Tomáš Řezníček, Libor Dostál, Aleš Růžička and Roman Jambor*

Borane complex of amino-functionalized phosphine

Abstract: Phosphine compounds [2,6-('BuOCH₂)₂C₂H₂] PPh₂ (1) and [2,6-(Me₂NCH₂)₂C₆H₂]PPh₂ (2) containing Y,C,Ychelating ligands were treated with BH₃·SMe₂. Coordination of BH₂·SMe₂ by **2** produced complex {[2,6-(Me₂NCH₂)₂C₂H₂] Ph₂P}·(BH₂)₃ (3). Compound 3 was characterized by means of elemental analyses, ¹H, ¹¹B, ¹³C, ³¹P NMR spectroscopy, and by single crystal X-ray diffraction analysis.

Keywords: borane; NMR; phosphine; X-ray diffraction; YCY-chelating ligands.

*Corresponding author: Roman Jambor, Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, CZ-532 10, Pardubice, Czech Republic, e-mail: roman.jambor@upce.cz

Tomáš Řezníček: Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, CZ-532 10, Pardubice, Czech Republic

Libor Dostál: Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, CZ-532 10, Pardubice, Czech Republic

Aleš Růžička: Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, CZ-532 10, Pardubice, Czech Republic

Introduction

Ether-functionalized phosphines such as tris(2,6-dimethoxyphenyl)phosphine (TDMPP), tris(2,4,6-trimethoxyphenyl)phosphine (TTMPP), and their related phosphines combine characteristics of high basicity and steric bulkiness (Horner and Hoffmann, 1956; Horner et al., 1968; Knowles et al., 1972, 1975; Knowles, 1983; Haefner et al.,1991; Baker et al., 1992, 1993; Haefner and Dunbar, 1992; Dunbar et al., 1994). Transition metal complexes with ether-functionalized phosphine ligands have been found to exhibit enhanced reactivity due to the presence of weak *P,O*-chelation producing metal-ether interactions that are often labile both in the solid state and in solution (Yamamoto et al., 1995, 1996; Han and Yamamoto, 1998). In was also demonstrated that elimination of alkyl groups is possible in these transition metal complexes of O,P,Oligands to produce new covalent transition metal-oxygen

bonds (Empsall et al., 1974, 1975, 1976; Jones et al., 1974; Miller and Shaw, 1974; Lindner and Bader, 1991; Lindner et al., 1993, 1994; Weissman et al., 2004). By contrast, corresponding amino-functionalized N,P,N-chelating ligands, widely used in the chemistry of transition metals, form six- and five-membered rings as the result of P,N-chelation to transition metal center (del Campo et al., 1999; Mirkin, 1999; Braunstein and Naud, 2001; Uchiike et al., 2008; Canovese et al., 2009; Maggini, 2009). As a result of this behavior, ether- and aminofunctionalized phosphines are referred to as 'hemi-labile' ligands (Espinet and Soulantica, 1999; Slone et al., 1999; Gianneschi et al., 2005; Angell et al., 2006; Moxham et al., 2006; Weng et al., 2007). Previously, we have shown different coordination ability of ether- and aminofunctionalized phosphines [2,6-('BuOCH₂)₂C₆H₂]PPh₂ (1) and [2,6-(Me,NCH₂)₂C₆H₃]PPh₂ (2) towards MCl₂ (M is Pd, Pt) (Chart 1) (Řezníček et al., 2011, 2012).

In addition, ether- or amino-functionalized phosphines are also able to form stable phosphine borane complexes (Brunel et al., 1998; Carboni and Monnier, 1999). The phosphine borane complexes can be used in catalyst or are active in an activation of small molecule (Imamoto et al., 1998; Welch et al., 2006; Welch and Stephan 2007; Chase and Stephan, 2008). In the course of our systematic studies on the chemistry of 1 and 2, here we report their different reactivity towards BH₃·SMe₂.

Results and discussion

Treatment of [2,6-('BuOCH₂)₂C₄H₂]PPh₂ (1) with BH₂·SMe₂ did not provide any isolable product. By contrast, the same reaction of [2,6-(Me₂NCH₂)₂C₆H₃]PPh₂ (2) with 3 eq. of BH₃·SMe₂ yielded complex {[2,6-(Me₂NCH₃)₂C₆H₃] $Ph_{P}(BH_{2})_{3}$ (3), in quantitative yield (Scheme 1).

Complex 3 was characterized with the help of ¹H, ¹³C, ¹¹B, and ³¹P NMR spectroscopy. The ³¹P[¹H] NMR spectrum showed a resonance at δ +16.6 ppm that is shifted downfield compared with the starting **2** (δ -17.2 ppm) (Carré et al., 1997). The ¹H NMR spectrum of **3** showed singlet of methylene CH₂N groups at δ 3.59 ppm and a broad resonance at δ 1.58 ppm for B H_2 moiety. The ¹¹B NMR spectrum revealed,

Chart 1 Compounds 1 and 2 and their Pd and Pt complexes.

however, two resonances at δ -8.7 ppm and δ -35.9 ppm as emerging a presence of non-equivalent BH, groups.

Single crystals of **3** suitable for X-ray diffraction analysis were obtained by crystallization from toluene solution at +4°C. The molecular structure of **3**, selected bond lengths, and angles are shown in Figure 1; the crystallographic data are given in Table 1.

Thermal ellipsoids are drawn with 50% probability. Hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (°): P1-B1 1.881(4), N1-B2 1.621(3), N1a-B2a 1.621(3), C1-P1-B1 117.49(18), C1-P1-C13a 87.23(10), C1-P1-C8 105.47(10).

The molecular structure proved the presence of two non-equivalent BH_3 groups. Whereas one boron atom B1 coordinates the central phosphorus atom P1, the remaining two BH_3 groups coordinate CH_2NMe_2 moieties of ligand L^2 . The central phosphorus atom P1 is four coordinate with deformed tetrahedral arrangement with bonding angles C1-P1-B1 (117.49(18)°), C1-P1-C13a (87.23(10)°), and C1-P1-C8 (105.47(10)°). The P1-B1 bond length (1.881(4) Å) is close to the sum of covalent radii of both atoms ($\Sigma_{cov}(B,P)$ =1.96 Å) (Pyykkö et al., 2005; Pyykkö and Atsumi, 2009a) and indicates the presence of strong

Scheme 1 Synthesis of phosphine borane complex (L²PPh₂)·(BH₃)₃ (3).

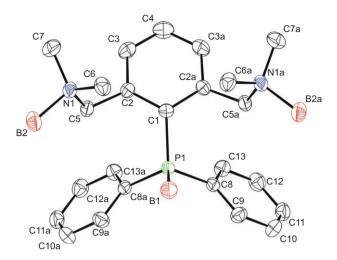


Figure 1 ORTEP view of compound 3.

P→B intramolecular interaction in **3**. Similarly the N1-B1 and N1a-B1a bond lengths (1.621(3) and 1.621(3) Å) are somewhat longer than the sum of covalent radii of both atoms ($\Sigma_{cov}(B,N)$ =1.56 Å) (Pyykkö et al., 2005; Pyykkö and Atsumi, 2009b) and suggest the presence of strong N→B coordination in **3**.

	3
Empirical formula	C ₂₄ H ₃₈ B ₃ N ₂ P
Color	Colorless
Crystal system	Orthorhombic
Space group	P n m a
a, Å	15.0600(6)
b, Å	20.1280(11)
c, Å	8.4051(13)
α, °	90
β, °	90
γ, °	90
Z	4
mm ⁻¹	0.121
D _x , Mg m ⁻³	1.090
Crystal size, mm	$0.30 \times 0.26 \times 0.19$
Crystal shape	Block
Range, deg	1-27.5
ρ max/min, e/ų	0.542/-0.351
Number of reflections measured	14 120
Number of unique reflections, R_{int}^{a}	29780.0737
Number of observed refs.	2086
Number of parameters	142
S ^b , all data	1.125
Final R^c , $I > 2\sigma(I)$	0.0590
wR2°, all data	0.1373

Table 1 Crystal data and structure refinement for compound 3.

 $WR(F^2) = [\Sigma(W(F_0^2 - F_0^2)^2) / (\Sigma W(F_0^2)^2)]^{1/2}$ for all data.

^a $R_{\text{int}} = \sum |F_{o}^{2} - F_{o,\text{mean}}|/\sum F_{o}^{2}$.

^b GOF= $[\Sigma(w(F_o^2-F_c^2)^2)/(N_{diffrs}-N_{params})]^{1/2}$ for all data.

 $^{^{}c}R(F)=\Sigma ||F_{o}|-|F_{o}||/\Sigma |F_{o}|$ for observed data,

In conclusion, we have demonstrated different reactivity of ether- and amino-functionalized phosphines $[2,6-(^{t}BuOCH_{2})_{2}C_{6}H_{3}]PPh_{3}$ (1) and $[2,6-(Me_{3}NCH_{2})_{2}C_{6}H_{3}]$ PPh, (2) towards BH, SMe, Compound 2 easily coordinates three molecules of BH, to provide complex $\{[2,6-(Me_3NCH_3)_2C_6H_3]Ph_3P\}\cdot(BH_3)_3$ (3).

Experimental section

General methods

The starting compounds [2,6-('BuOCH₂)₂C₆H₃]PPh₂ and [2,6-(Me₂NCH₂)₂ C_cH₃]PPh, were prepared according to the literature (Carré et al., 1997; Řezníček et al., 2011, 2012). BH₃·Me₃S complex was purchased by Sigma Aldrich (Sokolovská, Praha, Czech Republic). All reactions were carried out under argon, using standard Schlenk techniques. Solvents were dried by standard methods, distilled prior to use. 1H, ¹¹B, ¹³C, and ³¹P NMR spectra were recorded on a Bruker Avance 400 spectrometer at 300 K in CDCl₂. ¹H, ¹³C, ¹¹B, and ³¹P NMR chemical shifts δ are given in ppm and referenced to internal Me, Si (¹H and ¹³C), H₂PO₄ (³¹P), and external BF₂•Et₂O (¹¹B). Elemental analyses were performed on an LECO-CHNS-932 analyzer.

Synthesis of [2,6-(Me,NCH,),C,H,]Ph,P·(BH,), (3)

Solution (2.0 M) of BH₃·Me₃S (2.78 ml, 5.56 mmol) was added dropwise to toluene solution (15 ml) of 2 (0.59 g, 1.59 mmol). The formation of white suspension occurred within 1 h and the reaction mixture was stirred for an additional 19 h. Suspension was concentrated to 5 ml and filtrated off. The solid was separated and dried under reduced pressure to give 3 (yield 0.61 g, 92%). For 3: mp 169–171°C; Anal. Calcd. for C₂₆H₃₈B₃N₂P (417.97 g/mol): C, 68.44; H, 9.80. Found: C, 68.47; H, 9.82. ¹H NMR (CDCl₂, 400 MHz): δ 1.58 (bs, 9H, BH); 2.37 (s, 12H, NCH₂); 3.59 (s, 4H, CH₂N); 7.40–7.97 (m, 13H, ArH); ¹³C NMR (CDCl₂, 100 MHz): δ 51.0 (NCH₃); 67.9 (CH₃N, ${}^{3}J({}^{13}C, {}^{31}P)=6$ Hz); 129.5 (C(3',5'); ${}^{3}J({}^{13}C, {}^{31}P)=6$ ^{31}P)=10 Hz); 131.8 (C(2',6'), ^{2}J (^{13}C , ^{31}P)=7 Hz); 131.8 (C(3,5), ^{3}J (^{13}C , ^{31}P)=7 Hz); 132.1 C(4'); 132.7 C(4); 135.0 (C(2,6), ${}^{2}J({}^{13}C, {}^{31}P)=7$ Hz); 135.0 (C(1), ${}^{1}J({}^{13}C, {}^{31}P) = 46 \text{ Hz}); 138.5 (C(1'), {}^{1}J({}^{13}C, {}^{31}P) = 16 \text{ Hz}); {}^{31}P \text{ NMR (CDCl., 162)}$ MHz): δ 16.6; ¹¹B NMR (CDCl₂, 128 MHz): δ -8.7 and -35.9.

Crystallography

Compound 3 was dissolved in toluene and allowed to crystallize at 4°C. Obtained material was suitable for X-ray analysis. X-Ray data (Table 1) for colorless crystals of 3 were obtained at 150 K using an Oxford Cryostream low-temperature device on a Nonius Kappa CCD diffractometer with MoK_{α} radiation (λ =0.71073 A), a graphite monochromator, and ϕ and χ scan mode. Data reductions were performed with DENZO-SMN (Otwinowski and Minor, 1997). Absorption was corrected by integration methods (Coppens, 1970). Structures were solved by direct methods (Sir92) (Altomare et al., 1993) and refined by full matrix least-square based on *F*² (SHELXL97) (Sheldrick, 1997). Hydrogen atoms were mostly localized on a difference Fourier map; however, to ensure uniformity of treatment of the crystal, all hydrogen atoms were recalculated into idealized positions (riding model) and assigned temperature factors H_{ico}(H)=1.2 U_{ac} (pivot atom) or of 1.5 U_{ss} for the methyl moiety with C-H=0.96, 0.97, and 0.93 Å for methyl, methylene, and hydrogen atoms in aromatic rings, respectively. H atoms of the BH, groups were placed into idealized positions with B-H bond lengths of 0.96 Å. Crystallographic data for structural analysis have been deposited with the Cambridge Crystallographic Data Centre. CCDC no. 882969 for 3, respectively. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EY, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgments: The authors wish to thank the Grant Agency of the Czech Republic (project no. P207/10/0215) and The Ministry of Education of the Czech Republic for financial support.

Received May 31, 2012; accepted August 29, 2012; previously published online September 28, 2012

References

- Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. Completion and refinement of crystal structures with SIR92. J. Appl. Crystallogr. 1993, 26, 343.
- Angell, S. E.; Rogers, C. W.; Zhang, Y.; Wolf, M. O.; Jones, W. E. Hemilabile coordination complexes for sensing applications. Coord. Chem. Rev. 2006, 250, 1829-1841.
- Baker, L.-J.; Bowmaker, G. A.; Camp, D.; Healy, P. C.; Schmidbaur, H.; Steigelmann, O.; White, A. H. Structural, far-IR and phosphorus-31 NMR studies of two-coordinate complexes of tris(2,4,6-trimethoxyphenyl)phosphine with silver(I) halils. Inorg. Chem. 1992, 31, 3656-3662.
- Baker, L.-J.; Bowmaker, G. A.; Skelton, B. W.; White, A. H. Crystal structure, infrared and 31P nuclear magnetic resonance studies of complexes of tris(2,4,6-trimethoxyphenyl)phosphine with mercury(II) halides. J. Chem. Soc. Dalton Trans. 1993, 3235-3240.

- Braunstein, P.; Naud, F. Hemilabilität von Hybridliganden und die Koordinationschemie von Oxazolinliganden. Angew. Chem. 2001, 113, 702-722.
- Brunel, J. M.; Faure, B.; Maffei, M. Phosphane-boranes: synthesis, characterization and synthetic applications. Coord. Chem. Rev. **1998**, 178-180, 665-698.
- Canovese, L.; Visentin, F.; Chessa, G.; Santo, C.; Dolmella, A. Substitution reactions between bis-chelate ligands in palladium(II) alkenyl complexes: an unusual way to form unstable trans-P complexes. A study on the isomerization mechanism. Dalton Trans. 2009, 9475-9485.
- Carboni, B.; Monnier, L. Recent developments in the chemistry of amine- and phosphine-boranes. Tetrahedron 1999, 55, 1197-1248.
- Carré, F.; Chuit, C.; Corriu, J. P. R.; Mehdi, A.; Reyé, C. N→P intramolecular stabilization of phosphenium ions and

- preparation of hypercoordinated phosphanes with unusual properties. J. Organomet. Chem. 1997, 529, 59-68.
- Chase, P. A.; Stephan, D. W. Hydrogen and amine activation by a frustrated Lewis pair of a bulky N-heterocyclic carbene and B(C6F5)3. Angew. Chem. Int. Ed. 2008, 47, 7433-7437.
- Coppens, P. Methods and applications in crystallographic computing. In Crystallographic Computing; Ahmed, F. R.; Hall, S. R.; Huber C. P., Eds.; (Munksgaard: Copenhagen), 1970, pp. 255-270.
- del Campo, O.; Carbayo, A.; Cuevas, J. V.; García-Herbosa, G.; Muñoz, A. Isomeric preference in complexes of palladium(II) with chelating P,N-donor ligands. Eur. J. Inorg. Chem. 2009, 2254-2260.
- Dunbar, K. R.; Matonic, J. H.; Saharan, V. P. Polynuclear rhodium(II) compounds with phosphino-phenoxide ligands. Inorg. Chem. **1994**, 33, 25-31.
- Empsall, H. D.; Hyde, E. M.; Jones, C. E.; Shaw, B. L. Oxidative addition, carbonyl insertion, and o-demethylation reactions of rhodium complexes with tertiary 2-methoxyphenylphosphines. J. Chem. Soc. Dalton Trans. 1974, 18, 1980-1985.
- Empsall, H. D.; Hyde, E. M.; Shaw, B. L. Some unusual iridium-(I), -(II), and -(III) complexes formed from 2-methoxyphenyl- or 2-hydroxyphenyl-di-t-butylphosphine. J. Chem. Soc. Dalton Trans. 1975, 16, 1690-1696.
- Empsall, H. D.; Shaw, B. L.; Turtle, B. L. Some complexes of platinum, palladium, nickel, and cobalt formed from (2-hydroxyphenyl)diphenylphosphine and (2-hydroxyphenyl) di-t-butylphosphine. J. Chem. Soc. Dalton Trans. 1976, 15, 1500-1506.
- Espinet, P.; Soulantica, K. Phosphine-pyridyl and related ligands in synthesis and catalysis. Coord. Chem. Rev. 1999, 193-195, 499-556.
- Gianneschi, N. C.; Masar, M. S.; Mirkin, C. A. Development of a coordination chemistry-based approach for functional supramolecular structures. Acc. Chem. Res. 2005, 38, 825-837.
- Haefner, S. C.; Dunbar, K. R.; Beder, C. Reversible carbon monoxide reactions of cationic rhodium(I) and -(II) complexes. J. Am. Chem. Soc. 1991, 113, 9540-9553.
- Haefner, S. C.; Dunbar, K. Structural and spectroscopic characterization of a paramagnetic isocyanide complex of rhodium(II). Organometallics 1992, 11, 1431-1433.
- Han, X.-H.; Yamamoto, Y. (η5-Pentamethylcyclopentadienyl) rhodium(III) complexes bearing η1-P and η2-phosphinophenoxide coordinations derived from (2,6-dimethoxyphenyl) diphenylphosphine: their preparation and reactions with Lewis bases. J. Organomet. Chem. 1998, 561, 157-165.
- Horner, L.; Hoffmann, H. The preparative and analytic importance of tertiary phosphines and related compounds. 2. Phosphorusorganic compounds. Angew. Chem. Int. Ed. 1956, 68, 473-485.
- Horner, L.; Buthe, H.; Siegel, H. Hydrierung und isomerisierung von olefinen mit homogen gelösten phosphin-rhodium-komplexen. Tetrahedron Lett. 1968, 37, 4023-4028.
- Imamoto, T.; Watanabe, J.; Wada, Y.; Masuda, H.; Yamada, H.; Tsuruta, H.; Matsukawa, S.; Yamaguchi, K. P-Chiral bis(trialkylphosphine) ligands and their use in highly enantioselective hydrogenation reactions. J. Am. Chem. Soc. 1998, 120, 1635-1636.
- Jones, C. E.; Shaw, B. L.; Turtle, B. L. O- and C-metallation of 2-alkoxyphenylphosphines by platinum(II). J. Chem. Soc. Dalton Trans. 1974, 9, 992-999.

- Knowles, W. S. Asymmetric hydrogenation. Acc. Chem. Res. 1983,
- Knowles, W. S.; Vineyard, B. D.; Sabacky, M. J. Catalytic asymmetric hydrogenation. J. Chem. Soc. Chem. Comm. 1972, 1, 10-15.
- Knowles, W. S.; Sabacky, M. J.; Vineyard, B. D.; Weinkauff, D. J. Asymmetric hydrogenation with a complex of rhodium and a chiral bisphosphine. J. Am. Chem. Soc. 1975, 97, 2567-2568.
- Lindner, E.; Bader, A. Coordination chemistry and catalysis with hemilabile oxygen-phosphorus ligands. Coord. Chem. Rev. **1991**, *108*, 27-110.
- Lindner, E.; Mayer, H. A.; Fawzi, R.; Steimann, M. Behavior of the bis(chelate) complex [Rh(L)₂][BPh₄] [L=(C₆H₁₁)2PCH₂CH₂OMe] toward acyl halides and carbon monoxide. Investigation of a reversible alkyl migration. Organometallics 1993, 12, 1865-1870.
- Lindner, E.; Haustein, M.; Fawzi, R.; Steimann, M. Reversible and irreversible coordination of small molecules to the Cp*Ru fragment by a facile cleavage of the ruthenium-oxygen bond of eta.2P-O-chelated (1,3-dioxan-2-ylmethyl)diphenylphosphine. Organometallics 1994, 13, 5021-5029.
- Maggini, S. Classification of P,N-binucleating ligands for heteroand homobimetallic complexes. Coord. Chem. Rev. 2009, 253, 1793-1832.
- Miller, E. M.; Shaw, B. L. Kinetic and other studies on oxidative addition reactions of iridium phosphine complexes of the type trans-[IrCl(CO)(PMe2R)2](R=Ph, o-MeO·C₂H₄, or p-MeO·C₂H₄). J. Chem. Soc. Dalton Trans. 1974, 5, 480-485.
- Mirkin, C. A. The transition metal coordination chemistry of hemilabile ligands. Prog. Inorg. Chem. 1999, 48, 233-350.
- Moxham, G. L.; Randell-Sly, H. E.; Brayshaw, S. K.; Woodward, R. L.; Weller, A. S.; Willis, M. C. A second-generation catalyst for intermolecular hydroacylation of alkenes and alkynes using β-S-substituted aldehydes: the role of a hemilabile P-O-P ligand. Angew. Chem. Int. Ed. 2006, 45, 7618-7622.
- Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276,
- Pyykkö, P.; Atsumi, M. Molecular double-bond covalent radii for elements Li-E112. Chem. Eur. J. 2009a, 15, 12770.
- Pyykkö, P.; Atsumi, M. Molecular single-bond covalent radii for elements 1-118. Chem. Eur. J. 2009b, 15, 186.
- Pyykkö, P.; Riedel, S.; Patzschke, M. Triple-bond covalent radii. Chem. Eur. J. 2005, 11, 3511.
- Řezníček, T.; Dostál, L.; Růžička, A.; Kulhánek, J.; Bureš, F.; Jambor, R. Palladium(II) complexes of Y,C,Y-chelated phosphines: synthesis, structure, and catalytic activity in Suzuki-Miyaura reaction. Appl. Organomet. Chem. 2011, 25,
- Řezníček, T.; Dostál, L.; Růžička, A.; Vinklárek, J.; Řezáčová, M.; Jambor, R. Synthesis and cytostatic activity of Pt(II) complexes of intramolecularly coordinated phosphine and stibine ligands. Appl. Organomet. Chem. 2012, 26, 237-245.
- Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen,
- Slone, C. S.; Weinberger, D. A.; Mirkin, C. A. The transition metal coordination chemistry of hemilabile ligands. Prog. Inorg. Chem. 1999, 48, 233-350.
- Uchiike, Ch.; Ouchi, M.; Ando, T.; Kamigaito, M.; Sawamoto, M. Evolution of iron catalysts for effective living radical polymerization: P-N chelate ligand for enhancement of

- catalytic performances. J. Polym. Sci. A: Polym. Chem. 2008, 46, 6819-6827.
- Weissman, H.; Shimon, L. J. W.; Milstein, D. Unsaturated Pd(0), Pd(I), and Pd(II) complexes of a new methoxy-substituted benzyl phosphine. Aryl-X (X=Cl, I) oxidative addition, C-O cleavage, and Suzuki-Miyaura coupling of aryl chlorides. Organometallics 2004, 23, 3931-3940.
- Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Reversible, metal-free hydrogen activation. Science 2006, 314, 1124-1126.
- Welch, G. C.; Stephan, D. W. Facile heterolytic cleavage of dihydrogen by phosphines and boranes. J. Am. Chem. Soc. 2007, 129, 1880-1885.

- Weng, Z. Q.; Teo, S. H.; Hor, T. S. A. Metal unsaturation and ligand hemilability in Suzuki coupling. Acc. Chem. Res. 2007, 40, 676-684.
- Yamamoto, Y.; Sato, R.; Ohshima, M.; Mysuo, F.; Sudoh, C. Arene ruthenium(II) complexes coordinated by phosphino and two phenoxide groups in tris(2,6-dimethoxyphenyl)phosphine: crystal structure of (n6-1,2,3,4-Me4C2H2)Ru[P[lcub]2,6-(MeO)₂C₆H₃[rcub] [lcub]2-O-6-MeOC₆H₃[rcub;]2]. *J. Orgamomet*. Chem. 1995, 489, C68-C70.
- Yamamoto, Y.; Sato, R.; Mysuo, F.; Sudoh, C.; Igoshi, T. Reactions of $[(\eta 6\text{-arene})RuCl_2]_2$, with aromatic phosphines containing methoxy groups in 2,6-positions. Inorg. Chem. 1996, 35, 2329-2336.