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Abstract: Cardiomyopathies (CMs) are a clinically hetero-
geneous group of cardiovascular diseases characterized by 
structural and functional abnormalities of the heart muscle 
in the absence of coronary artery disease, hypertension, 
valve disease, or congenital heart disease as a leading cause. 
The phenotypic spectrum of CMs ranges from silent heart 
failure to symptomatic heart failure and sudden cardiac 
death, and CMs are one of the leading causes of cardiovas-
cular morbidity worldwide. CMs are highly heritable, al-
though a clear distinction between inherited and acquired 
forms remains challenging, particularly due to observed 
incomplete penetrance and variable expressivity of inher-
ited CMs. Based on their specific morphological phenotypes 
and functional characteristics, CMs can be divided into at 
least 5 different subgroups: hypertrophic cardiomyopathy 
(HCM), dilated cardiomyopathy (DCM), arrhythmogenic 
cardiomyopathy (ACM), restrictive cardiomyopathy (RCM), 
and (left ventricular) non-compaction cardiomyopathy 
(LVNC), which show both clinical as well as genetic overlap. 
Since the identification of pathogenic variants in MYH7 
as a genetic cause of HCM in 1990, enormous progress has 
been made in understanding genetic factors contributing 
to cardiomyopathies. Currently, over 100 genes have been 
associated with at least one of the CM subtypes, providing a 
deeper understanding of the cellular basis of genetic heart 
failure syndromes, unveiling new insights into the molecu-
lar biology of heart function in both health and disease, and, 
thereby, facilitating the development of novel therapeutic 
strategies and personalized treatment approaches.
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Introduction
Cardiomyopathies (CMs) refer to a diverse spectrum of iso-
lated or syndromic diseases that affect the myocardium, im-
pairing the structure and functional integrity of the heart 
muscle. In addition to exogenous factors such as viral infec-
tions and toxins, CMs can arise from germline mutations in 
a large array of distinct genes implicated in essential func-
tional and structural processes in cardiomyocytes. Inherited 
CMs occur with an incidence of 1 in 200 to 500 individuals 
and they comprise common presentations like hypertrophic 
(HCM) and dilated cardiomyopathy (DCM) as well as rare 
and infrequent forms including arrhythmogenic cardio-
myopathy (ACM), restrictive cardiomyopathy (RCM), and 
(left ventricular) non-compaction cardiomyopathy (LVNC) 
[1]. Notably, causative variants within the same gene have 
been observed to be associated with distinct subtypes of 
CMs, suggesting an overlapping molecular pathogenesis of 
these conditions. The clinical characteristics and molecular 
determinants of the two main forms of CMs, HCM and DCM, 
are comprehensively described in this review.

Hypertrophic cardiomyopathy
With an estimated worldwide prevalence of 1:500 to 1:1,000 
in the general population, HCM (including hypertrophic ob-
structive cardiomyopathy (HOCM)) is one of the most prev-
alent inherited cardiomyopathy globally [2, 3]. This makes 
it a significant contributor to atrial fibrillation and/or heart 
failure, particularly in young and previously asymptomatic 
patients. Clinically, HCM can be diagnosed based on mor-
phological changes in the left ventricular (LV) wall, specif-
ically hypertrophy without dilatation of the chamber and/
or other cardiac or systemic diseases [1]. Cardiac tissue of 
patients with HCM exhibit histological changes, such as myo
fiber disarray and often interstitial fibrosis. Additionally, 
patients may present with mild right ventricular hypertro-
phy, morphologic anomalies of the mitral valve, myocardial 
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fibrosis, and electrocardiographic abnormalities [4, 5]. The 
clinical manifestations of HCM vary widely depending on 
the severity of left ventricular ejection obstruction caused 
by morphological changes. These manifestations can range 
from asymptomatic heart failure, mild or severe arrhyth-
mias, and symptomatic heart failure to sudden cardiac 
death [6]. Genetically, HCM is a heterogeneous disorder as 
indicated by the identification of numerous pathogenic var-
iants in nearly 30 genes to date [7–9]. The majority of known 
genetic causes of HCM follow an autosomal dominant 
pattern of inheritance, but cases and types with autosomal 
recessive, X-linked and mitochondrial inheritance have also 
been described and clinically associated with an earlier 
disease onset and often more severe clinical presentation 
and progression [10–13]. Since the first pathogenic vari-
ants in MYH7 encoding the beta-myosin heavy chain were 
identified in 1990, several additional genes coding for sarco-
meric components have been found to be mutated, leading 
to the classification of HCM as a disease of the sarcomere. 
These genes encompass the sarcomeric components myo-
sin-binding protein 3 (MYBP3), troponin T (TNNT), troponin 
I (TNNI), and tropomyosin (TPM1), collectively accounting 
for approximately 90 % of HCM cases, for which a molecu-
lar genetic diagnosis could be established [14, 15] (Figure 1). 
Pathogenic variants in genes encoding sarcomeric proteins 
can disrupt contractile mechanisms and calcium homeo-
stasis within the sarcomere, reducing overall sarcomeric 
power and inducing a remodeling process that results in 
cardiomyocyte hypertrophy and the characteristic clinical 
features of HCM. Over the past few years, particularly due 
to the advent of NGS-based technologies and applications, 
pathogenic variants in an increasing number of non-sarco-
meric genes have been identified and associated with HCM. 
Examples include ALPK3 (alpha kinase 3), FHOD3 (formin 
homology 2 domain containing 3), and JPH2 (junctophilin 
2), which have expanded the definition of HCM beyond a 
sarcomeric disease to encompass other cellular processes 
[9, 16, 17]. HCM can also occur as part of a congenital dis-
order or metabolic disease including lysosomal and gly-
cogen storage diseases (e.g. Danon disease, Fabry disease, 
and Pompe disease), RASopathies (e.g. Noonan syndrome), 
and amyloidosis that manifest with cardiac changes [18, 19]. 
These syndromic types of HCM, which can exhibit morpho-
logical cardiac alterations that closely resemble classical 
forms of sarcomeric HCM, may evade specific syndrome 
diagnosis in early childhood due to the mild presentation of 
extracardiac symptoms at the time of HCM diagnosis.

Dilated cardiomyopathy
Dilated cardiomyopathy (DCM) is a cardiac condition 
characterized by the dilatation of the left ventricle in the 
absence of significant coronary artery, hypertensive, or 
valvular heart disease, which leads to reduced systolic and 
contractile function of the heart. With an estimated prev-
alence of 1 in 250, it is one of the most prevalent forms of 
cardiomyopathies and the leading cause of cardiac trans-
plantation in both children and adults [18, 19]. The majority 
of DCM cases are classified as sporadic; however, approxi-
mately 20 to 30 % of cases exhibit a positive family history 
and likely heritable pattern. Similar to HCM, familial forms 
of DCM display pronounced genetic heterogeneity, and are 
inherited mainly autosomal dominantly, though autosomal 
recessive, X-linked, and mitochondrial inheritance patterns 
are also observed. Notably, mitochondrial inheritance is 
frequently associated with extracardiac manifestation of 
disease, including skeletal muscles, brain, eyes and ears. 
Pathogenic variants in a large set of genes have been asso-
ciated with DCM, primarily in genes encoding components 
of the sarcomere, the Z-disc, the desmosome, or the nuclear 
envelope [20–25]. Despite advance in genetic testing, di-
agnostic yields remain low, particularly for non-syndro-
mic cases [26]. Genetic counselling and risk assessment is 
further complicated by the highly variable penetrance of 
identified variants and the fact that variants within the 
same genes can cause distinct cardiomyopathy-related phe-
notypes. Furthermore, DCM can also manifest as part of a 
congenital myopathy, as evidenced in patients with X-linked 
dystrophinopathies, such as Duchenne/Becker muscular 
dystrophy. In such instances, pathogenic variants in the un-
derlying genes can affect both skeletal and cardiac muscle 
tissues, and, consequently, patients, including female car-
riers of pathogenic variants, may exhibit muscle weakness 
along with myocardial dysfunction and heart failure [27–
29]. Currently, over 100 distinct genes have been associated 
with DCM [30; OMIM  – Online Mendelian Inheritance in 
Man 2024]. Among these, disease-causative truncating vari-
ants in the titin (TTN) gene are the most prevalent causative 
variations in patients with non-syndromic DCM, accounting 
for 15–25 % of all DCM cases (see below) [31–33]. Additional 
significant genetic causes of DCM include variants in lamin 
A/C (LMNA), which are identified in approximately 5 % of 
DCM cases, RNA-binding motif-20 (RBM20), filamin C (FLCN), 
desmin (DES), and desmoplakin (DSP) [21, 34, 35]. Given the 
clinical pathomechanistical overlap with other cardiomyo-
pathies, such as HCM, additional core genes that are associ-
ated with DCM include MYH7, MYBPC3, TNNC1, TNNT2, and 
TPM1 (Figure 1).
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Challenges in classifying TTN 
variants: a diagnostic perspective
TTN contains 364 exons and encodes the largest protein of 
the human body. After myosin and actin, TTN is the most 
abundant protein in striated muscle cells of vertebrates, 
spanning half the sarcomere and serving as a biological 
spring [36]. It is composed of four main structural regions: (i) 
the N-terminal Z-disc, which anchors TTN to the sarcomeric 
disc and is critical for myofibril assembly and stability, (ii) 
the central I-band, which contains a variable number of im-
munoglobulin-repeats and confers elasticity to TTN, (iii) the 
A-band, which serves as a stable anchor for myosin binding 
and is crucial for maintaining the structural integrity of 
thick filaments, and (iiii) the C-terminal M-band, which en-
compasses a putative serine/threonine kinase domain and 

is involved in signaling and scaffolding processes. TTN pre-
mRNA undergoes extensive alternative splicing, primarily 
affecting exons coding for the I-band region [37–39]. Con-
sequently, this process generates a substantial variety of 
different isoforms that confer tissue-specific mechanical 
properties to both skeletal and cardiac muscle. In cardiac 
muscle, two major classes of isoforms, N2B and N2AB, are 
expressed, which are predominantly generated by alterna-
tive splicing in the exons encoding the I-band region [37, 40, 
41]. Interestingly, alterations in alternative splicing, which 
impair the generation of cardiac-specific TTN isoforms, such 
as those caused by pathogenic variants in the splicing factor 
RBM20, have been associated with the development of DCM 
in humans [42]. Truncating variants in TTN are identified 
in 15 to 25 % of familial and sporadic DCM patients, making 
TTN the most frequently mutated gene in DCM. Still, variant 
classification for TTN remains challenging. Large-scale pop-

Figure 1: HCM and DCM, the most prevalent genetic cardiomyopathies. HCM is morphologically characterized by left ventricular hypertrophy, 
DCM by ventricular enlargement. The inheritance pattern for monogenic forms of HCM and DCM is mainly autosomal dominant, but all other pat-
terns of inheritance including mitochondrial inheritance have also been described. Selected, most frequently implicated genes. Sarcomeric mutations 
may underlie both HCM and DCM, including variants in TTN, encoding the largest sarcomeric protein, titin. Schematic domain structure of titin 
protein, adapted from [68]; purple = Z disc, orange = I-band, red = A-band, green = M-band. Created with BioRender.com.
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ulation studies have indicated that approximately 1–3 % of 
the general population, who do not exhibit symptoms of 
DCM or HCM, carry nonsense, frameshift or splice-site var-
iants in TTN [31]. This suggests that in addition to a direct 
mutational effect, other mutational features may also con-
tribute significantly to assessing the pathogenicity of novel 
TTN variants. Indeed, it has been shown that the localiza-
tion of truncating TTN variants within the gene has a severe 
impact on their pathogenicity. Truncating variants affecting 
exons coding for the A- and, to a lesser extent, the I-band 
region of cardiac TTN isoforms are more likely to exert a 
pathogenic effect compared to variants encoding the N-ter-
minal Z-band [43]. Therefore, classifying and interpreting 
identified variants during routine diagnostic procedures 
remains a significant challenge. As previously discussed, 
truncating variants in specific protein regions can be safely 
classified as pathogenic or likely pathogenic based on ACMG 
criteria. However, determining the functional consequences 
of the majority of TTN variants detected by NGS-based se-
quencing approaches presents a more complex challenge. 
We do find numerous missense variants, intronic variants, 
small in-frame deletions, and duplications, and truncating 
variants in variable regions of the protein, which cannot yet 
be adequately interpreted and are often reported as var-
iants of unknown significance (VUS). To enhance variant 
interpretation and diagnostic yield, DCM-specific modifi-
cation of ACMG guidelines were suggested incorporating 
DCM-specific disease and genetic features for TTN and addi-
tional DCM-associated genes [44]. Additionally, we strongly 
recommend performing long-read RNAseq in parallel to 
DNA testing, which enables the estimation of the effect of 
TTN variants on its RNA composition, thereby increasing 
the effectiveness of variant classification.

In addition to their role in DCM, causative variants in 
the TTN gene have also been associated with HCM, RCM, 
ARVC, and, most importantly, atrial fibrillation. Recent 
studies utilizing data from the UK Biobank have demon-
strated that truncating variants in the cardiac TTN isoforms 
substantially elevates the overall risk of atrial fibrillation 
(AF) and the likelihood of heart failure progression [45, 46].

Novel genes and mechanisms in 
inherited CMs – the RPL3L example
Within the past few years, advances in NGS-based ap-
proaches, such as whole-exome and whole-genome se-
quencing, have facilitated the identification of pathogenic 
variants in several novel genes associated particularly 
with autosomal recessive DCM, especially in severe child-

hood-onset cardiomyopathies. These include genes such 
as LEM domain nuclear envelope protein 2 (LEMD2), Acyl-
CoA dehydrogenase very long chain (ACADVL), Cyclase as-
sociated actin cytoskeleton regulatory protein 2 (CAP2), 
TATA-Box binding protein associated factor 1 (TAF1A), and 
phosphopantothenoylcysteine synthetase (PPCS). These 
identifications of novel genes and mechanisms have signif-
icantly expanded our understanding of the pathophysiolog-
ical processes underlying DCM and contributed to increas-
ing the yield of genetic testing for both familial and sporadic 
cases of DCM [47–52]. As an example, we recently identified 
biallelic pathogenic variants in the ribosomal protein L3 
like (RPL3L) gene as cause of an early-onset, rapidly pro-
gressive neonatal DCM and heart failure [53–56]. RPL3L is 
a paralog of RPL3, a highly conserved and ubiquitously ex-
pressed ribosomal protein that forms a component of the 
60S ribosomal subunit [57]. Within the ribosomal complex, 
RPL3 is the ribosomal protein most closely located to the 
peptidyl transferase center, adjacent to the A-site tRNA 
binding pocket [58]. Its paralog RPL3L is specifically ex-
pressed in skeletal muscle and heart tissue [59, 60]. Inter-
estingly, RPL3L mRNA levels exhibit dynamic regulation in 
response to external stimuli, with a specific downregulation 
in skeletal muscle cells upon hypertrophic stimuli, and it 
was proposed that RPL3L might act as a negative regulator 
of muscular growth [61]. In contrast to its paralog Rpl3, ho-
mozygous knockout of Rpl3l in mice does not result in early 
embryonic lethality [62, 63]. Rpl3l-deficient mice were born 
at the expected Mendelian ratios and exhibited no signifi-
cant differences in overall body weight or skeletal muscle/
heart weight and did not show signs of cardiac fibrosis 
[62]. Nevertheless, Rpl3l-deficient mice showed a reduced 
left ventricular ejection fraction, suggesting diminished 
cardiac contractility [62]. Notably, similar to the observa-
tion in C2C12 myogenic cells, the knockout of Rpl3l resulted 
in a compensatory upregulation of Rpl3 expression in both 
cardiac and skeletal muscle cells, leading to an elevation of 
Rpl3 protein levels within ribosomes [61]. The mutational 
spectrum of RPL3L in humans predominantly comprises 
missense variants; however, compound heterozygosity for 
truncating or frameshifting variants has also been reported 
[55, 56]. All patients present with severe, neonatal DCM and 
rapidly progressing cardiac decompensation leading to 
early cardiac failure, and patients depend on cardiac trans-
plantation for survival. Pathogenic missense variants are 
distributed throughout the entire protein, affecting highly 
conserved amino acids that are located in regions directly 
involved in RNA binding or interactions between RPL3L and 
other ribosomal proteins, consequently causing structural 
perturbations within the 60S ribosomal subunit. Interest-
ingly, heterozygous variants in RPL3L have also been linked 
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to atrial fibrillation in humans. Using large-scale data from 
Iceland and the UK Biobank, it was demonstrated that spe-
cific low-frequency coding variants in RPL3L elevate the 
risk of atrial fibrillation, which could also been observed in 
distinct DCM patients with biallelic pathogenic variants in 
RPL3L, highlighting the crucial role of RPL3L in cardiac-re-
lated processes [45, 64]. Utilizing multi-omics approaches 
on iPSC-derived cardiomyocytes and corresponding engi-
neered heart muscle (EHM) models of distinct sets of RPL3L 
variants, we are currently elucidating in depth the molecu-
lar consequences of specific causative variants and unrav-
eling the underlying mechanisms by which these variants 
lead to dilated cardiomyopathy.

Genetic testing of patients with 
CMs: the missing heritability and 
future directions
Genetic testing for cardiomyopathies has become an increas-
ingly crucial component of clinical care, and NGS-based 
advances in sequencing technologies have significantly 
improved genetic testing as well as data interpretation and 
classification of detected variants in hereditary CMs. Still, 
despite improved diagnostic testing and ongoing research 
efforts, a genetic yield gap persists in both sporadic and 
specifically familial forms of CM. Moreover, the interpre-
tation of genetic results is further complicated by variable 

penetrance and expressivity prevalent in CMs. Hereditary 
cardiomyopathies frequently display significant phenotypic 
variability, and the penetrance of pathogenic variants is 
highly variable and typically below 100 %. Overall, modern 
genetic testing possesses the capability to identify causa-
tive variants in up to 50 % of patients with HCM, whereas 
causative genetic variants can be only detected in approxi-
mately 30 % of patients with familial DCM and even less in 
DCM patients without a recognized family history [65]. The 
reported detection rates align with the findings observed 
at the Institute of Human Genetics in Göttingen. Over the 
past five years, our laboratory has identified and reported 
pathogenic or likely pathogenic variants in approximately 
40 % of patients who underwent multigene panel testing 
for inherited cardiomyopathies (Figure 2A). The majority of 
disease-causing variants were identified in MYBPC3, MYH7, 
TTN, and FLNC (Figure 2B). Closing the diagnostic yield gap 
and identifying causative variants in remaining CM cases is 
challenging, as these are typically associated with sporadic 
CM or occur in small families that limit extensive phenotyp-
ing and co-segregation analyses. Currently, genetic testing 
for inherited CMs is performed using targeted multigene 
panels or whole exome sequencing. However, the interpre-
tation of results can be complicated due to the detection of 
numerous VUS.

In addition to identifying novel genetic factors associ-
ated with CMs, the large-scale generation of whole-genome 
data from CM patients may be valuable in the future, ena-
bling the determination of e.g. polygenic inheritance and 

Figure 2
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Figure 2: Diagnostic yield of multigene panel diagnostic for cardiomyopathies at the Institute of Human Genetics in Göttingen over the 
past five years. (A) Pathogenic or likely pathogenic variants were detected in approximately 40 % of patients who underwent multigene panel 
testing for inherited cardiomyopathies. (B) Overview of genes within the multigene panel in which pathogenic/likely pathogenic variants could be 
identified. The majority of disease-causing variants were identified in MYBPC3, MYH7, TTN, and FLNC.
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the establishment of so called polygenic risk scores (PRSs). 
Recent genetic studies have identified a growing number 
of patients with di- and polygenic inheritance patterns, 
indicating that multiple high-impact variants can have 
cumulative effects on disease penetrance and phenotypic 
outcome [66]. Similar to other diseases such as cancer, PRSs 
comprising hundreds of single nucleotide polymorphisms 
(SNPs) are currently being employed to enhance our under-
standing of the penetrance of monogenic variants leading 
to CMs, possibly enabling the identification of high-risk 
individuals in the future [67]. Although PRSs have not yet 
been approved for clinical application in CMs, they hold the 
potential to assist in identifying individuals at risk of de-
veloping heart failure and, potentially, predicting specific 
therapeutic responses that could enhance the treatment of 
genetic cardiomyopathies. Furthermore, the future imple-
mentation of long-read sequencing approaches in routine 
genome diagnostics of CMs will enhance the diagnostic 
yield, particularly in detecting structural variants in the 
genome and causative variants in repetitive structures.
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