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Abstract: An epilepsy diagnosis has large consequences
for an individual but is often difficult to make in clinical
practice. Novel biomarkers are thus greatly needed. Here,
we give an overview of how thousands of common genetic
factors that increase the risk for epilepsy can be summa-
rized as epilepsy polygenic risk scores (PRS). We discuss
the current state of researchonhowepilepsyPRS can serve
as a biomarker for the risk for epilepsy. The high heri-
tability of common forms of epilepsy, particularly genetic
generalized epilepsy, indicates a promising potential for
epilepsy PRS in diagnosis and risk prediction. Small sam-
ple sizes and low ancestral diversity of current epilepsy
genome-wide association studies show, however, a need
for larger and more diverse studies before epilepsy PRS
could be properly implemented in the clinic.
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Introduction

Genetic information is increasingly used in clinical prac-
tice, also in disease prevention [1]. Here, genetic variants
with large Mendelian effect sizes, which are mostly rare,
are easiest to interpret in a genetic counseling setting as
they are accordingly characterized by a high cumulative
lifetime risk for a specific disease. While genome-wide as-
sociation studies (GWAS) have demonstrated translational
impact through identification of disease mechanisms and
discovery and evaluation of therapeutic targets, the effect
of individual GWAS loci on disease is small. (This is due
to selection not permitting genetic variants with large ef-
fects on disease at high population frequencies [6].) It is
well established that common genetic variants with small
effects on specific diseases can be combined as polygenic
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(risk) scores (PRS or PGS). For five common disorders, a re-
cent study showed a 3- to 5-fold increased disease risk for
patients with a high disease-specific PRS, similar to risk
conferred by rare monogenic variants [2]. Evaluating the
utility of PRS in clinical genetic diagnosis is an active re-
search area and there are multiple examples, particularly
in breast cancer [3, 4] (including the breast cancer consor-
tium in Germany [5]) and cardiovascular disease [6], that
demonstrate how they could be implemented in routine
clinical practice [7].

Main

Common genetic variants largely contribute
to common forms of epilepsy

Epilepsy is a sometimes devastating neurological disor-
der characterized by unprovoked seizures, which affects
approximately 1% of individuals worldwide. Although
epilepsy can be caused by acquired conditions such as
stroke, tumor, or head injury, the majority of cases (ca.
70–80%) are due to genetic influences [8]. While in about
half of severe epilepsy cases single genetic mutations can
be found as a cause [9, 10], GWAS have shown that com-
mon variants contribute particularly to milder and more
common non-acquired forms of epilepsy [11]. These com-
mon epilepsy types are usually broadly summarized into
genetic generalized epilepsy (here: generalized epilepsy)
and non-acquired focal epilepsy (here: focal epilepsy).
The proportion of heritability of generalized epilepsy at-
tributed to common genetic variants with small individual
effects, so-called single nucleotide polymorphism (SNP)
heritability (or h2SNP), is ca. 32%, which is relatively high
compared to other common brain disorders (see Figure 1,
adapted from [12]). SNP heritability of focal epilepsy is
lower, at about 9%. Notably, there is a significant and sub-
stantial genetic correlation between subtypes of general-
ized epilepsy syndromes, suggesting a shared genetic ba-
sis for different generalized epilepsy types [11]. General-
ized epilepsy subtypes show, however, no significant ge-
netic correlationwith focal epilepsy subtypes (with one ex-
ception that could, however, also arise frommisclassifica-
tion [11]). Interestingly, recent studies have shown a com-
plementary contribution of family history and PRS to the
risk of cancer [13] and other traits including epilepsy [14],
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Figure 1: Adapted from [12]. Heritability estimates for different brain
disorders. Red bars denote psychiatric disorders, while blue bars
denote neurological disorders. ADHD – attention deficit hyperactiv-
ity disorder; ASD – autism spectrum disorder; ICH – intracerebral
hemorrhage; OCD – obsessive-compulsive disorder; MDD – major
depressive disorder; PTSD – post-traumatic stress disorder. Error
bars show one standard error.

thus emphasizing it is worth to consider both in disease
prediction.

Epilepsy GWAS have much smaller sample
sizes than GWAS of other common diseases

Compared to other common complex diseases, specifically
thosewherePRSare closest to getting implemented in clin-
ical practice such as cardiovascular diseases [6] or breast
cancer [4, 5], the sample size of the largest epilepsy GWAS
ismuch smaller (see Figure 2). This also applieswhen com-
paring sample sizes of epilepsy GWAS to those of GWAS of
diseases of similar prevalence such as inflammatory bowel
disease or Parkinson’s disease (as of course larger sample

sizes can be more easily achieved for traits with a higher
population prevalence such as depression or cardiovas-
cular diseases). As disease-specific PRS are calculated us-
ing data from the epilepsy discovery GWAS, using a small
discovery GWAS potentially limits its clinical performance
and thus utility. However, this is subject to change in the
near future with an update of the International League
Against Epilepsy (ILAE) Consortium on Complex Epilep-
sies currently underway.

It has been consistently shown across diseases that
PRS predict disease risk up to several times more accu-
rately in Europeans than in non-Europeans. This is a con-
sequence of the substantial underrepresentation of non-
European samples in most GWAS [15]. In the latest ILAE
epilepsy GWAS the vast majority of samples came from in-
dividuals of Europeanancestry. The research could thus be
more beneficial to individuals of European ancestry, who,
however, oftenalready receivebetter healthcare thanother
ancestry groups.

Elevated epilepsy PRS in epilepsy cases
compared to controls

While individual genetic markers are significantly associ-
ated with a range of epilepsy phenotypes in GWAS their
individual effect sizes are small. The predictive power and
thus clinical utility of individual epilepsy GWAS loci is
thus limited. However, recent years have seen a rapid ad-
vancement in the way how thousands of small-effect as-
sociations could be combined to a PRS that can have sub-
stantial effect sizes and thus potential clinical relevance
(Figure 3). Analogously to other common diseases, recent
studies found that individualswith epilepsy also had a sig-
nificantly elevated epilepsy PRS compared to population-
based controls [16, 17]. Here, the disease-specific PRS was
particularly elevated in generalized epilepsy. There was
only amodest polygenic burden in focal epilepsy, which is
expected given its much lower SNP heritability than gen-
eralized epilepsy [11]. While there is a higher burden of
ultrarare variants in generalized than in focal epilepsy,
well-established Mendelian genes can only be found for
focal epilepsy [18]. It is thus unclear how different rare
variant burdens may contribute to the difference in fo-
cal and generalized epilepsies’ SNP heritability. An im-
portant limitation of both studies is that they were only
conducted in individuals of European ancestry. Given the
known limited transferability of PRS across continental
ancestries [15], further studies inmore diverse populations
are needed to understand the clinical utility of epilepsy
PRS derived from currently available GWAS in individuals
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Figure 2: The number of cases in recent GWAS across different disease areas. Many common diseases have GWAS sample sizes of
>100,000, while the largest GWAS in focal epilepsy (n = 9,671) and generalized epilepsy (n = 3,769) are substantially smaller at the time of
writing.

Figure 3: Calculation of epilepsy PRS. (A) First, genetic differences between the groups of individuals with and without epilepsy are iden-
tified in a genome-wide association study (GWAS). A GWAS finds genetic markers that decrease or increase the risk for epilepsy. (B) In a
second independent target cohort, thousands of epilepsy risk or protective markers are then weighted and counted in each individual to
obtain a single number representing the overall genetic liability for epilepsy: the epilepsy PRS. (C) On a group level, the epilepsy PRS (or
genetic burden for epilepsy) can then be compared between epilepsy cases and controls in the target cohort.

of non-European ancestry. More importantly, however, as
applies for other diseases, epilepsy GWAS need to include
more individuals of non-European descent to potentially
offer epilepsy risk prediction for any humans worldwide
regardless of their ancestral background.

Epilepsy PRS’ clinical potential as a marker
for epilepsy risk

The absolute lifetime risk to develop generalized epilepsy
is usually <0.1–0.5%. Even in the tails of the generalized
epilepsy PRS distribution the increased disease risk of in-

dividuals with a high genetic liability does not usually
exceed 5× the risk of the population average. Therefore,
the absolute lifetime risk for epilepsy would be approxi-
mately 1–2% for individuals with a high genetic liability
for epilepsy. This low absolute risk limits the clinical util-
ity of epilepsy risk prediction in healthy individuals. How-
ever, this is different in individuals at high epilepsy risk.
The clinical guidelines of the ILAE require at least one
unprovoked seizure and at least a 60% chance of a sec-
ond seizure for an epilepsy diagnosis [19]. In clinical prac-
tice, making this diagnosis is often difficult and up to 25%
of epilepsy patients could initially be misdiagnosed [20].
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Genetic information in the form of an epilepsy PRS has
thus a great potential to serve in the future as a biomarker
for epilepsy risk in predicting another seizure in individu-
als with one unspecified seizure event, of whom ca. 50%
eventually develop epilepsy [21], as these biomarkers are
currently lacking. Recent preliminary results in >269,000
Finns from the FinnGen study indicate this may be possi-
ble [22]. Here, the authors are currently investigating the
association between the epilepsy PRS and a later epilepsy
diagnosis in participants who suffered seizures for which
the cause was unclear.

Summary and outlook
Thehighheritability of common formsof epilepsy, particu-
larly genetic generalized epilepsy, indicates a great poten-
tial for commongeneticmarkers to serve as abiomarker for
epilepsy diagnosis and risk prediction. The quite distinct
genetic basis of focal and generalized epilepsy also indi-
cates a potential utility for PRS in helping to distinguish
between epilepsy subtypes. The low sample sizes and low
ancestral diversity of current epilepsy GWAS show, how-
ever, a great need for larger studies specifically including
non-European individuals before epilepsy PRS could be
properly implemented in the clinic. Due to the low life-
time prevalence of epilepsy, the clinical utility of PRS for
epilepsy risk prediction would be modest in the average
population, but PRS have great potential in clinical groups
at high epilepsy risk, e. g., individuals with an unspeci-
fied seizure event, forwhomsuchbiomarkers are currently
lacking.

Glossary
ILAE (International League Against Epilepsy) – The
world’s largest association of physicians and other health
professionals in epilepsy, founded in 1909.
GWAS (genome-wide association study) – The study of
genotype–phenotype associations for millions of genetic
markers across the whole genome.
Heritability (h2) – The proportion of phenotypic variance
that can be explained by common genetic markers, often
estimated from GWAS.
SNP (single nucleotide polymorphism) – A single nu-
cleotide at a specific position in the genome that is differ-
ent in a large fraction (typicallymore than 5%or 1%) of in-
dividuals in a population. Most genetic markers in GWAS
are SNPs.

PRS (polygenic risk score) – The sum of genetic risk mark-
ers equivalent to an individual’s genetic liability to a spe-
cific disease, calculated using GWAS data of an indepen-
dent discovery cohort.
Discovery (or base) cohort – GWAS results containing ge-
netic markers that increase/decrease the risk for a given
disease.
Target cohort – The research cohort in which PRSs are cal-
culated consisting of individual-level genotype and phe-
notype data.
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