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Abstract: Male-pattern hair loss (MPHL) is a highly heritable 
and prevalent condition that is characterized by progressive 
hair loss from the frontotemporal and vertex scalp. This an-
drogen-dependent hair loss may commence during puberty, 
and up to 80 % of European men experience some degree of 
MPHL during their lifetime. Current treatment options for 
MPHL have limited efficacy, and improved understanding 
of the underlying biological causes is required to facilitate 
novel therapeutic approaches. To date, molecular genetic 
studies have identified 389 associated genomic regions, 
have implicated numerous genes in these regions, and sug-
gested pathways that are likely to contribute to key patho-
physiological mechanisms in MPHL. This review provides 
an overview of the current status of MPHL genetic research. 
We discuss the most significant achievements, current chal-
lenges, and anticipated developments in the field, as well as 
their potential to advance our understanding of hair (loss) 
biology, and to improve hair loss prediction and treatment.

Introduction
Male pattern hair loss (MPHL), also termed male andro-
genetic alopecia, is a highly heritable and age-dependent 
trait. The hair loss may commence during puberty and has 
a lifetime prevalence of ~80 % in European men [1]. The 
phenotype is characterized by a distinct pattern of pro-
gressive, age-dependent hair loss from the scalp. MPHL 
typically begins with a bi-temporal recession of the frontal 
hair line, followed by a thinning of hair in the frontal and 

vertex scalp areas, which eventually results in complete 
baldness of the top of the scalp (Figure 1) [2]. In addition to 
this characteristic pattern of hair loss, the key pathophysio-
logical features of MPHL include a strict androgen-depend-
ency of the phenotype; changes in hair cycle dynamics (i.  e. 
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Figure 1: Clinical classification of MPHL according to the Hamilton- 
Norwood scale. MPHL is classified clinically into seven major stages, 
starting from stage I (no hair loss), a receding of the fronto-temporal 
hairline (II), regression of the frontal hairline and balding of frontal and 
vertex scalp areas (III–IV), confluence of the affected areas (V–VI) until 
only an occipitotemporal hair crown persists (VII) [4]. The less common a 
variant of MPHL progression (IIa, IIIa, IVa, Va) is characterized by reces-
sion of the entire anterior hairline without simultaneous development of 
a bald area on the vertex.
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a shorter growth phase [anagen] and a prolonged resting 
phase [telogen]); and the miniaturization of affected hair 
follicles (HFs), causing a transition of pigmented terminal 
hairs to unpigmented vellus hairs [3].

MPHL  – especially when occurring in early adoles-
cence – can exert profound negative effects on quality of 
life [5]. Current therapeutic options for MPHL are limited. 
At writing, only two U.S. Food and Drug Administration-ap-
proved drugs are available, i.  e. oral finasteride and topical 
minoxidil. These vary in terms of efficacy, are non-curative, 
and can induce severe side effects [3], [6]. The development 
of novel therapeutic approaches to MPHL will require 
an improved understanding of the underlying biological 
causes. This in turn requires the elucidation of the under-
lying genetic basis. To date, molecular genetic studies of 
MPHL have identified 389 risk loci, and have led to the iden-
tification of pathobiologically relevant genes and pathways 
for MPHL. This review provides an overview of the key 
findings, current challenges, and anticipated developments 
in the field of MPHL genetic research. We also discuss the 
potential of these developments in terms of advancing our 
understanding of hair (loss) biology, facilitating drug target 
identification, and developing new therapies, and in eluci-
dating MPHL pathobiology and its shared biological basis 
with other traits and diseases.

MPHL – a highly heritable and 
polygenic trait
The familial occurrence of MPHL is well documented [7]. 
While in early research, the pattern of familial occurrence 
was thought to be compatible with a simple Mendelian 
mode of inheritance [8], later authors proposed a polygenic 
model involving a multitude of genes [9], [10] and this hy-
pothesis is now considered proven. Two early twin studies 
estimated the heritability (h2) of MPHL as 0.81 (95 % con-
fidence interval [CI] 0.77–0.85) in early-onset MPHL fam-
ilies (25–36 years), and 0.79 (95 % CI 0.4–0.85) in elderly  
males (> 70 years), respectively [11], [12]. However, the true 
heritability may be even higher, since misclassifications of 
MPHL-severity (e.  g. through classification by self-assess-
ment) would lead to an underestimation of MPHL herita-
bility [3]. The strongly heritable and polygenic nature of 
MPHL was confirmed in a pedigree-based h2 analysis in 
pairs of first-degree relatives from the UK Biobank (UKB) 
cohort, which generated an h2 estimate of 0.62 [13]. The 
same study found that approximately 60 % of the genetic 
contribution to MPHL variance was captured by common 
single nucleotide polymorphisms (SNPs) (h2

SNP = 0.393), and 

that the additional inclusion of rare SNPs (1.5x10–5 < minor 
allele frequency [MAF] ≤ 1x10–3) had only minor effects on h2 
estimates (h2

SNP = 0.415). Of note, pedigree-based h2 estimates 
were slightly lower for father-son correlations compared to 
those for brother-brother pairs. This may in part reflect the 
X-chromosome contribution, since fathers and sons do not 
share X-chromosomal risk factors by descent. One other po-
tential explanation for this observation is that during child-
hood, brothers share a common environment. However, the 
issue of whether – and if so to what extent – environmental 
factors (e.  g. smoking, alcohol consumption) are implicated 
in MPHL development remains a matter of debate [14]–[20].

Findings from 25 years of gene 
identification efforts
Since 1998, multiple molecular genetic studies of MPHL 
have been performed to identify causal genes and path-
ways. Early MPHL genetic studies were limited to the inves-
tigation of only a few, or even single, genes, and generated 
limited insights into the genetic basis of MPHL. One impor-
tant caveat here, however, is that even negative findings 
could not exclude a genuine genetic contribution for the 
respective gene, since the investigated sample sizes were 
limited.

A key exception is the X-linked androgen receptor gene 
(AR), which became the focus of a number of studies due 
to the strict androgen dependency of the MPHL phenotype 
[21]–[29]. Although these studies generated contradictory 
results in terms of the associated variants and the most 
likely causal gene in the region, the genomic region sur-
rounding the AR is without question the most strongly as-
sociated region for MPHL in the human genome. However, 
unequivocal identification of the precise causative variants 
at the X-chromosomal AR/EDA2R locus has not yet been 
achieved, and neither AR nor the neighbouring EDA2R have 
been confirmed as the causal gene.

Following these investigations, no notable progress in 
the identification of additional genetic risk factors was then 
made until the publication of the first two genome-wide 
association studies (GWAS) of MPHL in 2008. Since then, 
GWAS have been performed in increasingly large cohorts, 
and have generated substantial insights into the role of 
common genetic variants in MPHL susceptibility (Figure 2). 
At writing, the GWAS Catalog [30] lists a total of 13 studies 
under the terms “androgenetic alopecia” or “balding meas-
urement”, 10 of which report data on MPHL (Table 1). These 
studies can be broadly categorized into single cohort GWAS, 
international meta-analyses, and population-based GWAS. 



Sabrina K. Henne, Markus M. Nöthen, Stefanie Heilmann-Heimbach, Male-pattern hair loss   5

The number of reported association signals per study 
strongly correlates with sample size, and ranges from two 
independent risk variants in the first published GWAS 
studies [31], [32] to 622 independent risk variants in the 
largest GWAS to date [13]. While the individual studies used 
varying definitions to classify independent risk loci, collaps-
ing of the reported association signals into independent risk 
loci based on the FUMA tool [33] results in a total of 389 
known risk loci for MPHL. Together, these loci explain ~39 % 
of the observed phenotypic variance in MPHL [13].

The vast majority of these loci are located on the auto-
somes, and are therefore equally likely to have been inher-
ited from the maternal or the paternal side. Six risk loci, 
however, are located on the maternally inherited X-chromo-
some. These include the AR/EDA2R locus, which has been 
confirmed as the most strongly associated genomic locus 
across all studies [13], [31], [32], [34]–[39]. The available data 
suggest that maternal heredity plays a greater role in the 
inheritance of MPHL risk than paternal heredity. However, 
no studies have yet been performed to investigate the ex-
istence of paternally inherited Y-chromosomal risk factors.

From association signals to 
candidate genes and disease 
mechanisms
The majority of MPHL risk variants are located in non-cod-
ing – and mostly intergenic – regions of the genome. A rea-
sonable assumption is that these variants exert regulatory 
effects on the expression of relevant genes, e.  g. through 
changes in transcription factor binding sites or enhancer/
promoter interaction [41]. While in early GWAS, the prox-
imity of a gene to an association signal was considered the 

strongest indicator of disease relevance, a number of bio-
informatic tools have since been developed that prioritize 
disease genes and pathways from GWAS data using multiple 
lines of evidence [33], [42]. The application of these tools to 
MPHL genetic data has resulted in the identification of a 
number of interesting genes and pathways (Figure 3). These 
include the genes encoding i) steroid-5-α-reductase type II 
(SRD5A2), which is the only known therapeutic target for 
MPHL; ii) WNT10A and fibroblast growth factor 5 (FGF5), 
which are known regulators of hair cycling and hair growth, 
respectively; iii) interferon regulatory factor 4 (IRF4), which 
has previously been reported in connection with hair pig-
mentation; iv) the transcriptional regulators early B cell 
factor 1 (EBF1), TWIST1, and TWIST2; and v) other genes 
involved in the WNT signalling pathway (DKK2–Dickkopf 2, 
FZD10–Frizzled class receptor 10, FAM53B) or androgen 
signalling (e.  g. TOP1, FAM9B, HDAC4, and HDAC9) [3], [38]. 
Pathway-based and gene-set enrichment analyses have un-
derlined the importance of androgen- and WNT-signalling 
in MPHL pathogenesis, and have also yielded evidence for 
a number of other hormonal pathways (e.  g. oestrogen- and 
melatonin signalling, reviewed elsewhere [43]), as well as 
pathways involved in skin- and epidermal development, 
apoptosis, and adipogenesis, and immunological processes 
[13], [38], [39]. Besides indicating the relevance of cells and 
processes within the HF per se, the latter implicate the peri
follicular environment, such as the resident immune cells 
and adipocytes of the scalp [38].

In studies of MPHL risk variants, regulatory effects 
on candidate gene expression have been reported at four  
GWAS loci (1p12–FAM46C; 2q35–WNT10A; 15q22.2–RORA; 
21q22.1–RCAN1) [44], [45]. Among these, the most notable 
regulatory effect was found for the MPHL risk allele 
rs7349332-T at 2q35, which resulted in reduced WNT10A ex-
pression in human HFs [36]. A follow-up study to investigate 
the underlying molecular mechanism at this locus identi-

Figure 2: MPHL susceptibility loci identified 
via GWAS of individuals of European descent 
between 2008 and 2022. MPHL genetic studies are 
represented by circles. The number of loci denotes 
the cumulative number of independent MPHL 
susceptibility loci. The number of individuals and 
the number of cases in the cohort are reflected by 
the sizes of the grey and blue circles, respectively. 
Reference numbers are given in square brackets.
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fied a nearby binding site for the transcription factor EBF1, 
whose encoding gene is located at a second MPHL risk locus 
at 5q33.3. The study demonstrated that EBF1 activates the 
WNT10A promoter, and that this interaction is impacted by 
the allelic expression of the 2q35 MPHL risk variant. These 
findings indicate a functional interaction between genes at 
two independent MPHL risk loci, and suggest that the 2q35 
MPHL risk allele results in decreased WNT10A promoter 
activation via EBF1 and a resultant lowering of WNT10A ex-
pression, which eventually impacts HF cycling [46].

While the underlying genes and precise biological 
mechanisms at the majority of loci remain elusive, for some 
loci and genes, hypotheses can be formulated as to how 
they will contribute to key pathophysiological processes in 
MPHL. These include deregulation of the hair growth cycle 
(FGF5, EBF1, DKK2, adipogenesis, WNT-signalling), media-
tion of androgen sensitivity (SRD5A2, AR-signalling, mela-
tonin signalling), and the conversion of pigmented terminal 
into non-pigmented vellus-like hairs (IRF4) (Figure 3).

Epidemiological associations and 
genetic pleiotropy – placing MPHL 
into a wider medical context
Epidemiological studies have reported associations 
between MPHL and a number of medical conditions and 
anthropometric indices, including cardiovascular disease 
[47]–[54], type 2 diabetes [18], [53], [55]–[58], BMI [18], [58], 
[59], metabolic syndrome [58], [60]–[63], benign prostate 
hyperplasia [64], [65] and prostate cancer [66], [67]. The 
observed epidemiological associations suggest an overlap 
in pathobiology, which may be explained at least in part 
by shared genetic factors. Using GWAS data, genome-wide 
significant correlations have been detected for MPHL and 
metrics of early puberty [13], [40], bone mineral density (↑) 
[13], HOMA-B levels (↑) [13] and human body height (↓) [39]. 
Since early puberty is associated with childhood adiposity 
and increased BMI in adulthood [68], and higher HOMA-B 

Table 1: Overview of GWAS, number of reported independent associations (P < 5x10–8), and key findings to date. When available, the number 
of samples and cases is shown.

Authors Year Study type N samples  
(cases)

N associations
(P < 5x10–8)

Key findings

Hillmer et al.
[31]

2008 GWAS 643 (296) 2  Confirmation of the AR/EDA2R locus, novel risk 
locus on chr20p11.22 (concurrent with [32])

Richards et al.
[32]

2008 GWAS 1125 (578) 2  Confirmation of the AR/EDA2R locus, novel risk 
locus on chr20p11.22 (concurrent with [31])

Brockschmidt et al. [34] 2011 GWAS 1198 (581) 3  Novel risk locus on chr7p21.1, implicating HDAC9

Li et al.
[35]

2012 Meta-analysis 12,806 (3,891) 8  1st international meta-analysis of the MAAN 
consortium. Identification of 5 novel autosomal 
risk loci, unexpected association with Parkinson’s 
disease

Heilmann et al.
[36]

2013 Candidate 
variant analysis

5,420 (2,759) 4  First genetic evidence for an involvement of 
WNT-signalling (WNT10A, 2q35) in MPHL 

Pickrell et al.
[40]

2016 GWAS 17,500 (9,009) 49 Evidence for pleiotropic effects of MPHL risk 
variants on lower age at menarche

Hagenaars et al. [37] 2017 Population-based 
GWAS

52,874 (36,150) 287 1st GWAS based on data from the UK Biobank, 
development of a polygenic prediction model 

Heilmann-Heimbach et 
al. [38]

2017 Meta-analysis 22,518 (10,846) 63 2nd MAAN analysis, implication of numerous 
candidate genes and pathways, evidence for 
shared genetic basis between MPHL and other 
traits and illnesses 

Pirastu et al.
[39]

2017 Population-based 
GWAS

43,590 (25,662) 71 Implication of plausible additional candidate 
genes and pathways (e.  g. TGF-beta, apoptosis 
signalling)

Yap et al.
[13]

2018 Population-based 
GWAS

205,327 622 Largest GWAS to date 
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levels (a measure of pancreatic β-cell function), are associ-
ated with an increased BMI [69], these genetic correlations 
may partly explain the reported epidemiological associa-
tion between MPHL and metabolic syndrome, and between 
MPHL and BMI [13], [39]. At individual loci, overlapping 
associations have been reported for prostate cancer and 
cardiovascular traits, although these did not reflect in 
a significant genome-wide genetic correlation [13], [18],  
[37], [40].

A study in the Icelandic population found a pleiotropic 
variant for MPHL and reduced female reproductive rate on 
ch.17q21.31 [35], [70]. Notably, polycystic ovary syndrome 
(PCOS), the most common cause of reduced fertility in 
women, is frequently observed in the female relatives of 
MPHL-affected men [71], [72], and a Mendelian randomi-
zation study found that MPHL risk variants are associated 
with increased PCOS risk [73]. However, a genome-wide 
genetic correlation analysis found no significant correlation 
between the two traits [73].

At single loci, overlapping genetic associations with 
MPHL have also been reported for Parkinson’s disease (PD) 
and amyotrophic lateral sclerosis (ALS) [35]. These findings 
were supported by subsequent epidemiological investi-
gations, which revealed an increased risk for PD (1.3-fold 
increased risk; 95 % CI 1.06–1.55 [35]) and ALS (2.7-fold in-
creased risk; 95 % CI 1.23–6.31 [74]) in MPHL-affected com-

pared to unaffected men. However, no genome-wide genetic 
correlations were observed.

More recently, research has suggested that MPHL is a 
possible risk factor for severe COVID-19, as based on the 
high incidence of severe MPHL in hospitalized COVID-19 
patients [75]. However, subsequent epidemiological and 
genetic correlation analyses did not confirm this epidemi-
ological association [76]–[78], and no general genetic cor-
relation was identified [76], [79], although pathway-based 
polygenic risk score analyses suggested a potential limited 
biological overlap between the traits [76].

In many cases, steroid hormone or androgen signalling 
may act as the common biological mechanism for MPHL and 
the associated traits. Androgen-mediated neurotoxicity has 
been discussed as a possible mechanism in the pathogen-
esis of PD, and could also partially explain the association 
with ALS [80], [81]. In women, PCOS is promoted by elevated 
androgen levels [82]. Androgen- and oestrogen-signalling, 
together with other MPHL-associated hormonal pathways, 
have also been implicated in skeletal development and 
bone homeostasis [83], [84].

Future studies are required to determine the extent 
to which these pleiotropies can indeed be explained by 
common hormonal pathways, and to identify other contri
butory biological signalling pathways. A deeper under-
standing of pleiotropies and the underlying biological 

Figure 3: From genetic association finding to an 
understanding of MPHL pathobiology. GWAS have 
identified 389 independent risk loci and implicated 
numerous candidate genes and pathways. In some 
cases, assumptions can be made as to how these 
genes and pathways contribute to the key pathophysi-
ological features that result in the characteristic MPHL 
phenotype. Inside to outside: Genomic location (chro-
mosome 1–chromosome X) of candidate genes and 
assignment to pathways; Manhattan plot of genome-
wide significant MPHL SNPs [13] (Y-Axis corresponds 
to 7–150-log10(P)); key pathophysiological features of 
MPHL. Colour coding represents the assignment of 
genes to pathways and their contribution to MPHL key 
pathophysiological features.
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mechanisms will have important implications for risk pre-
diction and drug therapy, both in terms of drug repurposing 
and the prediction of side effects.

To lose or not to lose – MPHL risk 
predicted from genetic data
Although several MPHL prediction models have been de-
veloped, to date, these have yielded only limited predictive 
value at the individual level [37], [85]–[87]. The most recent 
model was based on 160,267 male participants from the 
UKB, with testing having been performed in an additional 
26,177 male UKB participants as well as in an independent 
cohort of 991 males enriched for early-onset (<  40 years)  
severe MPHL cases [87]. When predicting MPHL with differ-
ing degrees of severity, the model achieved prediction accu-
racies ranging from 0.60 – 0.73, as based on the area under 
the curve (AUC), with higher degrees of severity being pre-
dicted with greater accuracy. A prediction accuracy of 0.83 
was achieved when predicting the presence of any hair loss 
in the early-onset (< 40 years) cohort. Notably, the strongest 
predictor was age, followed by rs12558842, which is located 
~280kb upstream of AR [87]. Although the overall prediction 
accuracy and reliability of the model have improved sub-
stantially over time, the accuracy of individual predictions 
remains limited, in particular for mild and medium levels 
of balding (Hamilton-Norwood-scale < VI). Prediction may 
therefore be too crude for reliable estimates of metrics such 
as an individual’s age of onset or their rate of MPHL pro-
gression. While such models could now be expanded due 
to the discovery of novel risk loci and variants [13], further 
investigations of additional genetic risk factors and poten-
tial environmental factors, and the use of large independent 
data sets, will also be required to improve current MPHL 
prediction models. Moreover, existing prediction models 
are based on Euro-centric GWAS, which will likely hamper 
their application in other ethnicities [88]. Once successfully 
established, MPHL prediction models may be valuable in a 
(wider) medical and forensic context. Prediction could also 
help to determine the feasibility and appropriate time for 
drug interventions and hair transplantations, for which 
therapeutic efficiency is strongly dependent on the clinical 
stage and the rate of disease progression [6], [89].

MPHL genetic studies in  
non-European ethnicities
Epidemiological research indicates that MPHL manifests 
slightly differently in non-European ethnicities in terms of 
prevalence, onset, and pattern of progression [1], [90]–[92]. 
However, most genetic studies to date have focused on Eu-
ropeans, with genetic studies in non-European populations 
having been limited to one GWAS of combined female-pat-
tern hair loss (FPHL) and MPHL in admixed Latin Americans 
[93], two replication studies in Asian populations [94], [95], 
and one small-scale autosomal GWAS of MPHL in a cohort 
from Korea [95]. The Latin American GWAS identified as-
sociations at the AR/EDA2R locus, with the most significant 
variant rs4258142 having been previously described in Euro-
peans, and rs2814331 at the 10q23.2 locus implicating GRID1 
as a novel candidate gene [93]. However, since MPHL and 
FPHL were jointly analysed, it is unclear whether this asso-
ciation was attributable to MPHL. The Korean-based GWAS 
identified 13 suggestive (P  <  10–5) risk loci (1p21.1, 4q22.3, 
4q35.1, 5p15.33, 7q31.31, 9q21.31, 9q21.33, 10p11.21, 10q23.31, 
11q21, 11q25, 12p11.21, 18p11.21), one of which (9q21.31) had 
been described in a previous European-based GWAS. The 
authors also investigated SNPs with a previously reported 
association with MPHL in European-based GWAS. The 
strongest nominally significant (P < 0.05) associations were 
found at 20p11 [95], as in a previous replication attempt in 
the Chinese Han population [94].

Notably, the association at the AR/EDA2R locus could 
not be replicated in the Asian studies, since previously im-
plicated SNPs at the locus were monomorphic or nearly 
monomorphic (MAFs  <  1 %) for the European MPHL risk 
alleles in the Korean and Chinese Han populations [94], 
[95]. This may either point to a different allelic architec-
ture and/or haplotype constellation between European 
and Asian populations at the AR/EDA2R locus or a general 
genetic heterogeneity for MPHL between these populations. 
Independent analyses of the X chromosome are therefore 
required to clarify the role of variants at the AR/EDA2R 
locus in Asian populations. While the association findings 
in non-European populations require replication in larger 
cohorts, they suggest the presence of distinct risk loci in 
non-European ethnicities. Further studies in diverse popu-
lations are required to shed light on genetic determinants in 
other ethnicities. This could facilitate further exploration of 
MPHL pathobiology and the identification of mechanisms 
that contribute to ethnic differences, such as age of onset 
and balding severity, in specific subpopulations of andro-
gen-sensitive scalp HFs.
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Overlap between MPHL and female-pattern 
hair loss

The present review has focused on the advances and chal-
lenges of genetic research into MPHL, which raises the 
question of the extent to which these findings also apply to 
FPHL. The two conditions share key characteristics, such as 
high prevalence, the age-dependent and progressive nature 
of the hair loss, and key pathophysiological characteristics, 
such as follicular miniaturization and deregulation of hair 
cycle dynamics [2], [96]. However, research suggests that 
MPHL and FPHL are distinct entities with differing patho-
geneses [97], and the relevance of genetic factors and the role 
of androgens in FPHL is less clear than is the case for MPHL 
[96], [97]. While previous authors have suggested that FPHL 
has a heritable component [98], [99], the evidence is incon-
clusive [97]. Genetic studies of FPHL have largely focused on 
specific genes related to steroid hormone metabolism and 
on risk variants and loci previously identified in MPHL. 
Together, these studies have implicated a number of can-
didate genes (CYP19A1, ESR2, PPARGC1A, ABCC4, CYP11B2,  
FSHB) and risk loci (AR/EDA2R, 20p11) [97], [100] – [111]. To 
date, no GWAS of FPHL has yet been published. GWAS in 
larger FPHL cohorts are required to improve estimation of 
the contribution of genetic factors, and to generate novel 
insights into the underlying genetic architecture.

Challenges and perspectives in 
MPHL genetic research
MPHL is widely misconceived as a phenotype of mainly 
cosmetic and psychological importance. However, given 
its high prevalence, simple clinical classification, strict 
hormone dependency, sex-limited expression, and highly 
polygenic basis, MPHL is an interesting model phenotype 
for the study of traits with similar features.

Available GWAS of MPHL have identified associations 
with thousands of common variants at 389 loci, and have 
yielded unprecedented insights into the genetic and biolog-
ical basis of what is the most common form of hair loss in 
men. Together, these genetic findings explain ~39 % of the 
observed phenotypic variance of MPHL in the white British 
population [13], [39], mixed European populations [38], and 
Latin American populations [93]. Research has confirmed 
that MPHL has a strong genetic contribution, with SNP-
based h2 estimates of 60–70 % [13]. However, research has 
yet to demonstrate the existence of genetic factors that may 
bridge the gap between the SNP-based and the twin-study 
h2 estimates of MPHL heritability. While a general hypoth-

esis is that rare genetic variants contribute to complex 
disease heritability, their estimated contribution to MPHL 
is minimal [13], and to date, exome-based phenome-wide as-
sociation studies (PheWAS) have identified no associations 
between rare variants and MPHL [112], [113]. Despite the 
fact that rare variants are unlikely to contribute in general 
to MPHL heritability, the possibility that they play a role in 
some individuals and families cannot be excluded. However, 
in contrast to common variants, few data are available 
concerning the contribution of individual rare variants 
(MAF < 1 %) to MPHL in phenotypically well characterized 
or family-based cohorts. Each of these rare genetic findings 
will add important information on the genotype-phenotype 
correlation, and may provide important (new) insights into 
MPHL pathobiology. Future genetic studies are warranted 
to decipher the full allelic spectrum of MPHL, and these 
should include larger cohorts and the investigation of the 
full spectrum (common and rare variants) of sequence var-
iation through whole-exome or whole-genome sequencing. 
Comprehensive understanding of MPHL phenotypic vari-
ance in the population will require the investigation of the 
genetic – and potentially also the non-genetic factors – that 
impact hair loss progression. This in turn will require lon-
gitudinal studies in large cohorts with extensive phenotypic 
and comprehensive genetic data. Furthermore, future sys-
tematic investigations into the genetic basis of MPHL both 
within different ethnicities and across different ethnicities 
will yield further insights into MPHL pathobiology, and will 
enable the generation of improved and trans-ethnic predic-
tion models.

In addition to the further dissection of the genetic basis 
of MPHL, another important and likely even greater chal-
lenge will be the functional annotation and biological inter-
pretation of current and future genetic findings. Although 
several plausible genes and pathways have been identified, 
the detection of the causal genes and pathways, and our 
understanding of the precise underlying biological mech-
anisms, remain in their infancy. Despite the fact that the 
functional annotation of non-coding regions in the genome 
is becoming increasingly detailed [114], further experi-
ments are required to accurately reflect the full spectrum 
of regulatory interactions, which are often tissue-, cell type-, 
or context-specific. This is also true for MPHL, for which 
only a limited number of human data sets are available for 
the identification of causal genes and pathways and the in-
vestigation of the molecular mechanisms that underlie the 
characteristic hair loss.

Systematic follow-up of all association findings for 
MPHL is warranted, and this is likely to involve two key ap-
proaches. First, the development of sophisticated bioinfor-
matic analysis strategies will probably be required to allow 
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the performance of pathway- and network-based analyses 
that elucidate the molecular mechanisms at individual 
and across loci. Second, (single-cell) expression profiling of 
genes and signalling pathways will probably be necessary 
in order to determine the relevant HF and/or perifollicular 
compartments in which known, and as yet unidentified, 
pathways interact to cause the characteristic androgen-de-
pendent hair loss.

As discussed, current therapeutic options for MPHL 
are suboptimal, and knowledge of MPHL relevant genes 
and pathways will facilitate the development of further 
(more effective) therapies. In a first step towards this, work 
by Pirastu et al. and our group showed that 45 MPHL can-
didate genes were druggable targets [39, own unpublished 
data]. These findings are encouraging, since drugs based on 
targets or mechanisms for which genetic evidence is avail-
able are more likely to succeed in clinical trials [115], [116]. 
Furthermore, due to the highly polygenic nature of MPHL, 
genetically guided drug research and patient stratification 
may eventually lead to the accurate prediction of therapeu-
tic success and adverse side effects, thus enabling precision 
medicine approaches.
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