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Abstract: Age-related macular degeneration (AMD) is a
leading cause of visual impairment with the risk of devel-
oping the disease influenced by a combination of genetic
and environmental factors. With the recent expansion of
treatment options, enhancing diagnostic accuracy and im-
proving access to treatment are increasingly becoming the
focus of interest. By using data from genome-wide associa-
tion studies (GWAS) to generate polygenic risk scores (PRS),
an assessment of an individual’s genetic risk for AMD is
feasible. While the predictive accuracy of the AMD-PRS is
most robust for individuals at very high genetic risk, genetic
diagnostic testing is warranted due to the large number of
affected individuals resulting from the high prevalence of
AMD. Early genetic confirmation of AMD-related pathology
can facilitate timely treatment initiation, potentially im-
proving patient outcomes.
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Introduction

Blindness and moderate to severe vision impairment (MSVI)
constitute a significant burden to patients, the worldwide
health care systems, and the economy. A recent review,
based on data from 2020, estimated the global annual pro-
ductivity loss due to blindness and MSVI at around $410.7
billion [1]. In Europe, 2.6 million people are predicted to
be affected by blindness, and an additional 30.5 million by
MSVI [2]. In the population aged 50 years and older, age-re-
lated macular degeneration (AMD) is one of the main causes
of blindness and MSVI, along with cataract, insufficiently
corrected refractive error, and glaucoma [3]. In comparison
to other major contributors to blindness and MSVI, treat-
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ing and controlling the progression of AMD is challenging.
Despite the complexities, new therapeutic options for AMD
have recently become available but therapy is mainly con-
sidered effective if initiated early in the disease process.
This article explores what information a genetic test for
AMD can provide and examines the scenarios in which such
testing might be beneficial.

Therapeutic options for AMD

As AMD is a leading cause of blindness and MSVI among the
elderly, possible treatment options are of major importance
for affected individuals. The late stages of AMD can man-
ifest in two forms, the more frequent geographic atrophy
and the neovascular complication. These two forms can
develop separately or concurrently in the same eye.

Geographic atrophy is characterized by distinct areas
of depigmentation, with important hallmarks being a func-
tional loss of the retinal pigment epithelium and a causative
involvement of the innate immune system, specifically the
complement system. This form of AMD generally progresses
slowly over a few years [4,5].

Neovascular AMD involves the disruption of Bruch’s
membrane, retinal pigment epithelium, and photoreceptors
by newly formed choroidal vessels. Such vessels are fragile
and leak blood and fluid, leading to subretinal hemorrhage,
fibrous scarring, and retinal detachment. This form of AMD
progresses more rapidly and can cause significant vision
loss in days and weeks rather than years [4,5].

For neovascular AMD, the first anti-vascular endothe-
lial growth factor (VEGF) therapy ranibizumab (Lucentis)
was approved by the FDA in 2006 [6], and by the EMA in
2007 [7]. VEGF plays an important role in angiogenesis and
favors the formation of new blood vessels. Anti-VEGF drugs
inhibit VEGE, thereby reducing the growth and leakage of
abnormal blood vessels in neovascular AMD. Since 2006,
several anti-VEGF therapies have been introduced to the
market [8].

In February 2023, the FDA approved pegcetacoplan
(SYFOVRE™) as the first therapy for geographic atrophy
due to AMD [9]. Pegcetacoplan targets the C3 complement
protein, thus inhibiting the downstream effects of an over-
activated complement system [10]. Surprisingly, European
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approval for pegcetacoplan was denied by the EMA. While it
was accepted that SYFOVRE™ treatment reduces lesion size
in patients with geographic atrophy, it was criticized that
treatment fails to improve visual function after 24 months
of therapy [10,11]. Consequently, the EMA concluded that the
treatment offers no significant clinical benefits to patients
[11].

Another treatment for geographic atrophy, known as
avacincaptad pegol (IZERVAY™), was approved by the FDA
in August 2023 [12]. This therapeutic approach also targets
the complement system, specifically acting as an inhibitor
of complement C5 proteins [13]. A decision by the EMA re-
garding IZERVAY™ treatment for the European market is
still pending.

Addressing complex diseases like
AMD by genetic testing

AMD is classified as a complex disease. While for many
decades, clinical genetic testing is routinely applied for
monogenic diseases using DNA sequencing technologies
such as Sanger sequencing and next-generation sequenc-
ing, complex diseases result from the interplay of multiple
genetic and environmental factors, making the diagnostic
process more demanding. In AMD, age and genetic pre-
disposition are well established as major contributors to
disease [3,14]. Additionally, other factors, such as gender,
smoking, ethnicity, and diet, are still in discussion [3,14—
171.

The genetic components of complex diseases generally
involve numerous genomic regions, which often cannot
be assigned to a particular gene, while each factor usually
contributes only a small effect. Due to the interplay of
multiple genetic factors, environmental influences, and
the typically late onset of complex diseases, prognostic
testing based purely on genetic factors has only limited
utility. Genetic DNA testing using methods such as gene
panel or whole exome/whole genome sequencing can be
applied to exclude the presence of known monogenic disor-
ders phenotypically mimicking AMD. Once a monogenetic
condition is ruled out, further testing can be conducted
to explore the contribution of genetic markers associated
with the complex disease of interest and to define an in-
dividual genetic risk profile of a patient. A genetic risk
profile is often quantified as a polygenic risk score (PRS),
which can be used for diagnostic purposes. The diagnostic
performance of a PRS — defined as its ability to determine
whether a person is affected by the disease in question —
varies significantly depending on the disease. In general,
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PRS tend to perform better in complex diseases with higher
heritability [18]. AMD has a heritability estimate of 46.7 %
[19], with some estimates reaching up to 71 % [20], which is
in the medium to upper range for the heritability estimates
of complex diseases [18]. It is important to note that the
use of PRS for diagnostic purposes in Germany is currently
limited to research settings and is not part of accredited
diagnostic procedures. PRS may also have prognostic ap-
plications when combined with clinical scores, which have
shown prognostic value in conditions such as breast cancer
and cardiovascular disease [21,22]. However, in the case of
AMD, such a combination is not currently feasible, as there
are no established clinical measures that can be integrated
into this framework.

Risk assessment - the role of GWAS,
PRS and machine learning in AMD

Genome-wide association studies (GWAS) are a powerful
tool for investigating the genetic contributions to complex
diseases, crucial for enabling risk assessment in conditions
such as AMD. GWAS are designed to identify associations
between genetic variants and disease traits by comparing
allele frequencies between patients and healthy controls.
The results from GWAS can be utilized to determine an in-
dividual’s aggregate genetic risk through the calculation of
PRS.

A straightforward and common method to assess the
PRS involves first determining the patient’s genotype for
genetic variants identified by GWAS. The variants present in
the patient are then weighted by their respective effect sizes
and summed up. By comparing the resulting score with
scores obtained from a reference population, an estimate
of the individual’s genetic risk can be made. This approach
allows PRS to provide a cumulative risk assessment based
on the genetic profile of the individual [23].

Among the numerous genetic variants identified to be
associated with a complex disease, a few exert strong effect
sizes that significantly drive the disease risk. For example,
AMD-associated variants in the CFH gene locus and the
ARMS2/HTRAT1 locus are known to have substantial impact
[19]. Consequently, while weaker effect variants contribute
to the overall PRS, their individual exclusion is not critical as
their collective influence is relatively minor [23]. However,
it is crucial to ensure that variants with strong effect sizes
are accurately included in the PRS calculations. If such a
variant fails quality control measures and is omitted, the
resulting risk score may lose its predictive power and re-
liability.
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Over time, more statistically sophisticated and
complex methods have been developed for calculating
a PRS. These methods include considerations of linkage
disequilibrium (LD), which assesses whether two genetic
variants co-occur more or less frequently than expected.
One such method is LD clumping and thresholding, which
considers the LD of variants that pass a specific p-value
threshold, effectively filtering out redundant signals [24].
However, the identification of independent signals and
the consideration of LD structures are typically already
addressed in most GWAS, including the AMD GWAS con-
ducted by Fritsche and colleagues in 2016 [19]. This ap-
proach, for instance, allowed the resolution of the signal
at the CFH locus, which is strongly associated with AMD,
into eight independent signals.

With the increasing amount of GWAS data and the cor-
responding rise in identified genetic associations — often
with small to very small effect sizes — alternative approaches
to traditional GWAS-based PRS are gaining popularity. One
such approach involves Bayesian selection methods, such as
LDpred or PRS-CS (continuous shrinkage). These methods
incorporate LD information from a reference panel and
GWAS summary statistics to estimate posterior mean causal
effect sizes [25,26]. Another innovative approach is the use
of machine learning-optimized PRS, which selects genetic
variants from a training dataset rather than from GWAS
results, aiming to maximize predictive power [27]. For
example, in a recent multi-ancestry GWAS for rheumatoid
arthritis, 124 loci associated with the disease were identi-
fied [28]. Traditional GWAS-based PRS, would typically use
all 124 loci [28]. However, a machine learning-optimized
PRS demonstrated that strong predictive power could be
achieved using only nine genetic variants for rheumatoid
arthritis [27]. This highlights how advanced PRS methods,
such as those optimized through machine learning, offer a
promising new alternative for genetic diagnostics. By effec-
tively reducing the number of genetic variants needed for
accurate prediction, these methods enhance the feasibility
and applicability of genetic testing for complex diseases in
clinical settings.

Additionally, machine learning can significantly
enhance the interpretability and utility of PRS. Contempo-
rary methods combine PRS with additional factors such as
patient age and gender, to predict disease risk more accu-
rately [29]. This approach not only improves the predictive
power of PRS but also provides a more comprehensive and
personalized risk assessment.
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Applicability and interpretability of
genetic diagnostics for AMD

Following, the applicability and interpretability of genetic
diagnostic testing specifically for AMD is discussed. For
establishment and validation data from the International
AMD Genomics Consortium (IAMDGC) were used [19]. APRS
was calculated on the basis of 47 out of the 52 AMD-associ-
ated independent variants described by Fritsche and col-
leagues in 2016 [19]. Due to low coverage in the panel used
for diagnostic testing the following variants were excluded:
rs187328863 (one out of eight independent signals in the
CFH locus, which does not correspond to the main signal
with the lead variant rs10922109 of the CFH locus, odds
ratio (OR) = 1.47 as described in [19]), rs114092250 (PRLR/
SPEF2]ocus, OR =0.71), rs10781182 (MIR6130/RORB locus, OR
= 1.12), rs67538026 (CNN2 locus, OR = 0.9) and rs201459901
(C200rf85 locus, OR = 0.76). In fact, not all lead variants can
be easily genotyped in a sufficient quality. This was noted
earlier by the EYE-RISK Consortium while developing a gen-
otype assay for AMD in 2021 [30].

A weighted GWAS-based model was used to determine
the PRS [23]. The risk alleles of the respective genetic vari-
ants were counted and multiplied by their effect size. The
weighted risk alleles were summed and divided by the
mean effect size of all AMD risk variants. This way a PRS
is obtained for each person, which reflects the number of
risk alleles with an average effect size for the person. In ad-
dition, a machine learning based algorithm, namely Mon-
drian Cross-Conformal Prediction, was applied to determine
the AMD disease status based on the PRS, age and gender of
the patient [29]. Individuals from European ancestry in the
Regensburg cohort of the IAMDGC dataset were used in the
training dataset, including 1,667 patients with a late-stage
form of AMD and 1,148 controls. The remaining European
individuals from the IAMDGC dataset, including 14,209 late-
stage AMD patients and 16,566 controls, were included for
validation [19].

When constructing the PRS for a cohort, the scores
typically follow a Gaussian distribution. Generally, AMD
patients exhibit a slightly higher average risk compared to
unaffected individuals (Figure 1A), although there is sub-
stantial overlap between the two distributions. To enhance
interpretability, one effective strategy is to classify individ-
uals into risk groups, such as quintiles, based on their PRS
[23]. This classification assigns people to specific risk cate-
gories, making it possible to interpret disease risk more pre-
cisely. Predictive statements about disease status are most
meaningful for individuals in the very low or very high-risk
groups (Figure 1B), although additional factors like gender
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Figure 1: Polygenic risk score (PRS) distribution and predictive expressiveness. (A) PRS distribution of patients with age-related macular degen-
eration (AMD) and healthy controls of European descent from the International AMD Genomics Consortium (IAMDGC) [19]. The PRS was calculated
using 47 out of 52 independent genome-wide association study (GWAS) lead variants [19], representing the cumulative genetic risk of each individual.
Risk quintiles are indicated by gray dashed lines and are defined as follows: group 1 PRS < 25.3, group 2 25.31 - 29.9, group 3 29.91 - 34.5, group
434.51 - 39.1, and group 5 > 39.1. Overall, AMD patients exhibit a genetic risk profile shifted towards a higher genetic risk compared to healthy
controls. (B) A machine learning approach was used for a disease status prediction based on PRS, age and gender [29]. Individuals from the IAMDGC
dataset recruited in Regensburg were used as a training dataset. A valid disease prediction is feasible for individuals with either a very high (group 5)

or very low (group 1) PRS.

and age are considered. For those in the medium-risk cate-
gories, no sufficient prediction of the disease status is pos-
sible.

This pattern is also evident in the validation of the
prediction model. The overall sensitivity of the prediction
model was 72.1% and the overall specificity was 75.7 %.
There is a reliable prediction range for both AMD cases and
controls at the extremes (Figure 2A), but accuracy dimin-
ishes considerably in the overlapping region. This is also re-
flected in the predicted probability of being affected, which
is made possible by the application of the machine learning
approach (Figure 2B). While individuals with a very low or
very high genetic risk are reliably predicted as being un-
affected or affected, respectively, the probability for the
middle risk groups lies in a range between around 20 and
80 % and therefore allows only limited conclusions.

This relationship between genetic risk and conclu-
sive prediction is additionally reflected in the error rates
(Figure 3), which vary substantially between the different

risk groups. For individuals in the middle risk groups (2
and 3), the average error across both genders and all age
groups is around 29 %, indicating less reliable predictions
for these groups. In the low-risk group (group 1), predic-
tions are reasonably solid, particularly for individuals up
to the age of 80, with an error rate below 10 %. However,
for those older than 80, non-genetic factors including age
seem to have a stronger influence, increasing the error rate
to approximately 20 %. In the highest risk groups (4 and 5),
predictions for people under 60 years of age are rather erro-
neous, with an error rate of approximately 45 %. However,
as age increases, the reliability of predictions improves sig-
nificantly, with the error rate dropping to 10 % and below
for individuals over the age of 70 years. It should be noted
that the dataset was divided into several smaller subsets to
determine the error rates, resulting in sample sizes within
separate groups ranging from 73 to 2,862 individuals.
There is no noticeable difference in the error rate
between the two genders for the individual age and risk
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Figure 2: Validation of the disease prediction model for AMD. (A) PRS distribution of correctly and incorrectly predicted AMD cases and controls
using the machine learning approach. (B) Probability of being affected by AMD for correctly and incorrectly predicted AMD cases and controls,

displayed according to PRS.

groups. It should be noted that this method is designed
to assess whether a person is currently affected by AMD,
rather than to predict future disease onset, though such pro-
jections can be inferred.

In considering the application of genetic diagnostics
for AMD, it is important to determine the percentage of the
population for which a valid risk assessment can be made
based on genetic profiles. In 2012, Grassmann and colleagues
demonstrated that approximately 0.5% of the European
population falls into the highest risk quintile for AMD, with
an additional 9 % in the second highest risk quintile, which
already provides relatively good predictive values [23].
However, genetic diagnostics would primarily be used for
individuals who already exhibit symptoms of the disease.
Analysis of the PRS distribution in the IAMDGC dataset
shows that 27 % of late-stage AMD patients are represented
in the two highest quintiles. Given that AMD is a frequent
complex disease, it is estimated that around 300,000 people
in Central and Eastern Europe and Central Asia were either
blind or had MSVI due to AMD in 2020 [3]. Based on these
numbers, approximately 81,000 individuals fall into the
highest two risk quintiles. This expressive number under-
scores the potential impact of applying genetic diagnostics
to identify high-risk individuals and facilitate early inter-
vention and management.

Limitations

Ethnicity is a critical factor in the applicability of PRS
derived from GWAS or even for machine learning opti-
mized PRS approaches. For instance, Fritsche and col-
leagues predominantly included participants of European
descent in the AMD GWAS conducted in 2016 [19]. Since
common genetic variants often exhibit significant variabil-
ity between populations, the PRS derived from this GWAS
can only provide accurate risk assessments for individuals
with a European background. In case of machine learning
optimized PRS approaches, the validity heavily depends on
the ethnic composition of the training dataset. To address
this limitation, one potential approach can be to preprocess
GWAS summary statistics from multiple ethnicities using a
weighted meta-analysis before forming a PRS [31].

Additionally, the smoking status of individuals was not
included in the approach described here. Although smoking
is a well-known risk factor for AMD [15], the self-reported
smoking data from study participants and patients is often
biased [32]. Including smoking status could enhance the ac-
curacy of risk and disease status assessments.

A significant limitation of the PRS results presented
here for AMD is that the same dataset was used for both
the machine learning performance estimation and the orig-



32 —— Christina Kiel, Bernhard H. F. Weber, Diagnostic testing DE GRUYTER
50
B male
__ 40 S— female
S
£ 30
Q
o
— 20
2
T
0 ) ) ) 3
&@ :\0*\ g>® 7330* 506\ :\@ 5b® 739* S Q:\Q* beg 739* S :\0* 6529 73)@
AN & A & A & A
risk group 1 risk group 2 risk group 3 risk group 4+5

Figure 3: Error rates of disease status prediction by risk group. The percentages of incorrectly predicted individuals are shown per risk group,

age and gender.

inal GWAS. This lack of independence between datasets
can lead to an overestimation of predictive performance
[33,34]. Koch and colleagues highlighted in a recent review
on the clinical applicability of PRS [18] that few PRS have
been validated using independent datasets and that the
observed predictive power is typically lower in external
validation studies than in the initial findings. Consequently,
the predictive power of the PRS for AMD, as evaluated in
the validation steps conducted in this study, is likely over-
estimated. To gain a more accurate assessment of the di-
agnostic, and potentially even prognostic, utility of a PRS
for AMD, independent long-term follow-up studies are
needed.

Finally, a significant challenge for the implementation
of genetic tests is patient counseling. It is crucial that pa-
tients are thoroughly informed about the meaningfulness
of diagnostic tests and the potential benefits they offer. It is
crucial to distinguish clearly between diagnostic and prog-
nostic tests for patients. Preventive treatment with AMD
medications, particularly intravitreal injections, should be
approached with caution due to the associated discomfort
and side effects. The adverse effects of intravitreal injec-
tions, which do not provide significant clinical benefits,
were a major reason for the EMA’s decision not to approve
SYFOVRE™ for the European market [11]. Understanding
the potential benefits and risks is essential for the effective
application of genetic diagnostic testing for complex dis-
eases in clinical practice. One way to enhance collaboration
between human geneticists and clinical ophthalmologists,
and to optimize patient care, is through the establishment
of genetic diagnostic boards. These boards can discuss and
evaluate the individual value of genetic testing for a patient,

especially in cases of uncertainty, integrating it with clinical
diagnoses to ensure a comprehensive approach to patient
management.

Conclusion/Summary

Genetic diagnostic testing for complex diseases such as AMD
is not recommended as a standalone prognostic tool due to
the intricate interplay between genetic and environmental
factors. Notably, current genetic tests for AMD do not ade-
quately account for environmental risk factors, which sig-
nificantly limits their prognostic utility. However, once clini-
cal symptoms of AMD manifest, genetic testing may provide
additional value for an estimated 9.5% to 27 % of patients.
These figures are projections, and the actual values likely
fall somewhere in between. Validation through independ-
ent long-term studies is essential to confirm these estimates.

While there is no cure for AMD, early treatment initia-
tion can slow disease progression, which is crucial given the
substantial visual impairment and associated comorbidities
such as depression experienced by AMD patients [35,36].

Despite these benefits, there are technical limitations to
consider. Most genetic studies in the past mainly involved
European individuals, making it challenging to generalize
findings across ethnic populations. Nonetheless, the ap-
plication of advanced methods, such as machine learning,
is expected to enhance the applicability and accuracy of
genetic tests for complex diseases in the future, potentially
overcoming current limitations and improving patient out-
comes.



DE GRUYTER

Acknowledgement: We gratefully acknowledge the contrib-
utors and participants of the International AMD Genomics
Consortium (IAMDGO).

Research funding: None declared.

Author contributions: All authors have accepted respon-
sibility for the entire content of this manuscript and ap-
proved its submission.

Competing interests: Authors state no conflict of interest.
Informed consent: Not applicable.

Ethical approval: Not applicable.

References

[

[2

B3]

[4]

3]

(6]

[71

Burton M), Ramke J, Marques AP, Bourne RR, Congdon N, Jones

I, Ah Tong BA, Arunga S, Bachani D, Bascaran C, Bastawrous

A, Blanchet K, Braithwaite T, Buchan JC, Cairns J, Cama A,
Chagunda M, Chuluunkhuu C, Cooper A, Crofts-Lawrence |, Dean
WH, Denniston AK, Ehrlich JR, Emerson PM, Evans JR, Frick KD,
Friedman DS, Furtado JM, Gichangi MM, Gichuhi S, Gilbert SS,
Gurung R, Habtamu E, Holland P, Jonas JB, Keane PA, Keay L,
Khanna RC, Khaw PT, Kuper H, Kyari F, van Lansingh C, Mactaggart
I, Mafwiri MM, Mathenge W, McCormick I, Morjaria P, Mowatt L,
Muirhead D, Murthy GV, Mwangi N, Patel DB, Peto T, Qureshi BM,
Salomao SR, Sarah V, Shilio BR, Solomon AW, Swenor BK, Taylor
HR, Wang N, Webson A, West SK, Wong TY, Wormald R, Yasmin

S, Yusufu M, Silva JC, Resnikoff S, Ravilla T, Gilbert CE, Foster A,
Faal HB (2021) The Lancet Global Health Commission on Global
Eye Health: vision beyond 2020. The Lancet. Global health 9:
e489-e551.

GBD 2019 Blindness and Vision Impairment Collaborators, Vision
Loss Expert Group of the Global Burden of Disease Study (2021)
Trends in prevalence of blindness and distance and near vision
impairment over 30 years: an analysis for the Global Burden of
Disease Study. The Lancet. Global health 9: e130-e143.

GBD 2019 Blindness and Vision Impairment Collaborators, Vision
Loss Expert Group of the Global Burden of Disease Study (2021)
Causes of blindness and vision impairment in 2020 and trends
over 30 years, and prevalence of avoidable blindness in relation to
VISION 2020: the Right to Sight: an analysis for the Global Burden
of Disease Study. The Lancet. Global health 9: e144-e160.

Swaroop A, Chew EY, Rickman CB, Abecasis GR (2009) Unraveling

a multifactorial late-onset disease: from genetic susceptibility to
disease mechanisms for age-related macular degeneration. Annual
review of genomics and human genetics 10: 19-43.

van Lookeren Campagne M, LeCouter J, Yaspan BL, Ye W (2014)
Mechanisms of age-related macular degeneration and therapeutic
opportunities. The Journal of pathology 232: 151-164.

FDA (2024) Drug Approval Package: Lucentis (Ranibizumab) NDA
#125156. Available: https://www.accessdata.fda.gov/dr
ugsatfda_docs/nda/2006/125156s0000_LucentisTOC.cfm. Accessed
26 September 2024.

European Medicines Agency (EMA) (2024) Lucentis. Available:
https://www.ema.europa.eu/en/medicines/human/EPAR/lucentis.
Accessed 2 August 2024.

(8]

(9]

(0]

m

[12]

[13]

[14]

(3]

(6]

(7]

(18]

(9]

Christina Kiel, Bernhard H. F. Weber, Diagnostic testing == 33

Song D, Liu P, Shang K, Ma Y (2022) Application and mechanism of
anti-VEGF drugs in age-related macular degeneration. Frontiers in
bioengineering and biotechnology 10: 943915.

Apellis Pharmaceuticals, Inc. (2024) FDA Approves SYFOVRE™
(pegcetacoplan injection) as the first and only treatment for
geographic atrophy (GA), a leading cause of blindness. Available:
https://investors.apellis.com/news-releases/news-release-details/
fda-approves-syfovretm-pegcetacoplan-injection-first-and-only.
Accessed 2 August 2024.

Heier JS, Lad EM, Holz FG, Rosenfeld PJ, Guymer RH, Boyer D, Grossi
F, Baumal CR, Korobelnik J-F, Slakter JS, Waheed NK, Metlapally

R, Pearce I, Steinle N, Francone AA, Hu A, Lally DR, Deschatelets

P, Francois C, Bliss C, Staurenghi G, Monés J, Singh RP, Ribeiro R,
Wykoff CC (2023) Pegcetacoplan for the treatment of geographic
atrophy secondary to age-related macular degeneration (OAKS and
DERBY): two multicentre, randomised, double-masked, sham-con-
trolled, phase 3 trials. The Lancet 402: 1434-1448.

European Medicines Agency (EMA) (2024) Syfovre. Available:
https://www.ema.europa.eu/en/medicines/human/EPAR/syfovre.
Accessed 26 September 2024.

Astellas Pharma Inc (2024) Iveric Bio Receives U. S. FDA Approval
for IZERVAY™ (avacincaptad pegol intravitreal solution), a New
Treatment for Geographic Atrophy. Available: https://www.astellas.
com/en/news/28281. Accessed 26 September 2024.

Khanani AM, Patel SS, Staurenghi G, Tadayoni R, Danzig CJ,
Eichenbaum DA, Hsu J, Wykoff CC, Heier JS, Lally DR, Monés J,
Nielsen JS, Sheth VS, Kaiser PK, Clark ], Zhu L, Patel H, Tang J,

Desai D, Jaffe GJ (2023) Efficacy and safety of avacincaptad pegol
in patients with geographic atrophy (GATHER2): 12-month results
from a randomised, double-masked, phase 3 trial. Lancet (London,
England) 402: 1449-1458.

Vision Loss Expert Group of the Global Burden of Disease Study,
GBD 2019 Blindness and Vision Impairment Collaborators (2024)
Global estimates on the number of people blind or visually
impaired by age-related macular degeneration: a meta-analysis
from 2000 to 2020. Eye 38: 2070-2082.

Delcourt C, Diaz JL, Ponton-Sanchez A, Papoz L (1998) Smoking and
age-related macular degeneration. The POLA Study. Pathologies
Oculaires Liées a I’Age. Archives of ophthalmology 116: 1031-1035.
Colijn JM, Meester-Smoor M, Verzijden T, Breuk A de, Silva R, Merle
BM, Cougnard-Grégoire A, Hoyng CB, Fauser S, Coolen A, Creuzot-
Garcher C, Hense H-W, Ueffing M, Delcourt C, Hollander Al den,
Klaver CC (2021) Genetic risk, lifestyle, and age-related macular
degeneration in Europe: The EYE-RISK Consortium. Ophthalmology
128:1039-1049.

Angelia M, Amelia YS, Pratama KG (2024) Mediterranean diet as

a modifiable risk factor for age-related macular degeneration: A
systematic review and meta-analysis. Tzu chi medical journal 36:
223-230.

Koch S, Schmidtke J, Krawczak M, Caliebe A (2023) Clinical utility

of polygenic risk scores: a critical 2023 appraisal. Journal of
community genetics 14: 471-487.

Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S,
Bragg-Gresham JL, Burdon KP, Hebbring SJ, Wen C, Gorski M, Kim
1K, Cho D, Zack D, Souied E, Scholl HP, Bala E, Lee KE, Hunter DJ,
Sardell R, Mitchell P, Merriam JE, Cipriani V, Hoffman D, Schick

T, Lechanteur YT, Guymer RH, Johnson MP, Jiang Y, Stanton CM,
Buitendijk GH, Zhan X, Kwong AM, Boleda A, Brooks M, Gieser L,
Ratnapriya R, Branham KE, Foerster JR, Heckenlively JR, Othman
MI, Vote BJ, Liang HH, Souzeau E, McAllister IL, Isaacs T, Hall J,


https://orcid.org/0000-0002-8808-7723
https://orcid.org/0000-0002-8808-7723
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/125156s0000_LucentisTOC.cfm
https://www.ema.europa.eu/en/medicines/human/EPAR/lucentis
https://www.ema.europa.eu/en/medicines/human/EPAR/lucentis
https://investors.apellis.com/news-releases/news-release-details/fda-approves-syfovretm-pegcetacoplan-injection-first-and-only
https://www.ema.europa.eu/en/medicines/human/EPAR/syfovre
https://www.ema.europa.eu/en/medicines/human/EPAR/syfovre

34

[20]

[21]

[22]

[23]

[24]

[25]

[26]

= Christina Kiel, Bernhard H. F. Weber, Diagnostic testing

Lake S, Mackey DA, Constable IJ, Craig JE, Kitchner TE, Yang Z, Su

Z, Luo H, Chen D, Ouyang H, Flagg K, Lin D, Mao G, Ferreyra H,
Stark K, Strachwitz CN von, Wolf A, Brandl C, Rudolph G, Olden M,
Morrison MA, Morgan DJ, Schu M, Ahn J, Silvestri G, Tsironi EE, Park
KH, Farrer LA, Orlin A, Brucker A, Li M, Curcio CA, Mohand-Said S,
Sahel J-A, Audo I, Benchaboune M, Cree A}, Rennie CA, Goverdhan
SV, Grunin M, Hagbi-Levi S, Campochiaro P, Katsanis N, Holz FG,
Blond F, Blanché H, Deleuze J-F, Igo RP, Truitt B, Peachey NS, Meuer
SM, Myers CE, Moore EL, Klein R, Hauser MA, Postel EA, Courtenay
MD, Schwartz SG, Kovach JL, Scott WK, Liew G, Tan AG, Gopinath

B, Merriam JC, Smith RT, Khan JC, Shahid H, Moore AT, McGrath JA,
Laux R, Brantley MA, Agarwal A, Ersoy L, Caramoy A, Langmann

T, Saksens NT, Jong EK de, Hoyng CB, Cain MS, Richardson A),
Martin TM, Blangero J, Weeks DE, Dhillon B, van Duijn CM, Doheny
KF, Romm J, Klaver CC, Hayward C, Gorin MB, Klein ML, Baird

PN, Hollander Al den, Fauser S, Yates JR, Allikmets R, Wang ],
Schaumberg DA, Klein BE, Hagstrom SA, Chowers I, Lotery A),
Léveillard T, Zhang K, Brilliant MH, Hewitt AW, Swaroop A, Chew EY,
Pericak-Vance MA, DeAngelis M, Stambolian D, Haines JL, Iyengar
SK, Weber BH, Abecasis GR, Heid IM (2016) A large genome-wide
association study of age-related macular degeneration highlights
contributions of rare and common variants. Nature genetics 48:
134-143.

Seddon JM, Cote J, Page WF, Aggen SH, Neale MC (2005) The US
twin study of age-related macular degeneration: relative roles of
genetic and environmental influences. Archives of ophthalmology
(Chicago, IIl.: 1960) 123: 321-327.

Lee A, Mavaddat N, Wilcox AN, Cunningham AP, Carver T, Hartley

S, Babb de Villiers C, Izquierdo A, Simard J, Schmidt MK, Walter FM,
Chatterjee N, Garcia-Closas M, Tischkowitz M, Pharoah P, Easton DF,
Antoniou AC (2019) BOADICEA: a comprehensive breast cancer risk
prediction model incorporating genetic and nongenetic risk factors.
Genetics in medicine: official journal of the American College of
Medical Genetics 21: 1708-1718.

O’Sullivan JW, Raghavan S, Marquez-Luna C, Luzum JA, Damrauer
SM, Ashley EA, O’Donnell CJ, Willer CJ, Natarajan P (2022) Polygenic
Risk Scores for Cardiovascular Disease: A Scientific Statement From
the American Heart Association. Circulation 146: e93-e118.
Grassmann F, Fritsche LG, Keilhauer CN, Heid IM, Weber BH (2012)
Modelling the genetic risk in age-related macular degeneration.
PloS one 7: e37979.

Privé F, Vilhjalmsson BJ, Aschard H, Blum MG (2019) Making the
Most of Clumping and Thresholding for Polygenic Scores. American
journal of human genetics 105: 1213-1221.

Vilhjalmsson BJ, Yang J, Finucane HK, Gusev A, Lindstrom S, Ripke S,
Genovese G, Loh P-R, Bhatia G, Do R, Hayeck T, Won H-H, Kathiresan
S, Pato M, Pato C, Tamimi R, Stahl E, Zaitlen N, Pasaniuc B, Belbin
G, Kenny EE, Schierup MH, Jager P de, Patsopoulos NA, McCarroll
S, Daly M, Purcell S, Chasman D, Neale B, Goddard M, Visscher PM,
Kraft P, Patterson N, Price AL (2015) Modeling Linkage Disequi-
librium Increases Accuracy of Polygenic Risk Scores. American
journal of human genetics 97: 576-592.

Ge T, Chen C-Y, Ni Y, Feng Y-CA, Smoller JW (2019) Polygenic
prediction via Bayesian regression and continuous shrinkage
priors. Nature communications 10: 1776.

[27]

[28]

[29]

[30]

31

[32]

[33]

[34]

[35]

[36]

DE GRUYTER

Lim AJ, Tyniana CT, Lim LJ, Tan JW, Koh ET, Chong SS, Khor CC, Leong
KP, Lee CG (2023) Robust SNP-based prediction of rheumatoid
arthritis through machine-learning-optimized polygenic risk score.
Journal of translational medicine 21: 92.

Ishigaki K, Sakaue S, Terao C, Luo Y, Sonehara K, Yamaguchi K,
Amariuta T, Too CL, Laufer VA, Scott IC, Viatte S, Takahashi M,
Ohmura K, Murasawa A, Hashimoto M, Ito H, Hammoudeh M,
Emadi SA, Masri BK, Halabi H, Badsha H, Uthman IW, Wu X, Lin L, Li
T, Plant D, Barton A, Orozco G, Verstappen SM, Bowes J, MacGregor
AJ, Honda S, Koido M, Tomizuka K, Kamatani Y, Tanaka H, Tanaka E,
Suzuki A, Maeda Y, Yamamoto K, Miyawaki S, Xie G, Zhang J, Amos
(I, Keystone E, Wolbink G, van der Horst-Bruinsma I, Cui J, Liao KP,
Carroll RJ, Lee H-S, Bang S-Y, Siminovitch KA, Vries N de, Alfredsson
L, Rantapda-Dahlqvist S, Karlson EW, Bae S-C, Kimberly RP, Edberg
JC, Mariette X, Huizinga T, Dieudé P, Schneider M, Kerick M, Denny
JC, Matsuda K, Matsuo K, Mimori T, Matsuda F, Fujio K, Tanaka Y,
Kumanogoh A, Traylor M, Lewis CM, Eyre S, Xu H, Saxena R, Arayssi
T, Kochi Y, Ikari K, Harigai M, Gregersen PK, Yamamoto K, Louis
Bridges S, Padyukov L, Martin J, Klareskog L, Okada Y, Raychaudhuri
S (2022) Multi-ancestry genome-wide association analyses identify
novel genetic mechanisms in rheumatoid arthritis. Nature genetics
54:1640-1651.

Sun J, Wang Y, Folkersen L, Borné Y, Amlien I, Buil A, Orho-Melander
M, Barglum AD, Hougaard DM, Melander O, Engstrém G, Werge

T, Lage K (2021) Translating polygenic risk scores for clinical use

by estimating the confidence bounds of risk prediction. Nature
communications 12: 5276.

Breuk A de, Acar IE, Kersten E, Schijvenaars MM, Colijn JM,
Haer-Wigman L, Bakker B, Jong S de, Meester-Smoor MA, Verzijden
T, Missotten TO, Monés J, Biarnés M, Pauleikhoff D, Hense HW,
Silva R, Nunes S, Melo B, Fauser S, Hoyng CB, Ueffing M, Coenen
M], Klaver CC, Hollander Al den (2021) Development of a genotype
assay for age-related macular degeneration: The EYE-RISK
Consortium. Ophthalmology 128: 1604-1617.

Kelemen M, Vigorito E, Fachal L, Anderson CA, Wallace C (2024)
shaPRS: Leveraging shared genetic effects across traits or
ancestries improves accuracy of polygenic scores. American journal
of human genetics 111: 1006-1017.

Volk RJ, Mendoza TR, Hoover DS, Nishi SP, Choi NJ, Bevers

TB (2020) Reliability of self-reported smoking history and its
implications for lung cancer screening. Preventive medicine
reports 17: 101037.

Choi SW, Mak TS-H, O’Reilly PF (2020) Tutorial: a guide to
performing polygenic risk score analyses. Nature protocols 15:
2759-2772.

Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM
(2013) Pitfalls of predicting complex traits from SNPs. Nature
reviews. Genetics 14: 507-515.

Dogan L, Tanriverdi D, Gungor K (2024) Assessment of vision-
related quality of life and depression in patients with age-related
macular degeneration. Indian journal of ophthalmology 72:
$293-5297.

Casten RJ, Rovner BW (2013) Update on depression and age-related
macular degeneration. Current opinion in ophthalmology 24:
239-243.



DE GRUYTER

Dr. rer. nat. Christina Kiel
Institute of Human Genetics
University of Regensburg
Franz-Josef-Strauss-Allee 11

93053 Regensburg, Germany
e-mail: christina.kiel@klinik.uni-
regensburg.de

Christina Kiel, Bernhard H. F. Weber, Diagnostic testing =——— 35

Prof. Dr. rer. nat. Bernhard H. F. Weber
Institute of Human Genetics

University of Regensburg
Franz-Josef-StrauB-Allee 11

93053 Regensburg, Germany

e-mail: bweb@klinik.uni-regensburg.de

Bildnachweis: Klaus Vélcker UKR Regensburg


mailto:christina.kiel@klinik.uni-regensburg.de
mailto:christina.kiel@klinik.uni-regensburg.de
mailto:bweb@klinik.uni-regensburg.de



