as dashed lines.

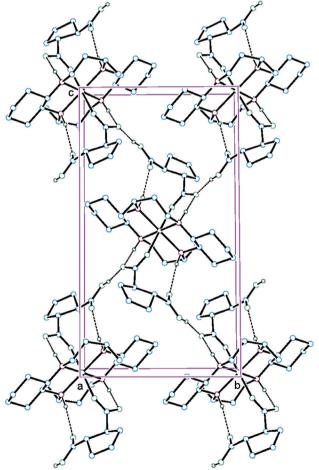

geometry. The N-Zn-N angles of the six-membered chelate ring are larger than those of the five-membered chelate ring. Furthermore, the axial Zn-O(1) linkage is not perpendicular to the ZnN₄ plane with N(1)-Zn-O(1) and N(2)-Zn-O(1) angles of 97.58(6) and 86.88(6)°, respectively. The Zn-O(1)-C(11) angle and C(11)-O(1) distance relative to the Hcpdc ligand are 126.1(1)° and 1.26O(2) Å, respectively. The deprotonated one among the two Hcpdc carboxylic groups is bonded to the zinc atom. Interestingly, the two secondary amines N(1) and N(2) form intramolecular hydrogen bonds with the carboxylate oxygen atoms of Hcpdc ligand [N(1)-H(1)···O(4)^{iv} 3.022(2) Å, 157.5°; N(2)-H(2)···O(2)^{iv} 2.799(2) Å, 153.0°; symmetry code (iv): -x+1, -y, -z+2]. Furthermore, the protonated oxygen atom O(3)

Table 1 Selected bond distances (Å) and angles (°) for [Zn(L) (Hcpdc).] (1).

Zn-N(1)	2.117(2)	Zn-N(2)	2.077(2)
Zn-O(1)	2.290(1)	C(11)-O(1)	1.259(2)
C(11)-O(2)	1.260(2)	C(17)-O(3)	1.313(2)
C(17)-O(4)	1.220(2)		
N(1)-Zn-N(2)	96.21(6)	N(1)-Zn- $N(2)$ iv	83.79(6)
N(1)-Zn-O(1)	97.54(5)	N(2)-Zn-O(1)	86.87(5)
$N(1)^{iv}$ -Zn-O(1)	82.46(5)	$N(2)^{iv}$ -Zn-O(1)	93.13(5)
Zn-O(1)-C(11)	126.3(1)	0(1)-C(11)-O(2)	123.7(2)
0(3)-C(17)-O(4)	123.6(2)		

Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) -x+1, y+1/2, -z+3/2; (iv) -x+1, -y, -z+2.

in the Hcpdc ligand forms the intermolecular hydrogen bond to an adjacent deprotonated oxygen atom O(2) of the Hcpdc $[O(3)-H(3)\cdots O(2)^v; 2.515(2) \text{ Å}, 159(3)^o; symmetry code (v): -x+1, y-1/2, -z+3/2-x+3/2, y+1/2, -z+3/2].$ This interaction gives rise to a 2D hydrogen-bonded polymer (Figure 2 and Table 2).

Figure 2 A packing diagram of [Zn(L)(Hcpdc)₂] (1). The hydrogen bonds are shown as dashed lines.

Table 2 Hydrogen bonding parameters (\mathring{A} , $^{\circ}$) for [Zn(L)(Hcpdc)] (1).

D-H···A	D-H (Å)	H···A (Å)	D···A (Å)	D-H···A (°)
$N(1)-H(1)\cdots O(4)^{iv}$ $N(2)-H(2)\cdots O(2)^{iv}$	0.87(2) 0.89(2)	2.21(2) 1.95(2)	3.024(2) 2.800(2)	156(2) 159(2)
$O(3)-H(3)\cdots O(2)^{v}$	0.86(3)	1.69(3)	2.514(2)	160(3)

Symmetry codes: (iv) -x+1, -y, -z+2; (v) -x+1, y-1/2, -z+3/2.

The IR spectrum of 1 shows a band at 3126 cm⁻¹ corresponding to the v(NH) of the coordinated secondary amines of the macrocycle. Two strong bands exhibit $v_{sc}(COO)$ stretching frequency at 1617 cm⁻¹ and $v_{sum}(COO)$ at 1372 cm $^{-1}$, respectively. The value of Δv (245 cm $^{-1}$) indicates that the carboxylate groups coordinated to the zinc(II) ion only as a monodentate ligand (Bakalbassis et al., 1991; Cao et al., 2002). The TGA diagram of 1 further supports the structure determined by X-ray diffraction method (Figure 3). The compound was heated in the temperature range 25-900°C in nitrogen gas. The first weight loss is observed from 266 to 342°C, which is due to the loss of two Hcpdc ligands (observed, 40.3%; calculated, 41.6%). A second weight loss corresponding to the macrocycle (observed, 46.1%; calculated, 47.0%) is found in the temperature range 342-510°C. Further weight loss is observed in the temperature range 510-900°C corresponding to the ZnO residue (observed, 11.1%; calculated, 11.4%). The formation of ZnO accompanies the decomposition of the macrocycle ligand in the zinc(II) complex (Dong et al., 1999).

Conclusions

The crystal structure of complex 1 shows a distorted octahedral coordination geometry around the zinc (II) ion, with the four secondary amines of the macrocycle and two carboxylate oxygen atoms of the Hcpdc ligand in the *trans* position. Interestingly, the intramolecular and intermolecular hydrogen bonds in the complex generate a 2D hydrogen-bonded

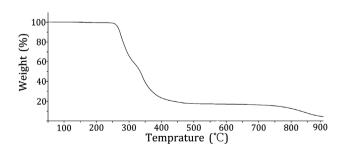


Figure 3 Thermogravimetric curve of [Zn(L)(Hcpdc),] (1).

Table 3 Crystallographic data for [Zn(L)(Hcpdc)₂] (1).

Formula weight 716.21 Temperature (K) $100(2)$ Crystal color/habit $Silver/block$ Crystal system $Monoclinic$ Space group $P2_1/c$ Unit cell dimensions $a(A)$ $8.6002(10)$ $b(A)$ $10.4906(11)$ $c(A)$ $19.008(2)$ $b(A)$ $b($	Empirical formula	C H N O 75
Temperature (K) 100(2) Crystal color/habit Silver/block Crystal system Monoclinic Space group $P2_1/c$ Unit cell dimensions a (Å) 8.6002(10) b (Å) 10.4906(11) c (Å) 19.008(2) b (Å) 19.008(2) b (Å) 19.008(2) b (Å) 19.008(2) b (Å) 1712.6(3) b (Å) 1	Empirical formula	C ₃₄ H ₅₈ N ₄ O ₈ Zn
Crystal color/habit Silver/block Crystal system Monoclinic Space group $P2_1/c$ Unit cell dimensions a (Å) a 8.6002(10) b (Å) a 10.4906(11) c (Å) 10.4906(11) c (Å) 19.008(2) b (b 19.008(2) b 20.949(7) b 1712.6(3) b 20.200, 10.400, 00.000 b 20.200, 10.400, 00.400 b 20.200, 10.400, 00.400 b 20.200, 10.400, 00.400,	•	
Crystal system Monoclinic Space group $P2_1/c$ Unit cell dimensions a (Å) $8.6002(10)$ a (Å) $10.4906(11)$ c (Å) $19.008(2)$ $β$ (°) $92.949(7)$ V (ų) $1712.6(3)$ Z 2 D_{calc} (Mg m³) 1.389 Absorption 0.774 coefficient (mm¹) 768 $θ$ range (°) $2.15-28.40$ Limiting indices $-11 \le h \le 11, -14 \le k \le 8, -25 \le l \le 22$ Reflection collected/ $16114/4281$ (R_{int} =0.0395) unique 4998 Reflection used 4998 Absorption correction SADABS Max./min. 0.9847 and 0.8606 transmission 0.9847 and 0.8606 Data/restraints/ $4281/0/226$ parameters 0.000 Goodness of fit on F^2 1.041 Final R indices R_1 =0.0504, wR_2 =0.0891 R_1 =0.0504, R_2 =0.0891 R_2 =0.0347, R_2 =0.0891 R_3 =0.0347, R_2 =0.0891 R_3 =0.0347, R_3 =0.0504, R_3 =0.0	,	
Space group Unit cell dimensions a (Å) b (Å) b (Å) c		•
Unit cell dimensions a (Å) a .6002(10) b (Å) b (Å) a .10.4906(11) c (Å) a .19.008(2) a (Å) a .19.008(2) a (a .20) a .215 a .22) a .23) a .24) a .25) a .26) a .26) a .215 a .26) a .23) a .23) a .24) a .25) a .26) a .215 a .26) a .23) a .23) a .24) a .24) a .25) a .26) a .26) a .26) a .26) a .27) a .28) a .28) a .29) a .215 a .28) a .28) a .29) a .215 a .28) a .22) a .23) a .24) a .24) a .25) a .26) a .26) a .26) a .26) a .27) a .28) a .28) a .28) a .28) a .29) a .29) a .29) a .29) a .29) a .20) a .21) a .22) a .23) a .24) a .24) a .25) a .25) a .26) a .26) a .26) a .26) a .26) a .27) a .28) a .28) a .28) a .29) a .29) a .29) a .20) a .21) a .22) a .23) a .24) a .24) a .25) a .25) a .26) a .26) a .26) a .27) a .27) a .28) a .28) a .29)		
a (Å) $8.6002(10)$ b (Å) $10.4906(11)$ c (Å) $19.008(2)$ β (°) $92.949(7)$ V (Å3) $1712.6(3)$ Z 2 D_{calc} (Mg m-3) 1.389 Absorption 0.774 coefficient (mm-1) 768 $F(000)$ 768 Crystal size (mm3) $0.20 \times 0.10 \times 0.02$ θ range (°) $2.15 - 28.40$ Limiting indices $-11 \le h \le 11, -14 \le k \le 8, -25 \le l \le 22$ Reflection collected/ $16114/4281$ ($R_{int} = 0.0395$) unique $R_{flection}$ Reflection used 4998 Absorption correction SADABS Max./min. 0.9847 and 0.8606 transmission 0.9847 and 0.8606 Data/restraints/ $4281/0/226$ parameters 0.000 Goodness of fit on F^2 1.041 Final R indices (all data) R_1 =0.0504, wR_2 =0.0891 Weighting scheme $w=1/[\sigma^2(F_o^2) + (0.0347P)^2 + 0.9081P$ with $P=(F_o^2 + 2F_c^2)/3$ Largest difference 0.379 and -0.504 <td>, - ,</td> <td>$P2_{1}/c$</td>	, - ,	$P2_{1}/c$
b (Å) 10.4906(11) c (Å) 19.008(2) $β$ (°) 92.949(7) V (ų) 1712.6(3) Z		(:-)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	`.'	
β (°) 92.949(7) V (ų) 1712.6(3) Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
V (ų) $1712.6(3)$ Z Z D_{calc} (Mg m³) 1.389 Absorption 0.774 coefficient (mm³) $0.20\times0.10\times0.02$ F (000) 768 Crystal size (mm³) $0.20\times0.10\times0.02$ θ range (°) $2.15-28.40$ Limiting indices $-11 \le h \le 11, -14 \le k \le 8, -25 \le l \le 22$ Reflection collected/ $16114/4281$ ($R_{int} = 0.0395$) unique $16114/4281$ ($R_{int} = 0.0395$) Weighting correction SADABS Max./min. 0.9847 and 0.8606 Max./min. 0.9847 and 0.8606 transmission 0.9847 and 0.8606 Data/restraints/ $4281/0/226$ parameters 0.9847 and 0.8606 Goodness of fit on F^2 1.041 Final R indices R_1 a=0.0383, wR_2 b=0.0822 $I/2$ 0($I/2$ 0) $I/2$ 1 $I/2$ 20($I/2$ 1) $I/2$ 20 $I/2$ 20($I/2$ 2) $I/2$ 20 $I/2$ 21 $I/2$ 22 $I/2$ 22 $I/2$ 3 $I/2$ 3 $I/2$ 4 $I/2$ 4 $I/2$ 4		
Z Z D_{calc} (Mg m³) 1.389 Absorption 0.774 coefficient (mm³) $0.20 \times 0.10 \times 0.02$ θ range (°) $2.15 - 28.40$ θ range (°) $1.1 \le h \le 11, -14 \le k \le 8, -25 \le l \le 22$ Reflection collected/ $1.6114/4281$ ($R_{\text{int}} = 0.0395$) unique 0.9847 and 0.8606 Max./min. 0.9847 and 0.8606 Max./min. 0.9847 and 0.8606 0.9		
D_{calc} (Mg m ⁻³) 1.385 Absorption 0.774 coefficient (mm ⁻¹) $F(000)$ 768 Crystal size (mm ³) 0.20×0.10×0.02 θ range (°) 2.15–28.40 Limiting indices -11 ≤ h ≤ 11, -14 ≤ k ≤ 8, -25 ≤ l ≤ 22 Reflection collected/ 16114/4281 (R_{int} =0.0395) unique Reflection used 4998 Absorption correction SADABS Max./min. 0.9847 and 0.8606 transmission Data/restraints/ 4281/0/226 parameters Goodness of fit on F^2 1.041 Final R indices R_1^a =0.0383, wR_2^b =0.0822 $[l/>2\sigma(l)]$ R indices (all data) R_1 =0.0504, wR_2 =0.0891 Weighting scheme w =1/ $[\sigma^2(F_o^2)$ +(0.0347 P) ² +0.9081 P 0 with P = $(F_o^2$ +2 F_c^2)/3 Largest difference 0.379 and -0.504		1712.6(3)
Absorption 0.774 coefficient (mm $^{-1}$) $F(000)$ 768 $Crystal size (mm^3) 0.20 \times 0.10 \times 0.02 \theta range (°) 2.15-28.40 Limiting indices -11 \le h \le 11, -14 \le k \le 8, -25 \le l \le 22 Reflection collected/ 16114/4281 (R_{\rm int} = 0.0395) unique Reflection used 4998 Absorption correction SADABS Max./min. 0.9847 and 0.8606 Attansmission Data/restraints/ 4281/0/226 parameters Goodness of fit on F^2 1.041 Final R indices R_1^a = 0.0383, wR_2^b = 0.0822 [l > 2\sigma(l)] R indices (all data) R_1 = 0.0504, wR_2 = 0.0891 Weighting scheme w = 1/[\sigma^2(F_o^2) + (0.0347P)^2 + 0.9081P] with P = (F_o^2 + 2F_c^2)/3 Largest difference 0.379 and -0.504$	-	2
coefficient (mm-1) 768 $F(000)$ 768 Crystal size (mm³) $0.20 \times 0.10 \times 0.02$ θ range (°) $2.15 - 28.40$ Limiting indices $-11 \le h \le 11$, $-14 \le k \le 8$, $-25 \le l \le 22$ Reflection collected/ $16114/4281$ ($R_{int} = 0.0395$) unique 4998 Absorption correction SADABS Max./min. 0.9847 and 0.8606 transmission 4281/0/226 parameters Goodness of fit on F^2 1.041 Final R indices R_1 °=0.0383, wR_2 °=0.0822 $[l>2\sigma(l)]$ R_1 =0.0504, wR_2 =0.0891 Weighting scheme $w=1/[\sigma^2(F_o^2) + (0.0347P)^2 + 0.9081P]$ with $P=(F_o^2 + 2F_c^2)/3$ Largest difference 0.379 and -0.504		1.389
$F(000)$ 768 Crystal size (mm³) $0.20 \times 0.10 \times 0.02$ θ range (°) $2.15-28.40$ Limiting indices $-11 \le h \le 11, -14 \le k \le 8, -25 \le l \le 22$ Reflection collected/ $16114/4281$ ($R_{int} = 0.0395$) unique 4998 Reflection used 4998 Absorption correction SADABS Max./min. 0.9847 and 0.8606 transmission 4281/0/226 parameters Goodness of fit on F^2 1.041 Final R indices R_1 °=0.0383, wR_2 °=0.0822 $[/>2\sigma(I)]$ R_1 =0.0504, wR_2 =0.0891 Weighting scheme $w=1/[\sigma^2(F_o^2) + (0.0347P)^2 + 0.9081P)$ with $P=(F_o^2 + 2F_c^2)/3$ Largest difference 0.379 and -0.504	Absorption	0.774
Crystal size (mm³) $0.20\times0.10\times0.02$ θ range (°) $2.15-28.40$ Limiting indices $-11 \le h \le 11, -14 \le k \le 8, -25 \le l \le 22$ Reflection collected/ $16114/4281$ ($R_{\rm int}=0.0395$) unique Reflection used 4998 Absorption correction $5ADABS$ Max./min. 0.9847 and 0.8606 It ransmission Data/restraints/ $4281/0/226$ parameters Goodness of fit on F^2 1.041 Final R indices $R_1^a=0.0383, wR_2^b=0.0822$ $[l>2\sigma(l)]$ R indices (all data) $R_1=0.0504, wR_2=0.0891$ Weighting scheme $w=1/[\sigma^2(F_o^2)+(0.0347P)^2+0.9081P]$ with $P=(F_o^2+2F_c^2)/3$ Largest difference 0.379 and -0.504	coefficient (mm ⁻¹)	
θ range (°) $2.15-28.40$ Limiting indices $-11 \le h \le 11, -14 \le k \le 8, -25 \le l \le 22$ Reflection collected/ $16114/4281$ ($R_{int}=0.0395$) unique 4998 Reflection used 4998 Absorption correction SADABS Max./min. 0.9847 and 0.8606 transmission 4281/0/226 parameters 4281/0/226 Goodness of fit on F^2 1.041 Final R indices R_1 =0.0383, wR_2 =0.0822 $[/22\sigma(/)]$ R_1 =0.0504, wR_2 =0.0891 Weighting scheme $w=1/[\sigma^2(F_o^2)+(0.0347P)^2+0.9081P]$ with $P=(F_o^2+2F_c^2)/3$ Largest difference 0.379 and -0.504	F(000)	768
Limiting indices $-11 \le h \le 11, -14 \le k \le 8, -25 \le l \le 22$ Reflection collected/ $16114/4281$ ($R_{\rm int} = 0.0395$) unique Reflection used 4998 Absorption correction SADABS Max./min. 0.9847 and 0.8606 transmission Data/restraints/ 4281/0/226 parameters Goodness of fit on F^2 1.041 Final R indices $R_1^a = 0.0383, wR_2^b = 0.0822$ [$l > 2\sigma(l)$] R indices (all data) $R_1 = 0.0504, wR_2 = 0.0891$ Weighting scheme $w=1/[\sigma^2(F_o^2) + (0.0347P)^2 + 0.9081P]$ with $P=(F_o^2 + 2F_c^2)/3$ Largest difference 0.379 and -0.504	Crystal size (mm³)	0.20×0.10×0.02
Reflection collected/ $16114/4281 (R_{\rm int}=0.0395)$ unique Reflection used 4998 Absorption correction SADABS Max./min. 0.9847 and 0.8606 transmission Data/restraints/ $4281/0/226$ parameters 6000 fit on F^2 1.041 Final R indices $R_1^a=0.0383, wR_2^b=0.0822$ [$I/20$] $I/20$] $I/20$ Rindices (all data) $I/20$ Rindices (all data) $I/20$ Rindices (all data) $I/20$ Rindices $I/20$ Rindices (all data) $I/20$ Ri	θ range (°)	2.15-28.40
unique Reflection used 4998 Absorption correction SADABS Max./min. 0.9847 and 0.8606 transmission Data/restraints/ 4281/0/226 parameters Goodness of fit on F^2 1.041 Final R indices R_1^a =0.0383, wR_2^b =0.0822 [$I > 2\sigma(I)$] R indices (all data) R_1 =0.0504, wR_2 =0.0891 Weighting scheme $w=1/[\sigma^2(F_o^2)+(0.0347P)^2+0.9081P]$ with $P=(F_o^2+2F_c^2)/3$ Largest difference 0.379 and -0.504	Limiting indices	$-11 \le h \le 11, -14 \le k \le 8, -25 \le l \le 22$
Reflection used 4998 Absorption correction SADABS Max./min. 0.9847 and 0.8606 transmission transmission Data/restraints/ 4281/0/226 parameters Goodness of fit on F^2 1.041 Final R indices R_1 a=0.0383, wR_2 b=0.0822 [/>2 σ (I)] R_1 =0.0504, wR_2 =0.0891 Weighting scheme w =1/[σ ² (F_0 ²)+(0.0347 P) ² +0.9081 P with P =(F_0 ² +2 F_0 ²)/3 Largest difference 0.379 and -0.504	Reflection collected/	$16114/4281 (R_{int}=0.0395)$
Absorption correction SADABS Max./min. 0.9847 and 0.8606 transmission Data/restraints/ 4281/0/226 parameters Goodness of fit on F^2 1.041 Final R indices R_1^a =0.0383, wR_2^b =0.0822 [/>2 σ (/)] R indices (all data) R_1 =0.0504, wR_2 =0.0891 Weighting scheme w =1/[σ ^2(F_0 ^2)+(0.0347 F)²+0.9081 F_0 with F =(F_0 ^2+2 F_0 ^2)/3 Largest difference 0.379 and -0.504	unique	
Max./min. 0.9847 and 0.8606 transmission Data/restraints/ 4281/0/226 parameters Goodness of fit on F^2 1.041 Final R indices R_1^a =0.0383, wR_2^b =0.0822 $[I/2\sigma(I)]$ R indices (all data) R_1 =0.0504, wR_2 =0.0891 Weighting scheme w =1/ $[\sigma^2(F_o^2)$ +(0.0347 $P)^2$ +0.9081 P with P = $(F_o^2+2F_c^2)/3$ Largest difference 0.379 and -0.504	Reflection used	4998
transmission Data/restraints/ parameters Goodness of fit on F^2 Final R indices $R_1^a = 0.0383, wR_2^b = 0.0822$ $I/2 2 \sigma(I)$ R indices (all data) Weighting scheme $W = 1/[\sigma^2(F_0^2) + (0.0347P)^2 + 0.9081P]$ with $P = (F_0^2 + 2F_c^2)/3$ Largest difference $V = 1/[\sigma^2(F_0^2) + (0.0347P)^2 + 0.9081P]$	Absorption correction	SADABS
Data/restraints/ $4281/0/226$ parameters Goodness of fit on F^2 1.041 Final R indices $R_1^a = 0.0383$, $wR_2^b = 0.0822$ [$I > 2\sigma(I)$] R indices (all data) $R_1 = 0.0504$, $wR_2 = 0.0891$ Weighting scheme $w = 1/[\sigma^2(F_o^2) + (0.0347P)^2 + 0.9081P]$ with $P = (F_o^2 + 2F_c^2)/3$ Largest difference 0.379 and -0.504	Max./min.	0.9847 and 0.8606
parameters Goodness of fit on F^2 1.041 Final R indices $R_1^a = 0.0383$, $wR_2^b = 0.0822$ [$l > 2\sigma(l)$] R indices (all data) $R_1 = 0.0504$, $wR_2 = 0.0891$ Weighting scheme $w = 1/[\sigma^2(F_o^2) + (0.0347P)^2 + 0.9081P]$ with $P = (F_o^2 + 2F_c^2)/3$ Largest difference 0.379 and -0.504	transmission	
parameters Goodness of fit on F^2 1.041 Final R indices $R_1^a = 0.0383$, $wR_2^b = 0.0822$ [$l > 2\sigma(l)$] R indices (all data) $R_1 = 0.0504$, $wR_2 = 0.0891$ Weighting scheme $w = 1/[\sigma^2(F_o^2) + (0.0347P)^2 + 0.9081P]$ with $P = (F_o^2 + 2F_c^2)/3$ Largest difference 0.379 and -0.504	Data/restraints/	4281/0/226
Goodness of fit on F^2 1.041 Final R indices $R_1^a = 0.0383$, $wR_2^b = 0.0822$ $[l > 2\sigma(l)]$ R indices (all data) $R_1 = 0.0504$, $wR_2 = 0.0891$ Weighting scheme $w = 1/[\sigma^2(F_o^2) + (0.0347P)^2 + 0.9081P]$ $with P = (F_o^2 + 2F_c^2)/3$ Largest difference 0.379 and -0.504		
Final <i>R</i> indices R_1^{a} =0.0383, wR_2^{b} =0.0822 [I >2 $\sigma(I)$] R indices (all data) R_1 =0.0504, wR_2 =0.0891 Weighting scheme w =1/[$\sigma^2(F_o^2)$ +(0.0347 P) 2 +0.9081 P 0 with P =(F_o^2 +2 F_o^2)/3 Largest difference 0.379 and -0.504	•	1.041
[/>2 σ (/)] R_1 indices (all data) R_1 =0.0504, wR_2 =0.0891 P_2 =0.081 P_3 =0.0504, wR_3 =0.0891 P_4 =0.0981 P_4 0.0981 P_4 0.0981 P_4 0.0981 P_4 0.0981 P_4 0.0981 P_4 0.0		
R indices (all data) R_1 =0.0504, wR_2 =0.0891 Weighting scheme w =1/[$\sigma^2(F_o^2)$ +(0.0347 P)²+0.9081 P 0 with P =(F_o^2 +2 F_o^2)/3 Largest difference 0.379 and -0.504		
Weighting scheme $w=1/[\sigma^2(F_o^2)+(0.0347P)^2+0.9081P]$ with $P=(F_o^2+2F_c^2)/3$ Largest difference 0.379 and -0.504	•	R = 0.0504, $wR = 0.0891$
with $P=(f_o^2+2F_c^2)/3$ Largest difference 0.379 and -0.504		
Largest difference 0.379 and -0.504		
9	Largest difference	
neak and hole (eÅ ⁻³)	peak and hole (eÅ ⁻³)	0.5/7 and 0.504

 ${}^{a}R_{1}=\Sigma||F_{0}|-|F_{c}||/\Sigma|F_{0}|.$ ${}^{b}WR_{2} = [\Sigma[W(F_{0}^{2}-F_{c}^{2})^{2}]/\Sigma[W(F_{0}^{2})^{2}]]^{1/2}.$

polymer. The IR spectrum and TGA behavior of the compound are significantly affected by the Hcpdc ligand.

Experimental section

Materials and physical measurements

All chemicals used in the syntheses were of reagent grade and were used without further purification. The macrocycle 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,0^{1.18},0^{7.12}]docosane (L) was prepared according to the literature method (Kang et al., 1991). IR spectra were recorded with a Perkin-Elmer Paragon 1000 FT-IR spectrophotometer (Perkin Elmer, Waltham, MA, USA) using KBr pellets. DSC and TGA (Mettler Toledo, Lausanne, Switzerland) were performed under

flowing nitrogen at a heating rate of 10°C min⁻¹ using an SDT 2960 Thermogravimetric Analyzer. Elemental analyses (C, H, N) were performed on a Perkin-Elmer CHN analyzer.

Synthesis of [Zn(L)(Hcpdc),] (1)

To an aqueous solution (20 mL) of [Zn(L)(H₂O)₂]·Cl₂ (254 mg, 0.5 mmol) (Choi et al., 1997) was added sodium 1,2-cyclopentanedicarboxylate (202 mg, 1.0 mmol) in water (10 mL). The mixture was heated to reflux for 1 h and then cooled to room temperature. The solution was filtered to remove insoluble material. After, the filtrate was allowed to stand at room temperature until silver crystals formed. The product was recrystallized from hot water. Yield: 437 mg (61%). Calc. (found) for C₂₆H₅₀N₆O₆Zn: C, 57.02 (57.14); H, 8.16 (8.23); N, 7.82 (7.71)%. IR (KBr, cm⁻¹): v(NH) 3126 cm⁻¹, $v_{as}(COO)$ 1617 cm⁻¹, v_{svm} (COO) 1372 cm⁻¹. mp=312°C.

X-ray crystallography

Single crystal X-ray diffraction measurement for 1 was carried out on a Bruker APEX II CCD diffractometer using graphite-monochromated Mo-K α radiation (λ =0.71073 Å). Intensity data were measured at 100(2) K by the ω -2 θ technique. Accurate cell parameters and an orientation matrix were determined by the least-squares fit of 25 reflections. The intensity data were corrected for Lorentz and polarization effects. An empirical absorption correction was applied with the SADABS program (Sheldrick, 1996). The structure was solved by direct methods (Sheldrick, 2008a), and the least-squares refinement of the structure was performed by the SHELXL-97 program (Sheldrick, 2008b). All atoms except all hydrogen atoms were refined anisotropically. The hydrogen atoms were placed in calculated positions, allowing them to ride on their parent C atoms with $U_{in}(H)=1.2U_{in}(C)$ or N). The crystallographic data, conditions used for the intensity collection, and some features of the structure refinement are listed in Table 3. Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Center, CCDC No. 1008195, for 1. Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.uk or http:// www.ccdc.cam.ac.uk).

References

- Bakalbassis, E. G.; Tsipis, C. A.; Bozopoulos, A. P.; Dreissing, D. W.; Hartl, H.; Mrozinski, J. Strong ferromagnetism between copper(II) ions separated by 6.7.ANG. in a new phthalato-bridged copper(II) binuclear complex. Inorg. Chem. 1991, 30, 2801-2806.
- Cao, R.; Shi, Q.; Sun, D.; Hong, M.; Bi, W.; Zhao, Y. Syntheses and characterizations of copper(II) polymeric complexes constructed from 1,2,4,5-benzenetetracarboxylic acid. Inorg. Chem. 2002, 41, 6161-6168.
- Choi, K.-Y.; Suh, I.-H.; Kim, J. C. X-ray crystallographic characterization of a zinc(II) complex with a 14-membered teraaza macro-

- cycle, 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12] docosane. Polyhedron 1997, 16, 1783-1786.
- Choi, K.-Y. Synthesis and structural characterization of zinc(II) complexes of 2,5,9,12-tetramethyl-1,4,8,11-tetraazacyclotetradecane. Polyhedron 1998a, 17, 1975-1982.
- Choi, K.-Y.; Suh, I.-H.; Park, J.-R. Synthesis and structural characterization of macrocyclic zinc(II) complexes bridged by tetraoxo anions. Main Group Met. Chem. 1998b, 21, 783-788.
- Choi, H. J.; Lee, T. S.; Suh, M. P. Self-assembly of a molecular floral lace with one-dimensional channels and inclusion of glucose. Angew. Chem., Int. Ed. Engl. 1999a, 38, 1405-1408.
- Choi, K.-Y.; Such, I.-H.; Hong, C. P. A novel one-dimensional nickel(II) complex with a hydrogen-bond-link. Inorg. Chem. Commun. 1999b. 2. 604-606.
- Cotton, F. A.; Lin, C.; Murillo, C. A. Connecting pairs of dimetal units to form molecular loops. Inorg. Chem. 2001, 40, 472-477.
- Dong, F. A.; Layland, R. C.; Smith, M. D.; Pschirer, N. G.; Bunz, U. H. F.; zur Love, H.-C. Synthesis and characterizations of one-dimensional coordination polymers generated from cadmium nitrate and bipyridine ligands. Inorg. Chem. 1999, 38, 3056-3060.
- Farrugia, L. J. ORTEP-3 for Windows a version of ORTEP-III with a graphical user interface. J. Appl. Crystallogr. 1997, 30, 565.
- Kang, S.-G.; Kweon, J. K.; Jung, S.-K. Synthesis of new tetraaza macrocyclic ligands with cyclohexane rings and their Ni(II) and Cu(II) complexes. Bull. Korean Chem. Soc. 1991, 12, 483-487.
- Kim, J. A.; Park, H.; Kim, J. C.; Lough, A. J.; Pyun, S. Y.; Roh, J. G.; Lee, B. M. 1D copper(II) and zinc(II) coordination polymers containing an unusual twisted oxalate bridge. Inorg. Chim. Acta. 2008, 361, 2087-2093.
- Kwag, J. S.; Jeong, M. H.; Lough, A. J.; Kim, J. C. Investigation of molecular interactions in the carboxylato Zn(II) and Cd(II) macrocyclic complexes. Bull. Korean Chem. Soc. 2010a, 31, 2069-2072.
- Kwag, J. S.; Kim, J. C.; Lough, A. J.; Lee, B. M. Binding of zinc(II) macrocycles toward carboxylate ligands. Trans. Met. Chem. 2010b, 35, 41-47,
- Lawrence, D. C.; Jiang, T.; Levett, M. Self-assembling supramolecular complexes. Chem. Rev. 1995, 95, 2229-2260.
- Lehn, J. M.; Mascal, M.; DeCian, A.; Fischer, J. Molecular ribbons from molecular recognition directed self-assembly of self-complementary molecular components. J. Chem. Soc., Perkin Trans. **1992**, 461-467.
- Lu, J. Y.; Runnels, K. A.; Norman, C. A New metal-organic polymer with large grid acentric structure created by unbalanced inclusion species and its electrospun nanofibers. Inorg. Chem. 2001, 40, 4516-4517.
- Park, H.; Jeong, M. H.; Kim, J. C.; Lough, A. J. ID coordination polymer $\{[Zn(L1)(H_pm)] \bullet H_pO\}_n$: an unusual coordination of 1,5-COO groups of H₂pm to zinc(II) ions. Bull. Korean Chem. Soc. 2007a, 28, 303-306.
- Park, H. Y.; Kim, J. C.; Lough, A. J.; Lee, B. M. One-dimensional macrocyclic zinc(II) coordination polymer containing an unusual bis-monodentate oxalate bridge. Inorg. Chem. Commun. 2007b, 10, 303-306.
- Tecila, P.; Dixon, R. P.; Slobodkin, G.; Alavi, D. S.; Waldek, D. H.; Hamilton, A. D. Hydrogen-bonding self-assembly of multichromophore structures. J. Am. Chem. Soc. 1990, 112, 9408-9410.

- Tsukube, H.; Yoden, T.; Iwachido, T.; Zenki, M. Lipid-bound macrocycles as new immobilized ligand systems for effective separation of metal cations. J. Chem. Soc., Chem. Commun. 1991, 1069-1070.
- Sen, R.; Saha, D.; Mal, D.; Brandão, P.; Rogez, G.; Lin, Z. A $2D\rightarrow 3D$ polycatenated metal-organic framework: synthesis, structure, magnetic and catalytic study. Eur. J. Inorg. Chem. 2013, 3076.
- Sheldrick, G. M. SADABS. University of Göttingen: Germany,
- Sheldrick, G. M. SHELXS-97, Program for crystal structure solution. University of Göttingen: Germany, 2008a.
- Sheldrick, G. M. SHELXL-97, Program for the refinement of crystal structures. University of Göttingen: Germany, 2008b.