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Abstract: Identification of genetic variation in individual
genomes is now a routine procedure in human genetic re-
search and diagnostics. For many variants, however, in-
sufficient evidence is available to establish a pathogenic
effect, particularly for variants in non-coding regions. Fur-
thermore, the sheer number of candidate variants renders
testing in individual assays virtually impossible. While
scalable approaches are being developed, the selection
of methods and resources and the application of a given
framework to a particular disease or trait remain major
challenges. This limits the translation of results from both
genome-wide association studies and genome sequenc-
ing. Here, we discuss computational and experimental
approaches available for functional annotation of non-
coding variation.

Introduction
Over the past decade, technical capabilities to identify
genetic alterations in individual genomes have increased
substantially. However, two major challenges remain: (i)
discriminating between pathogenic (causal) and benign
variants; and (ii) understanding the effects of genetic vari-
ants at the molecular level. This is particularly true for the
“non-coding” genome, which harbors both themajority of
variants associated with common traits (as identified by
genome-wide association studies [GWAS]) and an as yet
unknown number of variants underlying monogenic dis-
orders [1, 2].

To advance variant interpretation, large-scale collab-
orative efforts have generated extensive catalogs that doc-
ument genetic variation and genomic elements, together
with their respective molecular functions, across hun-
dreds of cell types, including 3D genomic interactions [3].
Most of this information is deposited in public databases,
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which have emerged as knowledge hubs in human ge-
nomics. In addition, technological advances now provide
the means to characterize the molecular effects of genetic
variation at scale on an experimental basis. Nonetheless,
the identification of appropriate resources and protocols,
the assessment of relevant data, and the correct interpre-
tation of experimental findings remains problematic [4, 5].
Here, we summarize how diverse experimental and com-
putational approaches can be applied to advance interpre-
tation of genetic variation in the non-coding genome (Fig-
ure 1).

Resources for the non-coding
genome

Human genetic variation

Over the past decade, systematic global efforts have been
made to catalog diverse types of genetic variants both
across the allelic spectrum and across populations [3, 4,
6, 7]. These investigations have included the International
HapMap Project, the 1000 Genomes Project, and the more
recentGenomeAggregationDatabase (gnomAD) initiative.
According to current estimates, each individual genome
harbors 3 to 4million small alterations of below 50 bp (the
majority of which are single nucleotide variants [SNVs]),
and around 15,000 structural variants (SVs, >50 bp) [8].
Additional variants will be identified as further progress
is made towards completion of the human reference se-
quence (Telomere-to-Telomere (T2T) consortium; [9]).

Variant information is made accessible through web-
based resources, which balance the issues of data sharing
and privacy in order to benefit the medical genetics com-
munity (Table 1). The majority of variants are derived from
observations in only one individual (“singletons”). Since
some of these might represent either technical artifacts or
disease-causing variants in unscreened individuals from
population-based cohorts, researchers are encouraged to
rely on cross-population allelic frequency, rather than on
themere presence of a variant. Importantly, variants iden-
tified from more than 100,000 individuals (across diverse
populations) serve as a good basis to study sequence vari-
ation compatiblewith life [10]. The underrepresentation of
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Figure 1: Functional genomics of non-coding variants. (A) Defining the variant space. Technological advances such as array- or sequencing-
based methods have enabled the systematic identification of genetic variants in individual genomes. The variant space encompasses all
identified candidate variants, for example, all variants observed in an individual patient in a clinical panel or exome, variants identified from
a genome-sequenced case-parent trio, or those variants that meet a specific statistical threshold in cohort-based analyses (e. g., signifi-
cance in genome-wide association studies). Thus, the size of this variant space is largely driven by the specific study design. (B) Ranking of
variants. In situations where the variant space is small, these can be taken directly to functional assessment, or they can be ranked based
on variant frequencies in different populations (variant tiers, yellow arrows). However, in most study designs, prioritization approaches are
required. Here, functional maps (of experimental or computational origin) are integrated with the variant space to reduce numbers. Func-
tional maps are drawn from publicly available web resources and databases, which can be general or specific to a certain phenotype. For
a selection of resources, see Table 1. (C) Mapping variant effects. The experimental approach to investigate the functional effects of the
prioritized variants is a trade-off between depth of molecular assessment and throughput (i. e., number of variants tested in parallel). Ide-
ally, results of variant analyses are collected in variant-effect maps, which can then be used for interpretation in the phenotypic context
and/or prioritize a limited number of variants for in-depth investigation, for instance in animal or organoid models. Importantly, variant-
effect maps may inform prioritization in future studies of the same phenotype, if they are deposited in publicly available resources. Abbrevi-
ations: MAVE, multiplex analysis of variant effects.

variant alleles, or the clusteringof trait-associated variants
within a genomic region, can facilitate the prioritization of
variants that are of functional relevance [11–13].

Together with information from NCBI ClinVar or
HGMD, “variant prioritization” based on allelic frequen-
cies has been central to the identification of causal genes
for many Mendelian syndromes [14]. However, few of the
variants that are reported as causal in curated clinical
databases are located outside of gene sequences, thus lim-
iting the interpretationof variants identified innon-coding
regions by genome sequencing. Furthermore, while public
variantmaps have facilitated the identification of common
risk variants formultifactorial traits, functional interpreta-
tion is difficult, due to the fact that, again,most are located
outside of protein-coding genes [15].

Genomic architecture of the non-coding
genome

By definition, the “non-coding genome” encompasses all
of the sequence located outside of protein-coding ele-
ments (i. e., around 98% of the human genome). It con-
tains the majority of variants associated with common
traits, as well as an as yet unknown number of causal
variants for Mendelian diseases. Although widely used,
the term “non-coding genome” does not reflect its true
complexity, as illustrated by the wide diversity of molec-
ular functions that have been associated with distinct se-
quence elements.

Non-coding elements can be located in close proxim-
ity to coding regions and are considered part of the respec-
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Table 1: Important resources for the annotation of functional variants in the human genome. Various online resources are listed in the cat-
egories “Genetic variation and associations,” “Large-scale functional genomics data sources,” “Browser and meta databases,” and “En-
hancer, transcription factor, and element databases.” We tried to list the major resources, so this list must be incomplete and can only rep-
resent a limited view of available resources. Many of these websites provide data access through interactive searches and visualizations,
while other sites serve as portals for data download and offline analysis.

Name Description URL

Genetic variation and associations
BRAVO/TOPMed BRAVO variant browser provides alleles, functional annotations, and allele

frequencies from variants identified across genomes in the TOPMed project
https://bravo.sph.umich.edu/

gnomAD Genome Aggregation Database providing aggregated and harmonized
variants (incl. SVs) and their annotation from various large-scale exome and
genome sequencing projects

https://gnomad.broadinstitute.org/

ClinVar NCBI repository clinically annotated variant effects https://www.ncbi.nlm.nih.gov/clinvar/
COSMIC Catalogue of Somatic Mutations in Cancer and their annotations https://cancer.sanger.ac.uk/cosmic/
GWAS Catalog NHGRI-EBI Catalog of human genome-wide association studies, collecting

region/variant associations from thousands of publications
https://www.ebi.ac.uk/gwas/

IGSR The International Genome Sample Resource, incl. the Human Genome
Diversity Project (HGDP) and the Simons Genome Diversity Project (SGDP)

https://www.internationalgenome.org/

1000 Genomes
Project

International Genome Sample Resource of the 1000 Genomes Project
providing links to individual level data from various populations

https://www.internationalgenome.org/

Large-scale functional genomics data sources
ENCODE Data portal of the Encyclopedia of DNA Elements, including for example TF

and histone ChIP, open chromatin, and expression data
https://www.encodeproject.org/

EMBL-EBI Single cell
atlas

Single-cell expression atlas across species, including the Human Cell Atlas https://www.ebi.ac.uk/gxa/sc/home

FANTOM Functional Annotation of the Mammalian Genome, including atlases of
promoters, enhancers, long non-coding RNAs, and microRNAs

https://fantom.gsc.riken.jp/

GTEx Genotype-Tissue Expression (GTEx) Portal with tissue-specific gene
expression and regulation data

https://www.gtexportal.org/home/

HuBMAP Human BioMolecular Atlas resource for discovery, visualization, and
download of single-cell tissue data

https://portal.hubmapconsortium.org/

IHEC Data portal of the International Human Epigenome Consortium incl.
methylome, transcriptome, histone, and other data

https://ihec-epigenomes.org/

Roadmap
Epigenomics

Integrative analysis of 111 reference human epigenomes http://www.roadmapepigenomics.org/

pyschENCODE Integrated resource of regulatory genomic elements in individuals with
neuropsychiatric disorders

http://resource.psychencode.org/

4DN 4D Nucleome Network provides nuclear organization data as well as a
platform to search, visualize, and download them

https://data.4dnucleome.org/

Browser and meta databases
Ensembl Regulation Ensembl Regulation provides computational annotation of regulatory

features in the genome, incl. genome segmentation and annotation of
regulatory features

http://www.ensembl.org/info/genome/
funcgen/index.html

Gene Expression
Omnibus (GEO)

NCBI repository for all kinds of functional genomics datasets and their
structured metadata

https://www.ncbi.nlm.nih.gov/geo/

UCSC Genome
Browser

Popular genome browser integrating data from various sources https://genome.ucsc.edu/

WashU Epigenome
Browser

Genome browser integrating epigenetic, 3D genome visualization,
and image data

https://epigenomegateway.wustl.edu/

Enhancer, transcription factor, and element databases
Altius Index Human DHS index of about 3.6 million sites, providing a common

coordinate system for regulatory DNA
https://index.altius.org/ (browser),
https://www.meuleman.org/research
/dhsindex/ (data)

ENCODE SCREEN Registry of Candidate cis-Regulatory Elements from the ENCODE project https://screen.encodeproject.org/
EnhancerAtlas Experimentally derived enhancer annotation in nine species http://www.enhanceratlas.org/
Gene Transcr.
Regulation Db

GTRD provides uniformly processed ChIP-seq data for identification of
transcription factor binding sites in human or mouse

https://gtrd.biouml.org/

GeneHancer Genome-wide integration of enhancers and target genes in GeneCards https://www.genecards.org/

https://bravo.sph.umich.edu/
https://gnomad.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/clinvar/
https://cancer.sanger.ac.uk/cosmic/
https://www.ebi.ac.uk/gwas/
https://www.internationalgenome.org/
https://www.internationalgenome.org/
https://www.encodeproject.org/
https://www.ebi.ac.uk/gxa/sc/home
https://fantom.gsc.riken.jp/
https://www.gtexportal.org/home/
https://portal.hubmapconsortium.org/
https://ihec-epigenomes.org/
http://www.roadmapepigenomics.org/
http://resource.psychencode.org/
https://data.4dnucleome.org/
http://www.ensembl.org/info/genome/funcgen/index.html
http://www.ensembl.org/info/genome/funcgen/index.html
https://www.ncbi.nlm.nih.gov/geo/
https://genome.ucsc.edu/
https://epigenomegateway.wustl.edu/
https://index.altius.org/
https://www.meuleman.org/research/dhsindex/
https://www.meuleman.org/research/dhsindex/
https://screen.encodeproject.org/
http://www.enhanceratlas.org/
https://gtrd.biouml.org/
https://www.genecards.org/


278 | M. Kircher and K. U. Ludwig, Systematic assays and resources for the functional annotation

Table 1 (continued)

Name Description URL

JASPAR Open-access database of transcription factor binding profiles https://jaspar.genereg.net/
MaveDB Open-source platform to distribute and interpret data from multiplex assays

of variant effects (MAVEs)
https://www.mavedb.org

MPRAbase Repository and uniform processing of massively parallel reporter assay
(MPRA) datasets across several organisms

https://www.mprabase.com/

ORegAnno Open resource for curated regulatory annotation, incl. about transcription
factor binding sites, RNA binding sites, regulatory variants, haplotypes, and
other regulatory elements

http://www.oreganno.org/

RegulomeDB Annotation of SNVs with known and predicted regulatory elements in the
intergenic regions of the human genome

https://regulomedb.org/

VISTA Enhancer
Browser

Resource for experimentally validated human and mouse non-coding
fragments with gene enhancer activity as assessed in transgenic mice

https://enhancer.lbl.gov/

tive genes. These elements include the 3′/5′ untranslated
regions, the core promoter, and (deep) intronic splice re-
gions, all of which have an established role in gene reg-
ulation [16]. In addition, “non-coding genes” provide the
sequence for diverse RNA species, which are generally
not translated into proteins (e. g., long non-coding RNA,
microRNA). While they contribute to transcriptional and
post-transcriptional regulation of their target genes, the
map of non-coding genes remains incomplete [17].

However, most regulatory sequence elements are lo-
cated outside of genic regions and are difficult to predict
from sequence alone. Regulatory sequence elements are
composed of: (i) “proximal regulatory elements,” which
are located close to transcription start sites; and (ii) “dis-
tal regulatory elements,” which are located further away.
Both are in contact with their target genes through spa-
tial interaction and, based on different resources (Table 1),
they cover an estimated 5–20% of the genome. Their in-
teractions occur predominantly within the context of reg-
ulatory units [18], with topologically associating domains
(TADs) representing the basic domains of the 3D genome
architecture [19]. Importantly, the activity state of a spe-
cific regulatory element (e. g., an active “enhancer” and a
repressive “silencer”) is largely dependent on the presence
of cell type-specific binding proteins (e. g., transcription
factors), and can vary between cell types.

Functional maps of the “non-coding” genome

In contrast to the technical ease of identifying human vari-
ation at the individual and population levels, current ca-
pabilities for understanding the functional effects of non-
coding variants at themolecular, cellular, organismal, and
ultimately phenotypic level remain limited. This is largely

attributable to our limited understanding of sequence ele-
ments in the non-coding genome, which is mainly due to:
(i) the lack of a universal translation code comparable to
the amino acid sequence in protein-coding genes; (ii) the
temporal and spatial activity of regulatory elements com-
plicating their study; (iii) limited understanding of general
gene regulation processes; and (iv) the presumably small,
but as yet unknown, effect sizes of most non-coding vari-
ants.

To improve understanding of the non-coding genome,
functionally relevant genomic elements must first be cat-
aloged and annotated in a systematic manner [5]. Here,
“functionally relevant” refers to sequence blocks of vari-
able length that contribute to the spatio-temporal expres-
sion of genes, hence the term “regulatory.” The Encyclo-
pedia of DNA Elements (ENCODE) represents the first at-
tempt towards the global mapping of sequence elements
that are indicative of regulatory activity (i. e., DNA accessi-
bility, histonemodifications,methylationpatterns), across
diverse human tissues and developmental stages. Addi-
tional projects, such as the EU BLUEPRINT Epigenome ini-
tiative, the International Human Epigenome Consortium
(IHEC), NIH RoadMap Epigenomics, and the Functional
Annotation of the Mouse/Mammalian Genome (FANTOM)
consortium (Table 1), have further advanced the “func-
tional genome map” by providing additional tissues and
assay types (e. g., immunoprecipitation of DNA binding
proteins [transcription factors and histones], 3D organiza-
tion, and interaction of DNA elements).

Importantly, these datasets are often enriched for spe-
cific tissues and cell types, with amajor bias towards those
that are easily obtainable (e. g., immune cell types from
blood). In addition, funding for specific projects has often
been provided within the context of specific research ar-
eas (e. g., the focus of the BLUEPRINT Epigenome is the

https://jaspar.genereg.net/
https://www.mavedb.org
https://www.mprabase.com/
http://www.oreganno.org/
https://regulomedb.org/
https://enhancer.lbl.gov/
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hematopoietic system). Therefore, the use of public data
for prioritization approaches may be hampered by inher-
ent biases in data acquisition, and thus a lack of general
applicability.

Functional maps are often accessible through the
graphical interfaces of web-based portals (Table 1). In con-
trast to the situation for genetic variation, here, data pri-
vacy is only of limited concern, and both unprocessed
and processed data are often made available. Although a
large number ofmolecular assays are performed, eachpro-
vides only one functional dimension, and integrated ap-
proaches are often required to provide functional anno-
tation (e. g., diverse histone modifications combined into
chromatin segments [20]).

Visualization of functionalmaps ismost helpful when
used for specific chromosomal regions (e. g., a GWAS risk
locus) and/or when a disease-relevant cell type is al-
ready known (and available). If this is not the case, func-
tional maps can be used to identify the disease-relevant
cell types by calculating enrichments of non-coding vari-
ants in regulatory elements. To enable such systematic
analyses, summary level data on the entirety of regula-
tory elements across different cells and tissues can be
downloaded (e. g., from the SCREEN database [21] or En-
sembl Regulatory Build [22]) and used for enrichment ap-
proaches. Methods for enrichment analyses have been ex-
cellently reviewed elsewhere [23].

Integration of genotypes and (molecular)
phenotypes

Individual projects have also analyzed primary tissues and
embryonic cell types, as well as cells derived from non-
European populations, since the influence of population
background on cell type-specific gene regulation remains
unclear. While these studies complete the existing func-
tional maps, they often lack the resources required to
maintain web portals and thus release their data in gen-
eral databases such as NCBI Gene Expression Omnibus
(GEO). Tens of thousands of functional genomics datasets
are available in GEO, including data from diverse model
organisms, which enable interspecies analyses as promis-
ing orthogonal avenues [24, 25]. The widespread availabil-
ity of functional maps in public domains such as ENCODE
and GEO provides enormous potential for advancing the
interpretation of non-coding risk variants. However, one
current challenge in this respect is the requirement for the
uniform reprocessing of data when multiple studies are
combined.

To facilitate the investigation of the impact of common
genetic variants on molecular functions, the Genotype-
Tissue-Expression (GTEx, [26]) Project was established in
order to generate maps of quantitative trait loci (QTLs), in
which genotypes are statistically correlated with molecu-
lar measures at the population level. Following their ap-
plication to investigate gene expression in bulk (i. e., ex-
pression QTLs [eQTLs]), QTL studies have since been ex-
tended towards the investigation of a variety of molecular
functions, such as splicing (sQTLs), methylation (meQTL),
chromatin accessibility (caQTL), and even the regulation
of protein abundance (pQTL). Importantly, the observed
correspondence between genotype and molecular mea-
sure represents only a statistical correlation between two
traits, and orthogonal evidence is required to delineate the
biological mechanism. The latter might include Bayesian
approaches, such as colocalization, or experimental ma-
nipulation [23].

Beyond single nucleotide variants

SNVs are the most abundant form of genetic variation and
are the most comprehensively cataloged to date due to
the technical ease of their identification. Unsurprisingly,
therefore, most annotation efforts for non-coding variants
focus on SNVs. However, variant types that encompass a
larger number of nucleotides, such as SVs, are probably
more powerful in terms of causing functional effects of
regulatory elements. For instance, whereas the absence of
an entire transcription factor binding motif is more likely
to abolish binding, an SNV within the motif is likely to
modify binding affinity in a quantitative manner. Stud-
ies of patient-specific SVs have already suggested disease-
causing mechanisms in non-coding regions, particularly
within the context of TADs [19, 27]. Since the identification
of SVs is becoming ever easier due to technological and
algorithmic advances (e. g., long-read sequencing, optical
mapping) [8], an increasing number of high-quality SVs is
anticipated. While these provide the opportunity to study
regulatory effects, interpretation might also become more
complex, as SVs are likely to harbor multiple genomic ele-
ments simultaneously, each of which might contribute to
a different molecular function [28, 29].

Prioritization approaches

Intuitively, the number of candidate non-coding variants
identified by large-scale GWAS might be larger than those
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identified by studies on de novomutations (DNMs) in rare
diseases. However, the exact number of candidate variants
(i. e., the “variant space”) is largely influenced by study
design, sample size, and the genetic architecture of the
trait (Figure 1). For example, an analysis of genome-wide
data from 1,000 trios would result in around 80,000 can-
didate DNMs, whereas GWAS for traits with limited biolog-
ical complexity (e. g., orofacial clefting) have identified a
few dozen risk loci with a few hundred candidate variants
to date. The aim of in silico prioritization approaches is to
provide a relative ranking of candidate variants, thereby
allowing a reduction in the number of variants forwarded
for experimental follow-up.

Non-coding in silico scores

Two major types of in silico scores are currently available,
i. e., “specialized scores” and “broadly applicable scores.”
Specialized scores assess the impact of a variant on spe-
cific molecular functions and are particularly powerful for
candidate variants with a priori functional hypotheses,
e. g., those located in splice regions, within binding sites
of transcription factors or miRNAs, or in regions of open
chromatin. In contrast, “broadly applicable scores” make
use of general annotations such as sequence constraint,
i. e., conservation across species, or metrics derived from
variant density at a certain region. Sequence constraint is
a particularly powerful measure, as it integrates diverse
molecular effects through organismal fitness and survival,
at the cost of not necessarily providing a base pair reso-
lution. This concept is commonly used in the context of
annotating deleterious variants in protein-coding regions
(e. g., missense Z-score in gnomAD), and can be readily
transferred tonon-coding regions.Nonetheless, atwriting,
no single score from either group is an effective predictor
across all variant types. To improve predictions, multiple
scores can be integrated into one measure of deleterious-
ness [30]. Examples of tools that use genomically broad
(and less biased) datasets include Eigen, LINSIGHT, and
CADD.

Again, the generalizability of in silico scores is limited
by the available data. Particularly in the case of scores that
are derived from specific experimental assays via machine
learning, the predictive power is limited to those functions
that are represented in the training data. For instance, if
no feature covers the effect of a cell type-specific tran-
scription factor, the resulting score will not be predictive
of suchmolecular effects when annotating candidate vari-
ants. Furthermore, in silico scores that rely on conserva-
tion may fail in the prediction of “gain-of-function” vari-

ants, e. g., the generation of new transcription factor bind-
ing sites. It was previously demonstrated that results from
experimental data of regulatory variant effects (e. g., from
multiplex assays of variant effects [MAVEs], see below) are
not well captured by any of the existing in silico scores [31].

To overcome these limitations, novel computational
methods must be developed [31, 32]. Currently, the best re-
sults are obtained from sequence models that learn active
and inactive motif representations from large collections
of open chromatin data and histone marks (e. g., Deep-
Bind [33], gkmSVM [34], DeepSEA [35], and Enformer [36]).
These sequence models are publicly available and can be
applied to variants of interest, although they may be bi-
ased by the representation of cell and tissue types in the
respective training data. Model specialization (“transfer
learning”) on matching cell type data might reduce such
effects, and this is an area of active development within
the computational field.

Layered prioritization approaches

A wide range of computational pipelines are available,
thus creating a plethora of prioritization options for any
given list of variants. Therefore, consecutive (“layered”)
approaches have become popular. These include: (i) con-
sidering variants with a specific predicted molecular ef-
fect only; (ii) removing variants above a certain allele fre-
quency; (iii) applying the requirement for colocalization
with certain histone modifications or open chromatin an-
notation; and (iv) filtering for conservation. Importantly,
each of these layers reinforces the applied assumptions
(e. g., inverse correlation of allele frequency and effect
size), despite our still incomplete biological understand-
ing of, and substantial evidence for exceptions to, all these
proposed rules. To enable a more systematic characteriza-
tion, the effects of the individual prioritization layers must
be investigated one criterion at a timewith the inclusion of
a randomset of all variants, or using a fully crosseddesign.
Ideally, a compendium of scalable assays, each address-
ing a certain aspect of molecular read-out, should also be
available.MAVEs (seebelow) andadvances in synthetic bi-
ology represent initial steps in this direction.

Approaches to link non-coding elements to
target genes

Regulatory sequence elements can be located upstream
or downstream – or even on a different chromosome [37]
– than its target gene(s). This renders the assignment of
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links between genes and regulatory elements (gene-to-
regulatory element link [GRL]) difficult, which is often re-
quired for the performance of gene set analyses and the
generation of biological hypotheses. The most commonly
used approaches to assignGRLs are on the basis of proxim-
ity, considering either the closest gene or bothneighboring
genes (potentially within certain distance limits). Alterna-
tively, all genes within certain genomic windows, or all
genes within TADs, are considered target genes. GRLsmay
also be inferred from experimental data, e. g., fromdiverse
chromatin capture datasets; coexpression/coactivity data
obtained from matched open chromatin and expression
data across multiple cell-types; or the Activity-By-Contact
(ABC) model, which considers both chromatin interaction
and accessibility/histone acetylation data [38]. Once GRLs
are established, a wide variety of gene annotation-based
methods can be applied, ranging from gene set analyses
to pathway and network enrichments.

Multiplex assays of variant effects
The necessity for experimental testing of thousands of
variants, coupled with advances in next-generation se-
quencing (NGS), has driven the development of MAVEs
[39] and the collection of their results in an open repos-
itory, MAVEdb [40]. At their core, MAVEs allow system-
atic screening of variants in a single quantitative experi-
ment and are primarily intended to identify variants with
the potential for a specific molecular effect. We describe
two major types of MAVEs for non-coding regions below.
Importantly, the results of MAVEs typically require subse-
quent validation in an organismal system, often including
organoid or animal models [41].

Massively parallel reporter assays

Massively parallel reporter assays (MPRAs, alternatively
CRE-seq or STARR-seq) test the capability of putative reg-
ulatory elements to trigger gene expression in a specific
cellular context. In MPRAs, thousands of short sequences
(typically 150–300 bp) containing the regions (or variants)
of interest are first created by oligo synthesis, which is the
method of choice for the assessment of many independent
variants, e. g., those located across loci. Alternatively, ex-
isting variation in cell lines canbeutilized [42, 43], or error-
prone PCR (”saturation mutagenesis”) can create all pos-
sible SNVs within a region of interest. The oligo-pool con-
taining all candidate sequences is cloned into plasmid vec-
tors, which are subsequently introduced into an in vitro

system (Figure 2). Here, the plasmids either remain episo-
mal, or are integrated into genomes through a lentiviral or
other system [44]. The latter has been proven to be more
powerful for cell types that are difficult to infect (e. g., neu-
rons) or when a nucleosome context is required for read-
out. To minimize the large positional effects of random in-
tegration [45], flanking insulators to the vector can be in-
cluded [46].

Regulatory effects are assessed (or “read out”) by ei-
ther quantification of the relative abundance of individ-
ual reporter RNAs by NGS compared to their DNA abun-
dance, or a molecular phenotype (e. g., cell prolifera-
tion/death, fluorescence of the reporter), and can be cor-
related with specific variants within the tested element.
To date, large MPRA datasets of regulatory variant effects
(“variant-effect maps”) have been created in specific cell
types, for specific loci [31], and for common variants iden-
tified byQTL studies or GWAS [42, 43, 47]. In a recent study,
MPRAswere applied in clinical research to implicatediffer-
ing transcriptional networks in two phenotypically similar
neurodegenerative disorders [48].

CRISPR/Cas9 approaches

The introduction of CRISPR/Cas9 paved the way for the
development of in-genome MAVEs that retain the orig-
inal local genomic context. In the first study to apply
CRISPR/Cas9 genome editing in the context of MAVEs,
Findlay et al. generated all possible SNVs in exon 18 of
BRCA1 [49], and used effects on nonsense-mediated decay,
exonic splicing, and cellular growth as read-out. This ap-
plication to coding regions influenced the way in which
the non-coding genome is investigated by CRISPR/Cas9
genome editing [50], and recent developments include the
integration of single-cell technologies for functional read-
out [51]. Based on its capabilities to create highly specific
sequence alterations, future applications of the CRISPR
prime editing system are anticipated to replace other sys-
tems for sequence perturbations [52]. In combination with
multiplexed read-outs, thismay ultimately replace current
vector-based MPRA studies.

CRISPR-based alternatives to genome editing include
different CRISPR activation (CRISPRa) and interference
(CRISPRi) screens [53]. Here, a specific locus or allele is tar-
getedby amodifiedCRISPR fusionproteinwhichno longer
introduces strand breaks (e. g., dCas9 fusions), but instead
serves as a sequence-specific probe. This probe tows an
epigenetic modifier – which either increases or impairs
gene expression – to a region of interest. With (single-
cell) RNA-seq as themolecular read-out and combinatorial
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Figure 2: Principle of massively parallel reporter assays (MPRAs).MPRAs are used to simultaneously test hundreds to thousands of variants
for potential regulatory effects in one assay. (A) Generation of MPRA pools. First, the genomic sequence around each variant (candidate
regulatory elements [CREs]) is synthesized or otherwise derived and then combined with an individual barcode. All barcoded sequences
are combined into one pool. (B) MPRA reporter assay. This pool is then cloned into vectors. The vectors contain a reporter gene (poten-
tially driven by a minimal promoter) and place the CRE upstream of the transcriptional start site, while the barcode becomes part of the
transcript’s 3′ or 5′ untranslated region. Depending on the assay type, the vectors are designed to either remain episomal or integrate into
the genome (e. g., by lentivirus). The vector pool is then transfected (or transduced) into cell types of interest where the reporter genes are
expressed. Following extraction of DNA and RNA from those cells, barcodes can be converted into highly complex sequencing libraries and
read out on a high-throughput sequencing device. A regulatory effect of a certain CRE can be inferred from the number of detected barcode
sequences at the RNA level, corrected by the number of transfected plasmids (detected by the barcode abundance in DNA). Allelic effects are
derived from comparing the inferred expression effect of CREs with and without the allele of interest.

CRISPR targeting, the functional impact of candidate loci
or allelic variants can be explored within regulatory net-
works [54].

Limitations of MAVEs

MAVEs share the same limitations as low-throughput func-
tional assays. First, they are performed in individual cel-
lular systems, which require a priori knowledge regard-
ing the most appropriate cell type for the trait of interest.
Second, the results and interpretation are specific to the
applied cell type [55–57], and do not capture organismal
effects that might originate from the interaction of vari-
ous cell types. Third, even if the relevant cell type(s) are
known, the respective cell models might be unavailable
and can only be replaced in part, e. g., by immortalized
cell lines, since the applied alternatives do not capture the
true biological identity in its entirety. Performing MAVEs
that test effects across a number of cell types and/or con-
ditions might generate the most robust results.

To maximize the biological insights provided by
MAVEs, certain technical aspects also require further im-
provement. First, complementary high-resolution read-
outs at the molecular and cellular levels are required to

measure phenotypes at scale. This is particularly relevant
for the phenotypic effects of the more common alleles,
which are likely to be subtle for broader phenotypes, but
will become detectable with more precise molecular read-
outs. Second, current technical restrictions inDNAsynthe-
sis technology limit DNA fragment sizes, while for longer
fragments, the capacity of the plasmid vectors imposes an
artificial size limit. Here, novel approaches in synthetic bi-
ology that enable the analysis of larger fragments would
provide superior coverage of the broad size range of reg-
ulatory elements, including the assessment of 3D interac-
tions.

From GWAS to molecular
mechanism: The FTO locus in
obesity

Early GWAS identified an extended haplotype block of 89
common variants, located in introns 1 and 2 of a gene
named Fat Mass And Obesity Associated (FTO), as a risk
locus for obesity (as measured by high body mass index
[BMI]). FTO encodes a protein involved in the oxidative
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Figure 3: Functional dissection of the FTO locus and its role in determining body mass index (BMI). (A) Genetic locus. Genome-wide as-
sociation studies have revealed an association between a region on chromosome 16q12 and BMI. Three genes are located within a 1-Mb
genomic interval. One of the associated non-coding SNVs, rs1421085 (red line), is located within a regulatory sequence (yellow oval). Cor-
relating individual genotypes and expression levels in adipocytes revealed that the C-allele is associated with increased expression of the
genes IRX3 and IRX5, while no genotype-dependent effect on FTO expression was observed. (B) Molecular pathway leading to IRX3/IRX5
overexpression. The C-allele disrupts the binding motif of the transcription factor ARID5B, which is a repressor of IRX3/5 expression. In the
presence of the C-allele, ARID5B does not bind, and the expression levels of IRX3 and IRX5 increase. This pathway explains the observed
correlation between the C-allele and IRX3/5 expression as depicted in panel (A). (C) Cellular mechanism. In pre-adipocytes, IRX3 and IRX5
influence the cellular fate of pre-adipocytes; these can either develop into brown adipocytes, which contribute to energy consumption
through thermogenesis, or white adipocytes, in which energy is stored through lipid accumulation. In the presence of an increased amount
of IRX3/5, there is an increased number of cells shifting to the white adipocyte trajectory, while few brown adipocytes are generated. This
results in reduced energy consumption in the presence of increased lipid storage.

demethylation of various RNA species, and thereby con-
tributes to post-transcriptional gene regulation. The ab-
sence of any deleterious coding variants suggested a regu-
latory effect of the risk haplotype, and FTOwas considered
the major positional candidate gene based on functional
evidence from mice [58].

In a seminal study, the causative molecular path-
way was identified via functional genomics ([59]; Fig-
ure 3). First, the authors intersected the regional asso-
ciation statistics with chromatin state annotations using
127 samples from the Roadmap Epigenomics project (see
Table 1). A putative enhancer region of 12.8 kb in size
was identified and found to be active in adipocytes. The
integration of expression data suggested a key role for
pre-adipocytes. These represent a specific adipocyte type,

which develops along one of two trajectories into either (i)
white adipocytes, i. e., fat-storing cells, or (ii) beige/brown
adipocytes, which contribute to fat consumption via heat
generation (“thermogenesis”). Integration of eQTL and
chromatin interaction data from adipocytes suggested the
genes Iroquois Homeobox 3 (IRX3) and IRX5 – both of
which are master regulators of thermogenesis – as the en-
hancer’s targets. Having established both the implicated
cell type and the regulatory targets, the causal variant was
then determined via analysis of sequence conservation,
transcription factor binding motifs, and gene coexpres-
sion. The analyses highlighted one single SNV (rs1421085)
from the long haplotype block, involving a T-to-C transi-
tion within the region encoding the binding motif of the
transcriptional repressor ARID5B.
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Ultimately, the authors presented robust evidence that
in the presence of the C-allele of rs1421085, ARID5B can-
not bind to its target motif within the enhancer region.
This results in increased expression of IRX3/IRX5 in pre-
adipocytes, which are then prompted to shift their devel-
opmental trajectory towardswhite adipocytes. This results
in increased lipid storage and a simultaneous reduction
in fat consumption via thermogenesis in beige adipocytes.
This study reinforces the earlier notion that a priori re-
liance on the “nearest” gene might misguide functional
follow-up.

Concluding remarks
The interpretation of variants in the non-coding genome
is a key challenge in the path towards personalized
medicine. While researchers now appreciate the diver-
sity of the molecular functions of non-coding elements,
our knowledge of the full extent of regulatory principles
and their complex interactions remains incomplete. In ad-
dition, currently available data are restricted to specific
cell types (developmental stages, cellular conditions) and
molecular assays, which limits efforts to predict variant ef-
fects.

In situations in which genomic datasets from differ-
ent labs must be combined, joint analyses are compli-
cated by cross-study differences in experimental and com-
putational pipelines. In this respect, the importance of
large-scale consortia such as ENCODE or gnomAD should
be emphasized. These provide standards for experimen-
tal protocols, reagents, and terminology, and have pio-
neered data accessibility via the initiation of data por-
talswith versionedanduniformdataprocessingpipelines,
genome browsers, and/or application programming in-
terfaces (APIs), which enable scripted access and data
download. However, the maintenance and sustainability
of these databases is problematic due to the time-limited
and project-specific nature of the respective funding peri-
ods.

Over the next decade, a major aim of research will be
the efficient engineering of genomic alterations in order to
assess their functional read-out in biological systems. Due
to the technical challenges associated with MAVEs, the
routine performance of these high-throughput approaches
across multiple laboratories is unlikely. A more plausible
scenario is that specialized academic centers will perform
these analyses for a particular region of the genome or a
disease of interest, and that the generated data will then
be made available to the wider research community. How-
ever, to perform these experiments at scale and to enable

sustaineddata accessibility, substantial fundingwill be re-
quired.An initial effort towards this goal is the recent foun-
dation of the Impact of Genomic Variation on Function
(IGVF) Consortium [60]. This was established in order to
evaluate the function and phenotypic outcomes of coding
and non-coding genomic variation using currently avail-
able approaches, and to develop improved experimental
and computational strategies.

The coming years will see an enormous expansion
in functional genomics datasets at all levels, i. e., with
respect to novel experimental read-outs, additional an-
notations, and a variety of computational tools includ-
ing scores, analysis pipelines, and machine learning ap-
proaches. While this opens up substantial opportunities
for the field, the enormous challenges associated with
data aggregationwill complicate theuse of these resources
by the research community. A specific aim of consortia
such as IGVF is to also facilitate data access by establish-
ing variant-to-effect catalogs, including options to visual-
ize variant impacts within the context of the underlying
data, tools, andmodels. Togetherwith additional key play-
ers, such as the Global Alliance for Genomics and Health
(GA4GH) and European infrastructure projects such as
ELIXIR, joined efforts must be established to build global
resources for the interpretation of the non-coding genome.
This will be required to introduce precision medicine
across the broad medical genetics community.

Acknowledgment: We thank current and previous mem-
bers of the Kircher and Ludwig labs for helpful discussions
and suggestions, and the reviewers for their comments and
feedback.
Research funding: M.K. is supported by the NIH/NHGRI
IGVF effort (1UM1HG011966-01). K. U. L. is supported by
the German Research Council (Deutsche Forschungsge-
meinschaft [DFG]; LU-1944/3-1).
Author contributions: All authors have accepted respon-
sibility for the entire content of this manuscript and ap-
proved its submission.
Competing interests: Authors state no conflict of interest.
Informed consent: Not applicable.
Ethical approval: Not applicable.

References
[1] Zhang F, Lupski JR. Non-coding genetic variants in human

disease. Hum Mol Genet. 2015;24:R102–10.
[2] Ellingford JM, Ahn JW, Bagnall RD, Baralle D, Barton S,

Campbell C et al. Recommendations for clinical interpretation



M. Kircher and K. U. Ludwig, Systematic assays and resources for the functional annotation | 285

of variants found in non-coding regions of the genome.
Genome Med. 2022;14:73.

[3] Spielmann M, Kircher M. Computational and experimental
methods for classifying variants of unknown clinical
significance. Cold Spring Harb Mol Case Stud.
2022;8:a006196.

[4] Krude H, Mundlos S, Øien NC, Opitz R, Schuelke M. What can
go wrong in the non-coding genome and how to interpret
whole genome sequencing data. Med Genet. 2021;33:121–31.

[5] Garda S, Schwarz JM, Schuelke M, Leser U, Seelow D. Public
data sources for regulatory genomic features. Med Genet.
2021;33:167–77.

[6] Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J,
Wang Q. The mutational constraint spectrum quantified from
variation in 141,456 humans. Nature. 2020;581:434–43.

[7] Collins RL, Brand H, Karczewski KJ, Zhao X, Alföldi J, Francioli
LC et al. A structural variation reference for medical and
population genetics. Nature. 2020;581:444–51.

[8] Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D,
Bonder MJ, et al. Haplotype-resolved diverse human genomes
and integrated analysis of structural variation. Science.
2021;372:eabf7117.

[9] Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV,
Mikheenko A et al. The complete sequence of a human
genome. Science. 2022;376:44–53.

[10] Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks
LD, Gibbs RA et al. A map of human genome variation from
population-scale sequencing. Nature. 2010;467:1061–73.

[11] di Iulio J, Bartha I, Wong EHM, Yu H-C, Lavrenko V, Yang D et al.
The human noncoding genome defined by genetic diversity.
Nat Genet. 2018;50:333–7.

[12] Havrilla JM, Pedersen BS, Layer RM, Quinlan AR. A map of
constrained coding regions in the human genome. Nat Genet.
2019;51:88.

[13] Halldorsson BV, Palsson G, Stefansson OA, Jonsson H,
Hardarson MT, Eggertsson HP, et al. Characterizing mutagenic
effects of recombination through a sequence-level genetic
map. Science. 2019;363:eaau1043.

[14] Bamshad MJ, Nickerson DA, Chong JX. Mendelian gene
discovery: Fast and furious with no end in sight. Am J Hum
Genet. 2019;105:448–55.

[15] Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst
J, Malangone C et al. The NHGRI-EBI GWAS Catalog of
published genome-wide association studies. targeted
arrays and summary statistics 2019 Nucleic Acids Res.
2019;47:D1005–12.

[16] Barrett LW, Fletcher S, Wilton SD. Regulation of eukaryotic
gene expression by the untranslated gene regions and
other non-coding elements. Cell Mol Life Sci CMLS.
2012;69:3613–34.

[17] Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell
differentiation and development. Nat Rev Genet. 2014;15:7–21.

[18] Hafner A, Boettiger A. The spatial organization of
transcriptional control. Nat Rev Genet. 2022;1–16.

[19] Spielmann M, Lupiáñez DG, Mundlos S. Structural variation in
the 3D genome. Nat Rev Genet. 2018;19:453–67.

[20] Vu H, Ernst J. Universal annotation of the human genome
through integration of over a thousand epigenomic datasets.
Genome Biol. 2022;23:9.

[21] Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, Adrian J

et al. Expanded encyclopaedias of DNA elements in the human
and mouse genomes. Nature. 2020;583:699–710.

[22] Zerbino DR, Wilder SP, Johnson N, Juettemann T, Flicek PR. The
Ensembl Regulatory Build Genome Biol. 2015;16:56.

[23] Cano-Gamez E, Trynka G. From GWAS to Function: Using
Functional Genomics to Identify the Mechanisms Underlying
Complex Diseases. Front Genet. 2020;11:424.

[24] Wangler MF, Yamamoto S, Chao H-T, Posey JE, Westerfield
M, Postlethwait J et al. Model Organisms Facilitate Rare
Disease Diagnosis and Therapeutic Research. Genetics.
2017;207:9–27.

[25] Shefchek KA, Harris NL, Gargano M, Matentzoglu N,
Unni D, Brush M et al. The Monarch Initiative in 2019:
an integrative data and analytic platform connecting
phenotypes to genotypes across species. Nucleic Acids Res.
2020;48:D704–15.

[26] GTEx Consortium. The GTEx Consortium atlas of genetic
regulatory effects across human tissues. Science.
2020;369:1318–30.

[27] Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki
E et al. Disruptions of topological chromatin domains cause
pathogenic rewiring of gene-enhancer interactions. Cell.
2015;161:1012–25.

[28] Byrska-Bishop M, Evani US, Zhao X, Basile AO, Abel HJ, Regier
AA, et al. High-coverage whole-genome sequencing of the
expanded 1000 Genomes Project cohort including 602 trios.
Cell. 2022;185:3426–3440.e19.

[29] Gong T, Jaratlerdsiri W, Jiang J, Willet C, Chew T, Patrick SM et
al. Genome-wide interrogation of structural variation reveals
novel African-specific prostate cancer oncogenic drivers.
Genome Med. 2022;14:100.

[30] Rentzsch P, Schubach M, Shendure J, Kircher M.
CADD-Splice-improving genome-wide variant effect prediction
using deep learning-derived splice scores. Genome Med.
2021;13:31.

[31] Kircher M, Xiong C, Martin B, Schubach M, Inoue F, Bell RJA
et al. Saturation mutagenesis of twenty disease-associated
regulatory elements at single base-pair resolution. Nat
Commun. 2019;10:1–15.

[32] Shigaki D, Adato O, Adhikari AN, Dong S, Hawkins-Hooker
A, Inoue F et al. Integration of multiple epigenomic marks
improves prediction of variant impact in saturation
mutagenesis reporter assay. Hum Mutat. 2019;40:1280–91.

[33] Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the
sequence specificities of DNA- and RNA-binding proteins by
deep learning. Nat Biotechnol. 2015;33:831–8.

[34] Beer MA. Predicting enhancer activity and variant impact using
gkm-SVM. Hum Mutat. 2017;38:1251–8.

[35] Chen KM, Wong AK, Troyanskaya OG, Zhou J. A
sequence-based global map of regulatory activity for
deciphering human genetics. Nat Genet. 2022;54:940–9.

[36] Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska
A, Taylor KR et al. Effective gene expression prediction from
sequence by integrating long-range interactions. Nat Methods.
2021;18:1196–203.

[37] Delaneau O, Zazhytska M, Borel C, Giannuzzi G, Rey G,
Howald C, et al. Chromatin three-dimensional interactions
mediate genetic effects on gene expression. Science.
2019;364:eaat8266.

[38] Fulco CP, Nasser J, Jones TR, Munson G, Bergman DT,



286 | M. Kircher and K. U. Ludwig, Systematic assays and resources for the functional annotation

Subramanian V et al. Activity-by-contact model of
enhancer–promoter regulation from thousands of CRISPR
perturbations. Nat Genet. 2019;51:1664–9.

[39] Findlay GM. Linking genome variants to disease: scalable
approaches to test the functional impact of human mutations.
Hum Mol Genet. 2021;30:R187–97.

[40] Esposito D, Weile J, Shendure J, Starita LM, Papenfuss AT,
Roth FP et al. MaveDB: an open-source platform to distribute
and interpret data from multiplexed assays of variant effect.
Genome Biol. 2019;20:223.

[41] Kvon EZ, Zhu Y, Kelman G, Novak CS, Plajzer-Frick I, Kato
M, et al. Comprehensive In Vivo Interrogation Reveals
Phenotypic Impact of Human Enhancer Variants. Cell.
2020;180:1262–1271.e15.

[42] van Arensbergen J, Pagie L, FitzPatrick VD, de HM, Baltissen
MP, Comoglio F et al. High-throughput identification of
human SNPs affecting regulatory element activity. Nat Genet.
2019;51:1160–9.

[43] Vockley CM, Guo C, Majoros WH, Nodzenski M, Scholtens
DM, Hayes MG et al. Massively parallel quantification of the
regulatory effects of noncoding genetic variation in a human
cohort. Genome Res. 2015;25:1206–14.

[44] Klein JC, Agarwal V, Inoue F, Keith A, Martin B, Kircher M,
et al. A systematic evaluation of the design and context
dependencies of massively parallel reporter assays. Nat
Methods. 2020;1–9.

[45] Akhtar W, Pindyurin AV, de Jong J, Pagie L, Ten Hoeve J, Berns
A et al. Using TRIP for genome-wide position effect analysis in
cultured cells. Nat Protoc. 2014;9:1255–81.

[46] Inoue F, Kircher M, Martin B, Cooper GM, Witten DM, McManus
MT et al. A systematic comparison reveals substantial
differences in chromosomal versus episomal encoding of
enhancer activity. Genome Res. 2017;27:38–52.

[47] Tewhey R, Kotliar D, Park DS, Liu B, Winnicki S, Reilly SK et al.
Direct Identification of Hundreds of Expression-Modulating
Variants using a Multiplexed Reporter Assay. Cell.
2016;165:1519–29.

[48] Cooper YA, Teyssier N, Dräger MN, Guo Q Q, Davis JE,
Sattler SM, et al. Functional regulatory variants implicate
distinct transcriptional networks in dementia. Science.
2022;377:eabi8654.

[49] Findlay GM, Boyle EA, Hause RJ, Klein JC, Shendure
J. Saturation editing of genomic regions by multiplex
homology-directed repair. Nature. 2014;513:120–3.

[50] Przybyla L, Gilbert LA. A new era in functional
genomics screens. Nat Rev Genet. 2021.
https://doi.org/10.1038/s41576-021-00409-w.

[51] Gasperini M, Hill AJ, McFaline-Figueroa JL, Martin B,
Kim S, Zhang MD, et al. A Genome-wide Framework for
Mapping Gene Regulation via Cellular Genetic Screens. Cell.
2019;176:377–390.e19.

[52] Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW,
Levy JM et al. Search-and-replace genome editing without
double-strand breaks or donor DNA. Nature. 2019;576:149–57.

[53] Dominguez AA, Lim WA, Qi LS. Beyond editing: repurposing
CRISPR-Cas9 for precision genome regulation and
interrogation. Nat Rev Mol Cell Biol. 2016;17:5–15.

[54] Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, et al.
Perturb-Seq: Dissecting Molecular Circuits with Scalable
Single-Cell RNA Profiling of Pooled Genetic Screens. Cell.
2016;167:1853–1866.e17.

[55] Maricque BB, Dougherty JD, Cohen BA. A genome-integrated
massively parallel reporter assay reveals DNA sequence
determinants of cis-regulatory activity in neural cells. Nucleic
Acids Res. 2017;45:e16.

[56] Inoue F, Kreimer A, Ashuach T, Ahituv N, Yosef N. Identification
and massively parallel characterization of regulatory elements
driving neural induction. Cell Stem Cell. 2019;25:713–727.e10.

[57] Griesemer D, Xue JR, Reilly SK, Ulirsch JC, Kukreja K, Davis
JR, et al. Genome-wide functional screen of 3’UTR variants
uncovers causal variants for human disease and evolution.
Cell. 2021;184:5247–5260.e19.

[58] Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, JC B et
al. Inactivation of the Fto gene protects from obesity. Nature.
2009;458:894–8.

[59] Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W,
Haugen C et al. FTO obesity variant circuitry and adipocyte
browning in humans. N Engl J Med. 2015;373:895–907.

[60] National Human Genome Research Institute (NHGRI).
Impact of Genomic Variation on Function (IGVF). Consortium
Genome gov. 2021. https://www.genome.gov/Funded-
Programs-Projects/Impact-of-Genomic-Variation-on-Function-
Consortium. Accessed 7 Jan 2022.

Martin Kircher
Institute of Human Genetics, University of Lübeck, Lübeck, Germany
Berlin Institute of Health at Charité – Universitätsmedizin Berlin,
Berlin, Germany
martin.kircher@uni-luebeck.de

Kerstin U. Ludwig
Institute of Human Genetics, University Hospital Bonn, University of
Bonn, Venusberg-Campus 1, Building 76, 53127 Bonn, Germany
kerstin.ludwig@uni-bonn.de

https://doi.org/10.1038/s41576-021-00409-w
https://www.genome.gov/Funded-Programs-Projects/Impact-of-Genomic-Variation-on-Function-Consortium
https://www.genome.gov/Funded-Programs-Projects/Impact-of-Genomic-Variation-on-Function-Consortium
https://www.genome.gov/Funded-Programs-Projects/Impact-of-Genomic-Variation-on-Function-Consortium

	Systematic assays and resources for the functional annotation of non-coding variants
	Introduction
	Resources for the non-coding genome
	Human genetic variation
	Genomic architecture of the non-coding genome
	Functional maps of the “non-coding” genome
	Integration of genotypes and (molecular) phenotypes
	Beyond single nucleotide variants

	Prioritization approaches
	Non-coding in silico scores
	Layered prioritization approaches
	Approaches to link non-coding elements to target genes

	Multiplex assays of variant effects
	Massively parallel reporter assays
	CRISPR/Cas9 approaches
	Limitations of MAVEs

	From GWAS to molecular mechanism: The FTO locus in obesity
	Concluding remarks
	References


