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Abstract: Age-related macular degeneration (AMD) is a 
leading cause of visual impairment with the risk of devel-
oping the disease influenced by a combination of genetic 
and environmental factors. With the recent expansion of 
treatment options, enhancing diagnostic accuracy and im-
proving access to treatment are increasingly becoming the 
focus of interest. By using data from genome-wide associa-
tion studies (GWAS) to generate polygenic risk scores (PRS), 
an assessment of an individual’s genetic risk for AMD is 
feasible. While the predictive accuracy of the AMD-PRS is 
most robust for individuals at very high genetic risk, genetic 
diagnostic testing is warranted due to the large number of 
affected individuals resulting from the high prevalence of 
AMD. Early genetic confirmation of AMD-related pathology 
can facilitate timely treatment initiation, potentially im-
proving patient outcomes.

Keywords: Age-related macular degeneration, AMD, DNA 
diagnostics, risk prediction, polygenic risk score

Introduction
Blindness and moderate to severe vision impairment (MSVI) 
constitute a significant burden to patients, the worldwide 
health care systems, and the economy. A recent review, 
based on data from 2020, estimated the global annual pro-
ductivity loss due to blindness and MSVI at around $410.7 
billion [1]. In Europe, 2.6 million people are predicted to 
be affected by blindness, and an additional 30.5 million by 
MSVI [2]. In the population aged 50 years and older, age-re-
lated macular degeneration (AMD) is one of the main causes 
of blindness and MSVI, along with cataract, insufficiently 
corrected refractive error, and glaucoma [3]. In comparison 
to other major contributors to blindness and MSVI, treat-

ing and controlling the progression of AMD is challenging. 
Despite the complexities, new therapeutic options for AMD 
have recently become available but therapy is mainly con-
sidered effective if initiated early in the disease process. 
This article explores what information a genetic test for 
AMD can provide and examines the scenarios in which such 
testing might be beneficial.

Therapeutic options for AMD
As AMD is a leading cause of blindness and MSVI among the 
elderly, possible treatment options are of major importance 
for affected individuals. The late stages of AMD can man-
ifest in two forms, the more frequent geographic atrophy 
and the neovascular complication. These two forms can 
develop separately or concurrently in the same eye.

Geographic atrophy is characterized by distinct areas 
of depigmentation, with important hallmarks being a func-
tional loss of the retinal pigment epithelium and a causative 
involvement of the innate immune system, specifically the 
complement system. This form of AMD generally progresses 
slowly over a few years [4,5].

Neovascular AMD involves the disruption of Bruch’s 
membrane, retinal pigment epithelium, and photoreceptors 
by newly formed choroidal vessels. Such vessels are fragile 
and leak blood and fluid, leading to subretinal hemorrhage, 
fibrous scarring, and retinal detachment. This form of AMD 
progresses more rapidly and can cause significant vision 
loss in days and weeks rather than years [4,5].

For neovascular AMD, the first anti-vascular endothe-
lial growth factor (VEGF) therapy ranibizumab (Lucentis) 
was approved by the FDA in 2006 [6], and by the EMA in 
2007 [7]. VEGF plays an important role in angiogenesis and 
favors the formation of new blood vessels. Anti-VEGF drugs 
inhibit VEGF, thereby reducing the growth and leakage of 
abnormal blood vessels in neovascular AMD. Since 2006, 
several anti-VEGF therapies have been introduced to the 
market [8].

In February 2023, the FDA approved pegcetacoplan 
(SYFOVRE™) as the first therapy for geographic atrophy 
due to AMD [9]. Pegcetacoplan targets the C3 complement 
protein, thus inhibiting the downstream effects of an over-
activated complement system [10]. Surprisingly, European 
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approval for pegcetacoplan was denied by the EMA. While it 
was accepted that SYFOVRE™ treatment reduces lesion size 
in patients with geographic atrophy, it was criticized that 
treatment fails to improve visual function after 24 months 
of therapy [10,11]. Consequently, the EMA concluded that the 
treatment offers no significant clinical benefits to patients 
[11].

Another treatment for geographic atrophy, known as 
avacincaptad pegol (IZERVAY™), was approved by the FDA 
in August 2023 [12]. This therapeutic approach also targets 
the complement system, specifically acting as an inhibitor 
of complement C5 proteins [13]. A decision by the EMA re-
garding IZERVAY™ treatment for the European market is 
still pending.

Addressing complex diseases like 
AMD by genetic testing
AMD is classified as a complex disease. While for many 
decades, clinical genetic testing is routinely applied for 
monogenic diseases using DNA sequencing technologies 
such as Sanger sequencing and next-generation sequenc-
ing, complex diseases result from the interplay of multiple 
genetic and environmental factors, making the diagnostic 
process more demanding. In AMD, age and genetic pre-
disposition are well established as major contributors to 
disease [3,14]. Additionally, other factors, such as gender, 
smoking, ethnicity, and diet, are still in discussion [3,14–
17].

The genetic components of complex diseases generally 
involve numerous genomic regions, which often cannot 
be assigned to a particular gene, while each factor usually 
contributes only a small effect. Due to the interplay of 
multiple genetic factors, environmental influences, and 
the typically late onset of complex diseases, prognostic 
testing based purely on genetic factors has only limited 
utility. Genetic DNA testing using methods such as gene 
panel or whole exome/whole genome sequencing can be 
applied to exclude the presence of known monogenic disor-
ders phenotypically mimicking AMD. Once a monogenetic 
condition is ruled out, further testing can be conducted 
to explore the contribution of genetic markers associated 
with the complex disease of interest and to define an in-
dividual genetic risk profile of a patient. A genetic risk 
profile is often quantified as a polygenic risk score (PRS), 
which can be used for diagnostic purposes. The diagnostic 
performance of a PRS – defined as its ability to determine 
whether a person is affected by the disease in question – 
varies significantly depending on the disease. In general, 

PRS tend to perform better in complex diseases with higher 
heritability [18]. AMD has a heritability estimate of 46.7 % 
[19], with some estimates reaching up to 71 % [20], which is 
in the medium to upper range for the heritability estimates 
of complex diseases [18]. It is important to note that the 
use of PRS for diagnostic purposes in Germany is currently 
limited to research settings and is not part of accredited 
diagnostic procedures. PRS may also have prognostic ap-
plications when combined with clinical scores, which have 
shown prognostic value in conditions such as breast cancer 
and cardiovascular disease [21,22]. However, in the case of 
AMD, such a combination is not currently feasible, as there 
are no established clinical measures that can be integrated 
into this framework.

Risk assessment – the role of GWAS, 
PRS and machine learning in AMD
Genome-wide association studies (GWAS) are a powerful 
tool for investigating the genetic contributions to complex 
diseases, crucial for enabling risk assessment in conditions 
such as AMD. GWAS are designed to identify associations 
between genetic variants and disease traits by comparing 
allele frequencies between patients and healthy controls. 
The results from GWAS can be utilized to determine an in-
dividual’s aggregate genetic risk through the calculation of 
PRS.

A straightforward and common method to assess the 
PRS involves first determining the patient’s genotype for 
genetic variants identified by GWAS. The variants present in 
the patient are then weighted by their respective effect sizes 
and summed up. By comparing the resulting score with 
scores obtained from a reference population, an estimate 
of the individual’s genetic risk can be made. This approach 
allows PRS to provide a cumulative risk assessment based 
on the genetic profile of the individual [23].

Among the numerous genetic variants identified to be 
associated with a complex disease, a few exert strong effect 
sizes that significantly drive the disease risk. For example, 
AMD-associated variants in the CFH gene locus and the 
ARMS2/HTRA1 locus are known to have substantial impact 
[19]. Consequently, while weaker effect variants contribute 
to the overall PRS, their individual exclusion is not critical as 
their collective influence is relatively minor [23]. However, 
it is crucial to ensure that variants with strong effect sizes 
are accurately included in the PRS calculations. If such a 
variant fails quality control measures and is omitted, the 
resulting risk score may lose its predictive power and re-
liability.
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Over time, more statistically sophisticated and 
complex methods have been developed for calculating 
a PRS. These methods include considerations of linkage 
disequilibrium (LD), which assesses whether two genetic 
variants co-occur more or less frequently than expected. 
One such method is LD clumping and thresholding, which 
considers the LD of variants that pass a specific p-value 
threshold, effectively filtering out redundant signals [24]. 
However, the identification of independent signals and 
the consideration of LD structures are typically already 
addressed in most GWAS, including the AMD GWAS con-
ducted by Fritsche and colleagues in 2016 [19]. This ap-
proach, for instance, allowed the resolution of the signal 
at the CFH locus, which is strongly associated with AMD, 
into eight independent signals.

With the increasing amount of GWAS data and the cor-
responding rise in identified genetic associations  – often 
with small to very small effect sizes – alternative approaches 
to traditional GWAS-based PRS are gaining popularity. One 
such approach involves Bayesian selection methods, such as 
LDpred or PRS-CS (continuous shrinkage). These methods 
incorporate LD information from a reference panel and 
GWAS summary statistics to estimate posterior mean causal 
effect sizes [25,26]. Another innovative approach is the use 
of machine learning-optimized PRS, which selects genetic 
variants from a training dataset rather than from GWAS 
results, aiming to maximize predictive power [27]. For 
example, in a recent multi-ancestry GWAS for rheumatoid 
arthritis, 124 loci associated with the disease were identi-
fied [28]. Traditional GWAS-based PRS, would typically use 
all 124 loci [28]. However, a machine learning-optimized 
PRS demonstrated that strong predictive power could be 
achieved using only nine genetic variants for rheumatoid 
arthritis [27]. This highlights how advanced PRS methods, 
such as those optimized through machine learning, offer a 
promising new alternative for genetic diagnostics. By effec-
tively reducing the number of genetic variants needed for 
accurate prediction, these methods enhance the feasibility 
and applicability of genetic testing for complex diseases in 
clinical settings.

Additionally, machine learning can significantly 
enhance the interpretability and utility of PRS. Contempo-
rary methods combine PRS with additional factors such as 
patient age and gender, to predict disease risk more accu-
rately [29]. This approach not only improves the predictive 
power of PRS but also provides a more comprehensive and 
personalized risk assessment.

Applicability and interpretability of 
genetic diagnostics for AMD
Following, the applicability and interpretability of genetic 
diagnostic testing specifically for AMD is discussed. For 
establishment and validation data from the International 
AMD Genomics Consortium (IAMDGC) were used [19]. A PRS 
was calculated on the basis of 47 out of the 52 AMD-associ-
ated independent variants described by Fritsche and col-
leagues in 2016 [19]. Due to low coverage in the panel used 
for diagnostic testing the following variants were excluded: 
rs187328863 (one out of eight independent signals in the 
CFH locus, which does not correspond to the main signal 
with the lead variant rs10922109 of the CFH locus, odds 
ratio (OR) = 1.47 as described in [19]), rs114092250 (PRLR/
SPEF2 locus, OR = 0.71), rs10781182 (MIR6130/RORB locus, OR 
= 1.12), rs67538026 (CNN2 locus, OR = 0.9) and rs201459901 
(C20orf85 locus, OR = 0.76). In fact, not all lead variants can 
be easily genotyped in a sufficient quality. This was noted 
earlier by the EYE-RISK Consortium while developing a gen-
otype assay for AMD in 2021 [30].

A weighted GWAS-based model was used to determine 
the PRS [23]. The risk alleles of the respective genetic vari-
ants were counted and multiplied by their effect size. The 
weighted risk alleles were summed and divided by the 
mean effect size of all AMD risk variants. This way a PRS 
is obtained for each person, which reflects the number of 
risk alleles with an average effect size for the person. In ad-
dition, a machine learning based algorithm, namely Mon-
drian Cross-Conformal Prediction, was applied to determine 
the AMD disease status based on the PRS, age and gender of 
the patient [29]. Individuals from European ancestry in the 
Regensburg cohort of the IAMDGC dataset were used in the 
training dataset, including 1,667 patients with a late-stage 
form of AMD and 1,148 controls. The remaining European 
individuals from the IAMDGC dataset, including 14,209 late-
stage AMD patients and 16,566 controls, were included for 
validation [19].

When constructing the PRS for a cohort, the scores 
typically follow a Gaussian distribution. Generally, AMD 
patients exhibit a slightly higher average risk compared to 
unaffected individuals (Figure 1A), although there is sub-
stantial overlap between the two distributions. To enhance 
interpretability, one effective strategy is to classify individ-
uals into risk groups, such as quintiles, based on their PRS 
[23]. This classification assigns people to specific risk cate-
gories, making it possible to interpret disease risk more pre-
cisely. Predictive statements about disease status are most 
meaningful for individuals in the very low or very high-risk 
groups (Figure 1B), although additional factors like gender 
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and age are considered. For those in the medium-risk cate-
gories, no sufficient prediction of the disease status is pos-
sible.

This pattern is also evident in the validation of the 
prediction model. The overall sensitivity of the prediction 
model was 72.1 % and the overall specificity was 75.7 %. 
There is a reliable prediction range for both AMD cases and 
controls at the extremes (Figure 2A), but accuracy dimin-
ishes considerably in the overlapping region. This is also re-
flected in the predicted probability of being affected, which 
is made possible by the application of the machine learning 
approach (Figure 2B). While individuals with a very low or 
very high genetic risk are reliably predicted as being un-
affected or affected, respectively, the probability for the 
middle risk groups lies in a range between around 20 and 
80 % and therefore allows only limited conclusions.

This relationship between genetic risk and conclu-
sive prediction is additionally reflected in the error rates 
(Figure 3), which vary substantially between the different 

risk groups. For individuals in the middle risk groups (2 
and 3), the average error across both genders and all age 
groups is around 29 %, indicating less reliable predictions 
for these groups. In the low-risk group (group 1), predic-
tions are reasonably solid, particularly for individuals up 
to the age of 80, with an error rate below 10 %. However, 
for those older than 80, non-genetic factors including age 
seem to have a stronger influence, increasing the error rate 
to approximately 20 %. In the highest risk groups (4 and 5), 
predictions for people under 60 years of age are rather erro-
neous, with an error rate of approximately 45 %. However, 
as age increases, the reliability of predictions improves sig-
nificantly, with the error rate dropping to 10 % and below 
for individuals over the age of 70 years. It should be noted 
that the dataset was divided into several smaller subsets to 
determine the error rates, resulting in sample sizes within 
separate groups ranging from 73 to 2,862 individuals.

There is no noticeable difference in the error rate 
between the two genders for the individual age and risk 
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Figure 1: Polygenic risk score (PRS) distribution and predictive expressiveness. (A) PRS distribution of patients with age-related macular degen-
eration (AMD) and healthy controls of European descent from the International AMD Genomics Consortium (IAMDGC) [19]. The PRS was calculated 
using 47 out of 52 independent genome-wide association study (GWAS) lead variants [19], representing the cumulative genetic risk of each individual. 
Risk quintiles are indicated by gray dashed lines and are defined as follows: group 1 PRS ≤ 25.3, group 2 25.31 – 29.9, group 3 29.91 – 34.5, group 
4 34.51 – 39.1, and group 5 > 39.1. Overall, AMD patients exhibit a genetic risk profile shifted towards a higher genetic risk compared to healthy 
controls. (B) A machine learning approach was used for a disease status prediction based on PRS, age and gender [29]. Individuals from the IAMDGC 
dataset recruited in Regensburg were used as a training dataset. A valid disease prediction is feasible for individuals with either a very high (group 5) 
or very low (group 1) PRS.
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groups. It should be noted that this method is designed 
to assess whether a person is currently affected by AMD, 
rather than to predict future disease onset, though such pro-
jections can be inferred.

In considering the application of genetic diagnostics 
for AMD, it is important to determine the percentage of the 
population for which a valid risk assessment can be made 
based on genetic profiles. In 2012, Grassmann and colleagues 
demonstrated that approximately 0.5 % of the European 
population falls into the highest risk quintile for AMD, with 
an additional 9 % in the second highest risk quintile, which 
already provides relatively good predictive values [23]. 
However, genetic diagnostics would primarily be used for 
individuals who already exhibit symptoms of the disease. 
Analysis of the PRS distribution in the IAMDGC dataset 
shows that 27 % of late-stage AMD patients are represented 
in the two highest quintiles. Given that AMD is a frequent 
complex disease, it is estimated that around 300,000 people 
in Central and Eastern Europe and Central Asia were either 
blind or had MSVI due to AMD in 2020 [3]. Based on these 
numbers, approximately 81,000 individuals fall into the 
highest two risk quintiles. This expressive number under-
scores the potential impact of applying genetic diagnostics 
to identify high-risk individuals and facilitate early inter-
vention and management.

Limitations
Ethnicity is a critical factor in the applicability of PRS 
derived from GWAS or even for machine learning opti-
mized PRS approaches. For instance, Fritsche and col-
leagues predominantly included participants of European 
descent in the AMD GWAS conducted in 2016 [19]. Since 
common genetic variants often exhibit significant variabil-
ity between populations, the PRS derived from this GWAS 
can only provide accurate risk assessments for individuals 
with a European background. In case of machine learning 
optimized PRS approaches, the validity heavily depends on 
the ethnic composition of the training dataset. To address 
this limitation, one potential approach can be to preprocess 
GWAS summary statistics from multiple ethnicities using a 
weighted meta-analysis before forming a PRS [31].

Additionally, the smoking status of individuals was not 
included in the approach described here. Although smoking 
is a well-known risk factor for AMD [15], the self-reported 
smoking data from study participants and patients is often 
biased [32]. Including smoking status could enhance the ac-
curacy of risk and disease status assessments.

A significant limitation of the PRS results presented 
here for AMD is that the same dataset was used for both 
the machine learning performance estimation and the orig-

Figure 2: Validation of the disease prediction model for AMD. (A) PRS distribution of correctly and incorrectly predicted AMD cases and controls 
using the machine learning approach. (B) Probability of being affected by AMD for correctly and incorrectly predicted AMD cases and controls, 
displayed according to PRS.
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inal GWAS. This lack of independence between datasets 
can lead to an overestimation of predictive performance 
[33,34]. Koch and colleagues highlighted in a recent review 
on the clinical applicability of PRS [18] that few PRS have 
been validated using independent datasets and that the 
observed predictive power is typically lower in external 
validation studies than in the initial findings. Consequently, 
the predictive power of the PRS for AMD, as evaluated in 
the validation steps conducted in this study, is likely over-
estimated. To gain a more accurate assessment of the di-
agnostic, and potentially even prognostic, utility of a PRS 
for AMD, independent long-term follow-up studies are  
needed.

Finally, a significant challenge for the implementation 
of genetic tests is patient counseling. It is crucial that pa-
tients are thoroughly informed about the meaningfulness 
of diagnostic tests and the potential benefits they offer. It is 
crucial to distinguish clearly between diagnostic and prog-
nostic tests for patients. Preventive treatment with AMD 
medications, particularly intravitreal injections, should be 
approached with caution due to the associated discomfort 
and side effects. The adverse effects of intravitreal injec-
tions, which do not provide significant clinical benefits, 
were a major reason for the EMA’s decision not to approve 
SYFOVRE™ for the European market [11]. Understanding 
the potential benefits and risks is essential for the effective 
application of genetic diagnostic testing for complex dis-
eases in clinical practice. One way to enhance collaboration 
between human geneticists and clinical ophthalmologists, 
and to optimize patient care, is through the establishment 
of genetic diagnostic boards. These boards can discuss and 
evaluate the individual value of genetic testing for a patient, 

especially in cases of uncertainty, integrating it with clinical 
diagnoses to ensure a comprehensive approach to patient 
management.

Conclusion/Summary
Genetic diagnostic testing for complex diseases such as AMD 
is not recommended as a standalone prognostic tool due to 
the intricate interplay between genetic and environmental 
factors. Notably, current genetic tests for AMD do not ade-
quately account for environmental risk factors, which sig-
nificantly limits their prognostic utility. However, once clini-
cal symptoms of AMD manifest, genetic testing may provide 
additional value for an estimated 9.5 % to 27 % of patients. 
These figures are projections, and the actual values likely 
fall somewhere in between. Validation through independ-
ent long-term studies is essential to confirm these estimates.

While there is no cure for AMD, early treatment initia-
tion can slow disease progression, which is crucial given the 
substantial visual impairment and associated comorbidities 
such as depression experienced by AMD patients [35,36].

Despite these benefits, there are technical limitations to 
consider. Most genetic studies in the past mainly involved 
European individuals, making it challenging to generalize 
findings across ethnic populations. Nonetheless, the ap-
plication of advanced methods, such as machine learning, 
is expected to enhance the applicability and accuracy of 
genetic tests for complex diseases in the future, potentially 
overcoming current limitations and improving patient out-
comes.
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