

Daouda Ndoye*, Libasse Diop, Kieran C. Molloy and Gabriele Kociok-Köhn

X-ray crystal structures of $[(\text{Cy}_2\text{NH}_2)_3[\text{C}_6\text{H}_3(\text{CO}_2)_3]\cdot 4\text{H}_2\text{O}$ and $[\text{i-Bu}_2\text{NH}_2][(\text{Me}_3\text{SnO}_2\text{C})_2\text{C}_6\text{H}_3\text{CO}_2]$

Abstract: Two new benzene tricarboxylato derivatives $[(\text{Cy}_2\text{NH}_2)_3[\text{C}_6\text{H}_3(\text{CO}_2)_3]\cdot 4\text{H}_2\text{O}$ (**1**) and $[\text{i-Bu}_2\text{NH}_2][(\text{Me}_3\text{SnO}_2\text{C})_2\text{C}_6\text{H}_3\text{CO}_2]$ (**2**) have been synthesized and characterized by X-ray crystallography. In the solid state, compound **1** shows a three-dimensional structure involving intra- and intermolecular hydrogen bonds, whereas the X-ray structure of **2** consists of pentacoordinated Sn centers bonded to three methyl groups and two O atoms in a *trans*- O_2SnC_3 environment, bridged by oxyanions leading to a layered structure; the cation is involved in intramolecular hydrogen bonds.

Keywords: hydrogen bonds; organotin; 3D and layered structures; tricarboxylate.

***Corresponding author:** Daouda Ndoye, Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal, e-mail: ndoye@ yahoo.fr

Libasse Diop: Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal

Kieran C. Molloy and Gabriele Kociok-Köhn: Department of Chemistry, University of Bath, Bath BA2 7AY, UK

Introduction

The multifunctional ligand derived by deprotonation of benzene-1,3,5-tricarboxylic acid has been widely used for the manufacture of microporous materials (Yaghi et al., 1996; Cheng et al., 2004). Thus, some solvated and nonsolvated benzene-1,3,5-tricarboxylato metal derivatives have been reported, for example, $[(\mu_4\text{-benzene-1,3,5-tricarboxylato})\text{-bis}(\text{methanol})\text{-tris}(\text{trimethyltin(IV)})]$ and $[(\mu_3\text{-benzene-1,3,5-tricarboxylato})\text{-tris}(\text{methanol-trimethyltin(IV)})]$ (Ma et al., 2005), $[(\mu_3\text{-benzene-1,3,5-tricarboxylato})\text{-tris}(\text{dimethylsulfoxide-trimethyltin(IV)})]$ dimethylsulfoxide solvate (Dakternieks et al., 2002), $[(\mu_3\text{-benzene-1,3,5-tricarboxylato})\text{-tris}(\text{tribenzyltin(IV)})]$ and $[(\mu_3\text{-benzene-1,3,5-tricarboxylato})\text{-tris}(\text{triphenyltin(IV)})]$ ethanol solvate dihydrate (Ma et al., 2005), $[(\mu_3\text{-benzene-1,3,5-tricarboxylato})\text{-tris}(\text{triphenyltin(IV)})]$

dichloromethane diethylether solvate (Ma et al., 2005) and catena $[(\mu_3\text{-benzene-1,3,5-tricarboxylato})\text{-bis}(\text{trimethyltin(IV)})]$ monohydrate (Ma et al., 2005).

The chemistry of organotin (IV) derivatives is still the subject of many studies linked to various applications in the areas of medicine, industry, and agriculture (Ayrey and Poller, 1980; Owen, 1980; Blunden et al., 1984; Gielen, 1985; Crowe, 1994; Gielen et al., 1995). With this aim, several supramolecular organotin compounds have been synthesized and characterized (Chandrasekhar et al., 2003; Kapoor et al., 2005; Herntrich and Merzweiler, 2006). In our laboratory, some of them containing SnMe_3 and SnPh_3 residues have been recently published (Diop et al., 2011, 2012; Sow et al., 2012a,b). In this context, we have recently published a supramolecular trimethyltin(IV) triscarboxylate $[\text{Cy}_2\text{NH}_2]_2[1\text{-Me}_3(\text{H}_2\text{O})\text{SnOCO-3,5-(OOC)}_2\text{C}_6\text{H}_3]\text{-EtOH}$ (Ndoye et al., 2012). Thus, in a continuation of these works, we have initiated here the study of the interactions between both 1,3,5-(HOOC)₃C₆H₃ and Cy₂NH and between [i-Bu₂NH₂]₃[1,3,5-(OOC)₃C₆H₃] and SnMe₃Cl, which have yielded the title derivatives for which X-ray structures have been determined.

Results and discussion

The structure of **1** consists of a three-dimensional (3D) network involving intra- and intermolecular hydrogen bonds (Figure 1). Every tricarboxylate anion is surrounded by three dicyclohexyl ammonium cations involving N₁, N₂ and N₃. The N₁- and N₃-containing cations are involved in eight-membered ring formation, whereas that based on the N₂-containing cation forms a 12-membered ring. A fourth 12-membered ring involving two water molecules (containing O₈ and O₉) and two carboxylic acid groups (containing C₇ and C₈) and a fifth 14-membered ring involving three water molecules (containing O₇, O₈ and O₉) and two carboxylic acids (containing C₈ and C₉) complete the hydrogen bond network. Two cations (containing N₁ and N₂) are hydrogen-bonded to a carboxylic acid and a water molecule while the cation (containing N₃) hydrogen bonds to two carboxylic acid groups. The water molecules are also involved

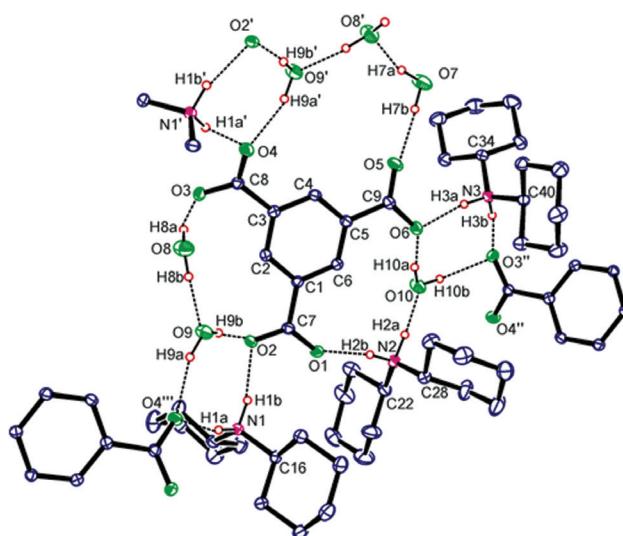


Figure 1 The asymmetric unit of compound 1.

Selected bond distances (Å): O(1)-C(7): 1.2482(18); O(2)-C(7): 1.2635(18); O(3)-C(8): 1.2647(18); O(4)-C(8): 1.2543(19); O(5)-C(9): 1.2307(19); O(6)-C(9): 1.273(2); angles (°): O(1)-C(7)-O(2): 123.98(14); O(4)-C(8)-O(3): 123.73(14); O(5)-C(9)-O(6): 124.54(14). Symmetry operations: (i) $1-x, 1/2+y, 3/2-z$; (ii) $3/2-x, 2-y, 1/2+z$; (iii) $-x, y-1/2, 3/2-z$.

in a diverse network of hydrogen bonds, with only the water molecule (containing O₇) not forming the maximum of three such interactions. Thus, the water molecule (containing O₇) only hydrogen bonds to one other water molecule (containing O₈) and one carboxylic acid moiety (containing C₉), and not at all as H-bond receptor. The O₈ atom links to two water molecules and one carboxylic acid moiety, while

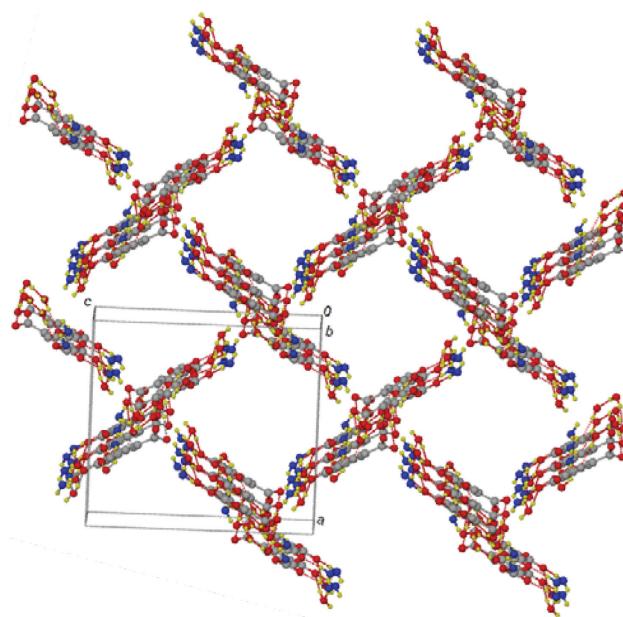
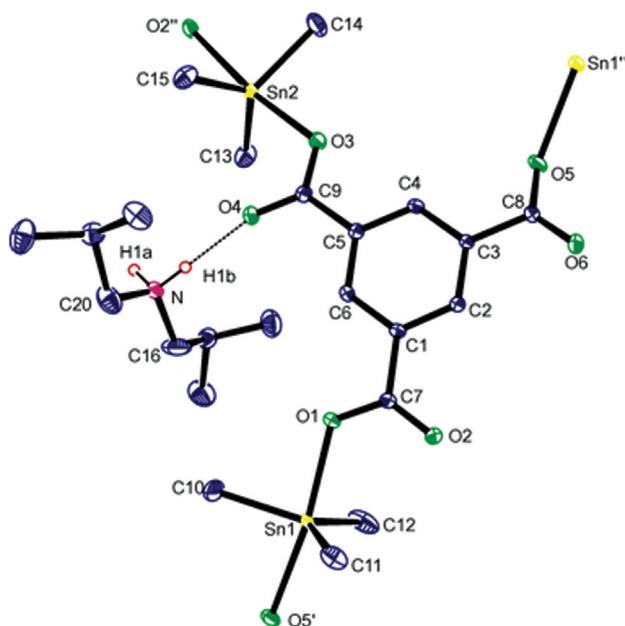


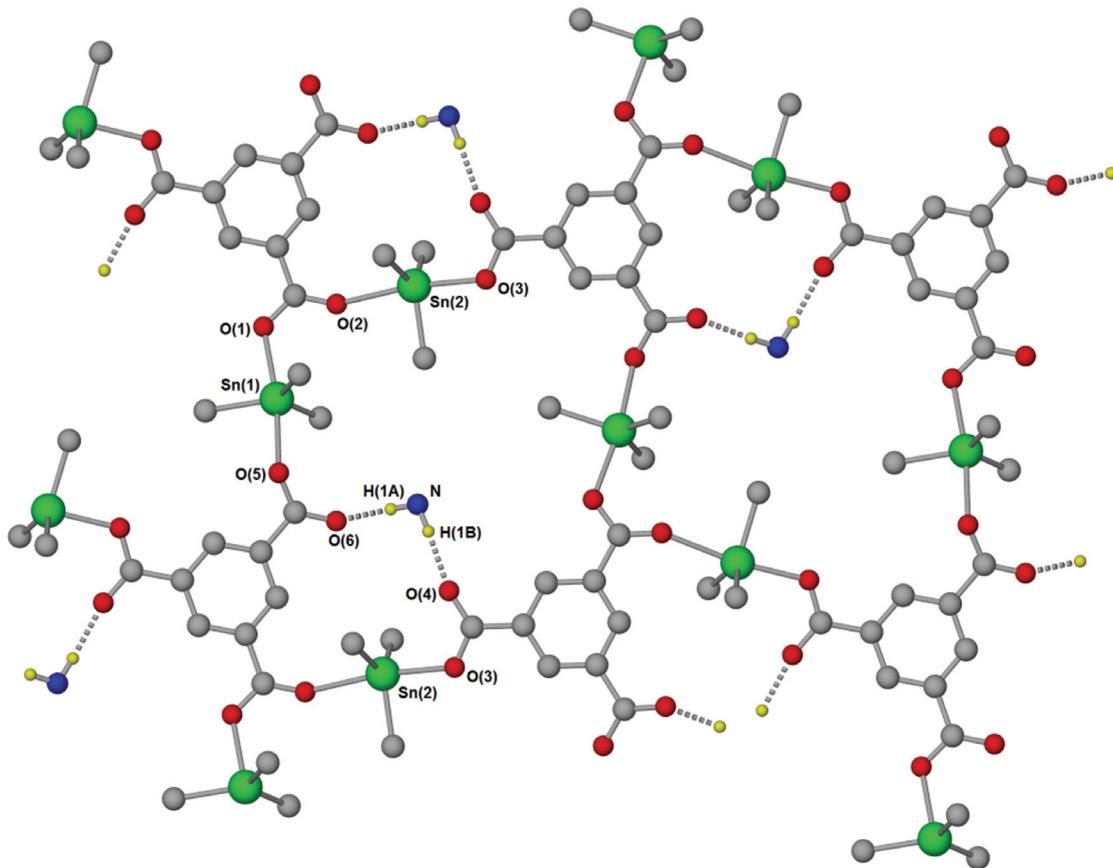
Figure 2 3D structure of compound 1.

Table 1 Hydrogen-bond geometry (Å, °).

D-H...A	D-H	H...A	D...A	D-H...A
07-H7A...O8 ⁱ	0.98 (2)	1.89 (2)	2.845 (2)	166 (3)
07-H7B...O5	0.89 (2)	1.87 (2)	2.7582 (19)	175 (4)
08-H8A...O3	0.91 (2)	2.07 (2)	2.9586 (19)	165 (3)
08-H8B...O9	0.89 (2)	1.89 (2)	2.7692 (19)	172 (2)
09-H9B...O2	0.85 (2)	1.96 (2)	2.8062 (18)	174 (2)
09-H9A...O4 ⁱⁱ	0.87 (2)	1.92 (2)	2.7590 (17)	163 (2)
010-H10A...O6	0.87 (2)	1.81 (2)	2.6773 (18)	171 (2)
010-H10B...O3 ⁱⁱⁱ	0.89 (2)	2.06 (2)	2.9259 (17)	167 (2)
N1-H1A...O4 ⁱⁱ	0.93 (2)	1.96 (2)	2.8746 (18)	168.5 (17)
N1-H1B...O2	0.96 (2)	1.84 (2)	2.7743 (17)	163.0 (17)
N2-H2A...O10	1.00 (2)	1.78 (2)	2.7756 (19)	173.5 (16)
N2-H2B...O1	0.91 (2)	1.81 (2)	2.7038 (17)	167.4 (18)
N3-H3A...O6	0.91 (2)	1.82 (2)	2.7182 (18)	170.5 (17)
N3-H3B...O3 ⁱⁱⁱ	0.900 (19)	1.99 (2)	2.8869 (18)	172.7 (16)

Symmetry codes: (i) $-x+1, y+1/2, -z+3/2$; (ii) $-x+1, y-1/2, -z+3/2$; (iii) $-x+3/2, -y+2, z+1/2$.




Figure 3 The asymmetric unit of compound 2; only the major component of the disordered cation is shown for clarity.

Selected bond distances (Å): Sn(1)-O(1): 2.2322(15); Sn(1)-O(5): 2.2975(15), Sn(2)-O(3) 2.1670(16), Sn(2)-O(2'): 2.4046(16), O(1)-C(7): 1.273(3); O(2)-C(7): 1.242(3); O(3)-C(9): 1.280(3); O(4)-C(9): 1.242(3); O(5)-C(8): 1.266(3); O(6)-C(8): 1.249(3); angles (°): C(11)-Sn(1)-C(12) 125.20(14), C(11)-Sn(1)-C(10) 115.75(18), C(12)-Sn(1)-C(10) 118.87(19), C(11)-Sn(1)-O(1) 96.64(9), C(12)-Sn(1)-O(1) 90.70(9), C(10)-Sn(1)-O(1) 86.52(10), C(11)-Sn(1)-O(5') 91.25(8), C(12)-Sn(1)-O(5') 88.58(9), C(10)-Sn(1)-O(5') 85.82(10), O(1)-Sn(1)-O(5') 170.82(6), C(14)-Sn(2)-C(15) 117.14(15), C(14)-Sn(2)-C(13) 116.75(15), C(15)-Sn(2)-C(13) 125.09(12), C(14)-Sn(2)-O(3) 87.13(9), C(15)-Sn(2)-O(3) 97.65(9), C(13)-Sn(2)-O(3) 94.68(9), C(14)-Sn(2)-O(2') 85.13(9), C(15)-Sn(2)-O(2') 86.16(9), C(13)-Sn(2)-O(2') 88.56(9), O(3)-Sn(2)-O(2') 172.26(6). Symmetry operations: (') $x-1, y, z$; (") $-x+1/2, y-1/2, z$; (") $1+x, y, z$.

the water molecule (containing O₉) H-bonds to two carboxylic acids (containing C₇ and C₈) and one water molecule (containing O₈). The water molecule (containing O₁₀) links with two carboxylic acid groups (containing C₈ and C₉) and one cation (containing N₂). The overall network is a reticular grid (Figure 2); the relevant geometric data relating to these hydrogen bonds are given in Table 1.

In **2**, each of the two tin atoms is five-coordinated by two carboxylate oxygen atoms derived from the tricarboxylate ligand, which are in apical positions, and to three methyl groups occupying the equatorial positions of a trigonal bipyramidal (Figure 3). There are two types of carboxylate groups in the structure: one which is bidentate involving C₇ and two monodentate carboxylates based on C₈ and C₉. There are two types of tin centers with a trigonal bipyramidal environment in the molecule, although they have similar geometries but different O-Sn-O angles – O₁-Sn₁-O₅ [170.82°(6)] and O₃-Sn₂-O₂ [172.26°(6)] angles show that the O-Sn-O frameworks deviate from linearity. The almost planar SnMe₃ skeletons [ΣC-Sn₁-C angles: 359.82, 358.98°] are bridged by the carboxylate O atoms, leading to a layered structure. Thus,

the layered structure is composed of tetranuclear rings in which the noncoordinated carboxylate O atoms (O₄ and O₆) are involved in hydrogen bonds with NH₂ groups of *i*-Bu₂NH₂⁺ cations, which lie within these macrocycles [H_{1A}...O₆, 1.784 Å; H_{1B}...O₄, 1.862 Å], offset from their centers to allow bonding to the two carboxylate groups at one corner (Figure 4). The Sn-O bond lengths between the bridging ligand and the tin centers [2.2322(15), 2.2975(15), 2.4046(16), and 2.1670(16) Å, respectively, for Sn₁-O₁, Sn₁-O₅, Sn₂-O₂, and Sn₂-O₃]¹ are in the range of reported Sn-O distances (Diassé-Sarr et al., 2004; Alvarez Boo et al., 2006). The structure of [(Me₃SnO₂C)₂C₆H₃CO₂][−][*i*-Bu₂NH₂]⁺ (**2**) can be compared with the related species (Me₃SnO₂C)₂C₆H₃CO₂H·H₂O (Ma et al., 2005). Although the framework formed by the [1,3-(Me₃SnO₂C)₂-6-(OOC)C₆H₃][−] anion is similar in both cases, the remaining counter-cations [*i*-Bu₂NH₂]⁺ or [H₃O]⁺ impart quite different lattice structures. Thus, while [*i*-Bu₂NH₂]⁺ hydrogen bonds to two carboxylate groups within the same plane, generating layers independent of each other, the [H₃O]⁺ species forms hydrogen bonds between layers, generating a 3D structure.

Figure 4 Lattice structure of compound **2**.
The isobutyl groups on nitrogen have been omitted for clarity.

Crystal data and structure refinement

Details of the crystallographic data are given in Table 2. In both cases, data were collected at 150(2) K using Mo- k_{α} radiation ($\lambda=0.71073$ Å). Refinement was full-matrix least-squares based on F^2 ; the absorption correction was semiempirical from equivalents. In the final cycles of least-squares refinement, all nonhydrogen atoms were allowed to vibrate anisotropically. Specific details for the two structures are as follows. **1**: Water molecule hydrogen atoms have been located in the difference Fourier map and were refined freely with idealized bond lengths. **2**: Hydrogen atoms when included at calculated positions were relevant, save for those of the NH_2 group, which were located in the difference map and refined. Disorder in the cation

in the ratio 65:35 required the $\text{C}_{21\text{A}}\text{-C}_{23\text{A}}$ bond length to be constrained. The structure has been solved by SHELXS and refined by SHELXL (Sheldrick et al., 1986, 1997).

Experimental

All chemicals were purchased from Aldrich (Germany) and used without any further purification. The following abbreviations are used: vs (very strong), s (strong), m (medium), sh (shoulder), br (broad).

Synthesis of $[(\text{Cy}_2\text{NH}_2)_3\text{C}_6\text{H}_3(\text{CO}_2)_3\cdot 4\text{H}_2\text{O}]$

$[(\text{Cy}_2\text{NH}_2)_3\text{C}_6\text{H}_3(\text{CO}_2)_3\cdot 4\text{H}_2\text{O}]$ was obtained on neutralizing an aqueous solution of benzene-1,3,5-tricarboxylic acid with Cy_2NH in a 1:3 ratio; after a water evaporation at 60°C, crystals (m.p., 205°C) were collected (yield, 92%). Elemental analysis: found (calc. for $\text{C}_{45}\text{H}_{83}\text{N}_3\text{O}_{10}$): C: 65.60 (65.42), H: 9.97 (10.13), N: 5.04 (5.09)%. Infrared data (cm⁻¹): 3442 s (br) $\nu(\text{OH})$; 2936 vs $\nu(\text{NH}_2)$; 1637 vs, 1600 vs $\nu(\text{COO})_{\text{as}}$; 1355 vs $\nu(\text{COO})_{\text{s}}$.

Synthesis of $[\text{i-Bu}_2\text{NH}_2]^+[\text{C}_6\text{H}_3(\text{CO}_2)_3(\text{SnMe}_3)_2]^-$

$[\text{i-Bu}_2\text{NH}_2]^+[\text{C}_6\text{H}_3(\text{CO}_2)_3(\text{SnMe}_3)_2]^-$ was obtained on neutralizing benzene-1,3,5-tricarboxylic acid with $\text{i-Bu}_2\text{NH}$ in water in a 1:3 ratio; a white powder is collected after solvent evaporation at 60°C. When an aqueous solution of $[\text{i-Bu}_2\text{NH}_2]^+[\text{C}_6\text{H}_3(\text{CO}_2)_3(\text{SnMe}_3)_2]^-$ was mixed with an ethanolic solution of SnMe_3Cl in 1:2 molar ratio, a clear solution was obtained, which was stirred for 2 h. When this solution was submitted to a slow solvent evaporation, crystals of $[\text{i-Bu}_2\text{NH}_2]^+[\text{C}_6\text{H}_3(\text{CO}_2)_3(\text{SnMe}_3)_2]^-$ (**2**) suitable for X-ray study were obtained (yield, 72%; m.p. 220°C). Elemental analysis: found (calc. for $\text{C}_{23}\text{H}_{41}\text{NO}_6\text{Sn}_2$): C: 40.95 (41.54), H: 6.74 (6.21), N: 2.44 (2.11)%. Infrared data (cm⁻¹): 3541 m (br) $\nu(\text{OH})$; 2962 vs $\nu(\text{NH}_2)$; 1618 vs, 1568 s $\nu(\text{COO})_{\text{as}}$; 1351 vs, 1402 sh $\nu(\text{COO})_{\text{s}}$.

Received March 30, 2013; accepted September 21, 2013

Table 2 Crystallographic data for compounds **1** and **2**.

	1	2
Empirical formula	$\text{C}_{45}\text{H}_{83}\text{N}_3\text{O}_{10}$	$\text{C}_{23}\text{H}_{41}\text{NO}_6\text{Sn}_2$
Formula mass	826.14	664.95
Crystal system	Orthorhombic	Monoclinic
<i>a</i> (Å)	16.0886(3)	11.3431(1)
<i>b</i> (Å)	16.5114(3)	20.0231(2)
<i>c</i> (Å)	17.8039(3)	13.0078(2)
β (°)		101.845(1)
Unit cell volume (Å ³)	4729.52(15)	2891.47(6)
Space group	$P2_12_12_1$	$P2_1/n$
No. of formula units per unit cell, <i>Z</i>	4	4
Absorption coefficient, μ (mm ⁻¹)	0.081	1.760
No. of reflections measured	66,180	59,114
No. of independent reflections	10,782	8411
R_{int}	0.0749	0.0429
Final R_1 values [$>2\sigma(I)$]	0.0401	0.0307
Final $wR(F^2)$ values [$>2\sigma(I)$]	0.0832	0.0651
Final R_1 values (all data)	0.0608	0.0434
Final $wR(F^2)$ values (all data)	0.0928	0.0700
Goodness of fit on F^2	1.030	1.080
CCDC number	826324	924039

References

Alvarez Boo, P.; Casas, J. S.; Couce, M. D.; Farto, R.; Fernandez- Moreira, V.; Freijanes, E.; Sordo, J.; Vazquez-Lopez, E. Synthesis, characterization and antibacterial activity of some new triphenyltin(IV) sulfanylcarboxylates: crystal structure of $[(\text{SnPh}_3)_2(\text{p-mpspa})]$, $[(\text{SnPh}_3)_2(\text{cpa})]$ and $[(\text{SnPh}_3)_2(\text{tspa})$ (DMSO)]. *J. Organomet. Chem.* **2006**, *691*, 45–52.

Ayrey, G.; Poller, R. C. In *Developments in Polymers Stabilization*, 2nd Edition. Scott, G., Ed. Applied Science: London, 1980.

Blunden, S. J.; Hobbs, L. A.; Smith, P. J. The environmental chemistry of organotin compounds. In *Environmental Chemistry, SPR 35*. 1984; Vol. 3, pp. 49–77.

Chandrasekhar, V.; Boomishankar, R.; Steiner A.; Bickley, J. F. First example of a hydrogen bonded three-dimensional *pillared* structure involving an organotin motif: synthesis and X-ray crystal structures of $\{[\text{Bu}_2\text{Sn}(\text{H}_2\text{O})_3(\text{L})\text{Sn}(\text{H}_2\text{O})^n\text{Bu}_2\}^{2+}[\text{L}^{2-}]$ ·2MeOH·2H₂O and $\{[\text{Ph}_3\text{Sn}(\text{L})\text{Sn}(\text{H}_2\text{O})\text{Ph}_3]_n\} \cdot \text{THF}$ {L=1,5-naphthalene disulfonate}. *Organometallics* **2003**, *22*, 3342–3344.

Cheng, D.; Khan, M. A.; Houser, R. P. Structural variability of cobalt (II) coordination polymers: three polymorphs of $\text{Co}_3(\text{TMA})_2$ [TMA=trimesate, $\text{C}_6\text{H}_3(\text{COO})_3$]. *Cryst. Growth Des.* **2004**, *4*, 599–604.

Crowe, A. J. In *Metal Complexes in Cancer Chemotherapy*. Fricker, S. P., Ed. Chapman and Hall: London, 1994.

Dakternieks, D.; Clarke, D. J.; Tiekkink, E. R. T. (μ_3 -Benzene-1,3,5-tricarboxylato)-tris((dimethyl sulfoxide)-triphenyl-tin) dimethyl sulfoxide solvate. *Z. Kristallogr.* **2002**, *217*, 622–626.

Diop, T.; Diop, L.; Diop, C. A. K.; Molloy, K. C.; Kociok-Köhn, G. Dicyclohexyl ammonium trimethylbis(hydrogenphenylphosphonato)-stannate(IV). *Acta Crystallogr., Sect. E: Struct. Rep. Online* **2011**, *67*, m1872–m1873.

Diop, T.; Diop, L.; Da Silva, J. G.; Fall, D. Supramolecular architecture in crystalline $\text{Bu}_2\text{NH}_2(\text{PhPO}_3\text{H})_2\text{SnMe}_3$. *Main Group Met. Chem.* **2012**, *35*, 63–65.

Gielen, M. Antitumor Active Organotin Compounds. In *Tin as a Vital Nutrient: Implications in Cancer Prophylaxis and Other Physiological Processes*. Cardarelli, N. F., Ed. CRC Press: Boca Raton, FL, 1985.

Gielen, M.; Kayser, F.; Zhdikova, O. B.; Kampel, V. T.; Bregadze, V. I.; De Vos, D.; Biesemans, M.; Mahieu, B.; Willem, R. Synthesis, characterization and *in vitro* antitumour activity of novel organotin derivatives of 1,2- and 1,7-dicarba-closo-dodecaboranes. *Met. Based Drugs* **1995**, *2*, 37–42.

Herntrich, T.; Merzweiler, K. $[(\text{Ph}_3\text{Sn})_3\text{VO}_4]\cdot\text{CH}_3\text{CN}$ und $[(\text{Ph}_3\text{Sn})_3\text{VO}_4]\cdot2\text{DMF}$, Triphenylzinnvanadate mit neuartigen Kettensstrukturen. *Z. Anorg. Allg. Chem.* **2006**, *632*, 2341–2344.

Kapoor, R. N.; Guillory, P.; Schulte, L.; Cervantes-Lee, F.; Haiduc, I.; Párkányi L.; Pannell K. H. Di(*p*-*tert*-butylphenyl)-*N,N*-di(*iso*-butyl)carbamoylmethylphosphine oxide and its organotin and uranyl adducts: structural and spectroscopic characterization. *Appl. Organomet. Chem.* **2005**, *19*, 510–517.

Ma, C.; Han, Y.; Zhang, R.; Wang, D. Self-assembled triorganotin (IV) moieties with 1,3,5-benzenetricarboxylic acid: syntheses and crystal structures of monomeric, helical, and network triorganotin (IV) complexes. *Eur. J. Inorg. Chem.* **2005**, *15*, 3024–3033.

Ndoye, D.; Diop, L.; Diop, C. A. K.; Molloy, K. C.; Kociok-Köhn, G. Supramolecular organotin tris-carboxylates: crystal and molecular structure of $[\text{Cy}_2\text{NH}_2]_2[1\text{-Me}_3(\text{H}_2\text{O})\text{SnOCO-3,5-(OOC)}_2\text{C}_6\text{H}_3]\cdot\text{EtOH}$. *Main Group Met. Chem.* **2012**, *35*, 59–61.

Owen, E. D. *Degradation and Stabilization of PVC*. Elsevier: London, 1980.

Sheldrick, G. M. *SHELXS86. A Computer Program for Crystal Structure Determination*. University of Gottingen: Germany, 1986.

Sheldrick, G. M. *SHELXL97. A Computer Program for Crystal Structure Refinement*. University of Gottingen: Germany, 1997.

Sow, Y.; Diop, L.; Diop, C. A. K.; Molloy, K. C.; Kociok-Köhn, G. Crystal and molecular structure of diorgano ammonium oxalatotrimethylstannate, $[\text{R}_2\text{NH}_2][\text{Me}_3\text{Sn}(\text{C}_2\text{O}_4)_3]$ ($\text{R}=i\text{-Bu}$, cyclohexyl). *Main Group Met. Chem.* **2012a**, *34*, 127–130.

Sow, Y.; Diop, L.; Diop, C. A. K.; Molloy, K. C.; Kociok-Köhn, G. μ_2 -Oxalato bis[triphenyl(thiourea- κ S)-tin(IV)]. *Acta Crystallogr., Sect. E: Struct. Rep. Online* **2012b**, *68*, m1337.

Yaghi, O. M.; Li, H.; Groy, T. L. Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid. *J. Am. Chem. Soc.* **1996**, *118*, 9096–9101.