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Abstract: Developmental and epileptic encephalopathies
comprise a heterogeneous group of monogenic neu-
rodevelopmental disorders characterized by early-onset
seizures, marked epileptic activity and abnormal neu-
rocognitive development. The identification of an increas-
ing number of underlying genetic alterations and their
pathophysiological roles in cellular signaling drives the
way toward novel precision therapies. The implementa-
tion of novel treatments that target the underlying mech-
anisms gives hope for disease modification that will im-
prove not only the seizure burden but also the neurodevel-
opmental outcome of affected children. So far, beneficial
effects are mostly reported in individual trials and small
numbers of patients. There is a need for international col-
laborative studies to define the natural history and rele-
vant outcomemeasures and to test novel pharmacological
approaches.
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Epileptic encephalopathies are early-onset severe epilepsy
syndromes. An increasing number of genes are identified
in about half of affected infants [1]. These distinct mono-
genic neurodevelopmental disorders (NDD) are now clas-
sified as developmental and epileptic encephalopathies
(DEE), based on the genetic cause. The classification as
monogenic DEEs acknowledged that in most cases the ab-
normal neurodevelopment is related to the genetic de-
fect rather than seizure burden and abnormal electroen-
cephalography (EEG) activity (Infobox 1). Characterization
of functional genetic effects on cellular signaling defined
potential novel targets for individualized treatments in
these refractory epilepsies with a poor prognosis.

The epileptic encephalopathies of childhood are
electroclinical epilepsy syndromes with recognizable
seizure types and EEG patterns (Infobox 2). Epilep-
tic encephalopathies as electroclinical syndromes
are classified by the International League Against
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Epilepsy (ILAE) [2, 3]. They are distinguished from
isolated developmental disorders or developmental en-
cephalopathies (NDD). In epileptic encephalopathies, the
epilepsy and epileptic activity itself contribute to the de-
velopment of the developmental disorder. In addition to
intellectual disability (ID), associated neurological disor-
ders, such as autism and movement disorders, often oc-
cur. The concept of an epileptic encephalopathy implied
the hope that successful therapy of epilepsy and abnor-
mal EEGcould improvedevelopment,which, however, has
not been demonstrated for all epileptic encephalopathies.
When specific causes and a genetic predisposition are
demonstrated, the prognosis for most childhood epileptic
encephalopathies is poor.

In developmental encephalopathies, seizures may be
absent or may occur only as part of the disorder. In many
genetic disorders with epilepsy, a combination of develop-
mental (e. g., genetic predisposition with a proven CDKL5
variant in a girl with atypical Rett syndrome) and epilep-
tic encephalopathy (e. g., West syndrome with regression
in infancy in the same patient) is present (see Infobox 1).
The ILAE classifies epileptic encephalopathies according
to age, seizure type, and EEG pattern (electroclinical syn-
drome). In this context, the main childhood epilepsy syn-
dromes are defined phenotypically according to age [4]
(see Infobox 2). Recently, the ILAE has proposed a novel
classification for the epilepsy syndromes, which includes
novel names and abbreviations formany of the age-related
epileptic encephalopathies [2, 3].

The term DEE has now been included in
the nomenclature of inherited disorders (Online
Mendelian Inheritance in Man [OMIM]) for these ge-
netic disorders with co-occurring epileptic seizures
and abnormal EEG activity. This reclassification allows
a distinction of these monogenic etiology-specific syn-
dromes from the electroclinical epilepsy syndromes with
often diverse etiologic background. At the same time, the
list of monogenic alterations as causes of these severe de-
velopmental disorders continues to grow and currently
includes 102 different monogenic disorders (Figure 1). Ta-
ble 1 lists recurrent examples of monogenic DEE. Derived
from statistical calculations on genetic NDD and taking
into account the genetic variation in large cohorts, it is
assumed that another 1,000 genes for developmental dis-
orders are still to be identified,which suggests a further in-
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Infobox 1: Frequently used terms and abbreviations in epileptic encephalopathies.

DEE Developmental and
epileptic
encephalopathy

Genetic disorder often associated with a specific epileptic encephalopathy phenotype, e. g., KCNQ2
encephalopathy, which often begins as neonatal Ohtahara syndrome.
The abbreviation is now used for all monogenic developmental disorders with epilepsy in the Online
Mendelian Inheritance in Man (OMIM) database.

EE Epileptic
encephalopathy

Encephalopathy in which epileptic activity itself causes a more severe additional impairment of cognition and
behavior that contributes to the developmental disorder beyond the underlying pathology (e. g., idiopathic
West syndrome). Defined by the International League against Epilepsy as distinct electroclinical syndromes.

EIEE Early infantile
epileptic
encephalopathy

Epileptological name for Ohtahara syndrome as a neonatal encephalopathy with tonic seizures and a
suppression burst pattern. Genetic classification: Previous term, used in OMIM for various infantile
developmental disorders with the leading symptom of epileptic seizures.

EME Early myoclonic
encephalopathy

Neonatal-onset early myoclonic encephalopathy with polymorphic epileptic and nonepileptic myoclonia,
other seizure types, and a suppression burst pattern in the EEG.

EOEE Early-onset epileptic
encephalopathy

Not clearly defined term for epileptic encephalopathies with onset within the first 6–12 months. The
abbreviation is often used as an umbrella term for neonatal epileptic encephalopathies with a suppression
burst pattern.

IS Infantile spasms Abbreviation for the predominant seizure type in West syndrome (short tonic flexion). Also used as an
alternative term for West syndrome (combination of infantile/epileptic spasms with hypsarrhythmia and
associated developmental disorder).

NDD Neurodevelopmental
disorder

Developmental disorder or developmental encephalopathy from a distinct etiology (e. g., Rett syndrome with
proven pathogenic variant inMECP2).

Infobox 2: Epileptic encephalopathies.

Electroclinical syndromes are classified by the International League Against Epilepsy (ILAE) according to age [4]. In infancy, up to 40% of
epilepsies can be attributed to these epileptic encephalopathies, with West syndrome being the most common, accounting for
approximately one third of cases [5, 6]. Figure 3 shows an overview of the genotype–phenotype correlation of the early epileptic
encephalopathies.
Neonatal
period

Early myoclonic encephalopathy and Ohtahara syndrome (EIEE)
In the first three months of life, two severe epileptic encephalopathies manifest with neonatal convulsions and a suppression
burst pattern on EEG: early myoclonic encephalopathy (EME) and Ohtahara syndrome. In EME, myoclonia are the predominant
seizure type, which can be epileptic and nonepileptic. In Ohtahara syndrome, tonic spasms and prolonged tonic seizures are
predominant. In EME, individual genetic and also metabolic causes are described, including glycine encephalopathy. For
Ohtahara syndrome (early infantile epileptic encephalopathy [EIEE]), a number of different genetic causes have been found in
recent years, including genes for a neuronal voltage-sensitive potassium channel (KCNQ2), a sodium channel of excitatory
neurons (SCN2A), and a synaptic protein involved in the exocytosis of neurotransmitters (STXBP1), among numerous other rare
genes [7]. Genotype–phenotype correlation is limited. The prognosis for neonatal epileptic encephalopathies is severe with
relevant lethality, intellectual disability, and frequent transition to other more severe epilepsy syndromes, such asWest syndrome
or Lennox–Gastaut syndrome. Patients with mutations in KCNQ2 appear to have a slightly more favorable prognosis with respect
to epilepsy and, in some cases, better development with achievement of motor skills and simple communication [7, 8].

Infancy Epilepsy of infancy with migrating partial seizures
Malignant migratory epilepsy of infancy (EIMFS, incidence <1:100,000) is a very rare epileptic encephalopathy that manifests
during the first weeks of life (usually around 7 weeks of life) with single focal motor seizures, progressing to a “storm phase” with
many (up to several hundred) focal motor and subtle seizures daily and the typical clinical and EEG picture with “migrating,”
status-like focal seizure patterns. Despite a later improvement in seizure frequency, the children develop a severe global
developmental disorder [9]. To date, there is no clear superior treatment. A specific therapeutic approach of channel blockade
with quinidine (with relevant risk of adverse drug reactions) eventually seems inferior to other classic antiepileptic drugs [10].
EIMFS has a high genotype–phenotype correlation, and mutations in the sodium-activated potassium channel (slack channel)
encoded by KCNT1 are predominant [11, 12].
West syndrome (infantile spasms)
West syndrome (infantile spasms) is the most common and prototypical epileptic encephalopathy. It is relatively common with an
incidence of approximately 1:2,400 [6]. Infantile or epileptic spasm is the characteristic seizure type of a short tonic bilateral
flexion [13]. West syndrome begins at the age of 2–12 months (often ∼6 months) [14]. There is usually a combination of a series
of epileptic spasms, “hypsarrhythmia” on EEG, and developmental regression. Genetic causes can now be identified in a large
proportion of children, showing a very high heterogeneity of genotype with only a few genes clustered, most notably CDKL5,
SCN2A, STXBP1, DNM1, KCNB1, and also SPTAN1 [9, 15–17].
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Infobox 2 (continued)

Dravet syndrome (SMEI)
Dravet syndrome, with an incidence of approximately 1:22,000 [18], was first described by Charlotte Dravet as severe myoclonic
epilepsy of infancy. Infants with prior normal development develop febrile, unilateral, or generalized clonic or tonic-clonic
seizures, some as hemiclonic status epilepticus, at the age of 3–12 months. The seizures are often triggered by fever, infections,
vaccinations, hyperthermia, or photostimulation [19]. In contrast to other epileptic encephalopathies, the EEG is often
unremarkable. The prognosis seems to be explained mainly by the genetic disorder, in terms of a developmental encephalopathy
[19]. De novo SCN1A gene mutations are found in up to 80% of cases, and much less frequently mutations in PCDH19
(X-dominant), GABRA1, STXBP1, or KCNA2 are found [1, 9, 18, 20].

Childhood Myoclonic atonic epilepsy
This generalized epilepsy syndrome occurs in previously healthy children between 1 and 5 years of age, with a slight male
dominance. Myoclonic seizures, sometimes subtle with a subsequent atonic phase that often leads to falls, are the typical
seizure type, along with other generalized seizure types. The seizures can be difficult to treat; most helpful are valproate,
ethosuximide, and the ketogenic diet. Mental development is variable, and up to 40% of children develop mild to severe mental
retardation [21, 22]. Repeatedly, alterations have been described in the genes SLC2A1, SLC6A1, SCN1A, CHD2, and most recently
in a number of genes encoding RNA-binding proteins such as HNRNPU and SYNCRIP [22–24].
Epilepsy-aphasia spectrum (CSWS and Landau–Kleffner syndrome)
The epilepsy-aphasia spectrum includes a group of focal epilepsies and is associated with a risk of associated language
disorders. These include continuous spikes and waves during sleep (CSWS) epilepsy, pseudo-Lennox syndrome, and
Landau–Kleffner syndrome. They have in common a marked sleep activation of focal epileptic potentials toward a continuous
status picture with generalized 1.5–3-Hz spike-wave series [25]. While in CSWS clinical seizures often occur during sleep, in
pseudo-Lennox syndrome, other petit mal seizures such as absences or atonic seizures are present. In Landau–Kleffner
syndrome, loss of expressive language skills is prominent, and clinical seizures may be absent [9, 25]. Genetic causes are found
in approximately 20% of patients. A subunit of the NMDA glutamate receptor, encoded by the gene GRIN2A, is most frequently
affected. In addition, mutations in a number of other genes, encoding synaptic proteins, proteins involved in neuronal growth,
neuronal transporters, and ion channels, likeMECP2, SLC9A6, KCNQ2, CNKSR2, and KCNA2, were described [25, 26]. CSWS can
also occur in children with mutations in neuronal tubulin genes (tubulinopathies). Tubulins are important neuronal structural
proteins and associated with various central nervous system anomalies and developmental disorders [27, 28].
Lennox–Gastaut syndrome
Lennox–Gastaut syndrome (LGS) is more often than other childhood epilepsy syndromes a consequence of severe structural
central nervous system damage involving the cerebral cortex and deep gray matter. Tonic seizures are predominant. Although
LGS is often used and diagnosed for inclusion in clinical trials, children with presumed LGS can have different electroclinical
epilepsies and classification is partially inconsistent. So here, we focus on better-defined EEs only.

creasing number of “epilepsy genes” [29]. Approximately
one third of all epilepsies in infancy are pharmacorefrac-
tory, and within this group of pharmacorefractory epilep-
sies, a genetic causative alteration is found in over half of
the children (53%) [5]. Genetic epilepsies with onset be-
fore 3 years of age are often difficult to treat and classical
antiseizure medications do not lead to sustained seizure
freedom [1, 5]. Analogous to other disease groups, such
as cancers, tumors, and cystic fibrosis, it is obviously de-
sired to incorporate the knowledge of the specific genetic
background into the choice of treatment [30].

Depending on the center and studies, probable
causative genetic alterations are found in up to 50% of
childrenwith early epilepsies, mostly in the form ofmono-
genic disorders [31]. For the different age-related epilep-
tic encephalopathies, the diagnostic yield differs, with a
significantly higher yield after the introduction of high-
throughput genetic sequencing (panel, exome) in recent
years (Figure 2). Genetic testing is superior to the clin-

ically suspected diagnosis, and a correct genetic cause
can be predicted in only about 15% of cases, limited to
cases with good genotype–phenotype correlation, such
as PRRT2-associated benign infantile epilepsy or SCN1A-
associated Dravet syndrome [32–34].

In our own cohort of more than 350 unselected chil-
dren with epilepsy, screened between 2016 and 2022 with
exome-wide sequencing techniques (panel, single exome,
trio exome), around 50% of children were found to har-
bor genetic alterations that are likely to contribute to their
epilepsy syndrome. In children with likely pathogenic or
pathogenic variants, these variants were found in more
than 80 different disease-associated genes. Most single
gene alterations were found in isolated cases and there
were less than 25 genes that were affected in multiple chil-
dren. This is in line with published studies on genetic
causes of childhood epilepsy [5, 15, 33]. For more than
35 genes with a known cellular function, the identifica-
tion of distinct variants had an impact on future coun-
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Figure 1: The current classification for monogenic developmental and epileptic encephalopathies (DEE, formerly EIEE; listed in the Online
Mendelian Inheritance in Man database) comprises 102 genes, with the number doubling in the last 5 years. The genes are assigned in
the timeline to the year of first description. In addition to this increasing list, many genes are not yet included and a recent study calcu-
lated that up to 1,000 more genes for developmental disorders can be identified [29]. Mode of inheritance: black: autosomal-dominant; red:
autosomal-recessive; green: X-linked.

Figure 2: Diagnostic yield from different molecular genetic tech-
niques. Chromosomal analyses and array CGH analyses have been
conducted to detect causative genetic alterations in up to 10%
(e. g., microdeletions: del2211.2, Angelman syndrome, del1p36).
With new exome-wide genetic analyses (next-generation sequenc-
ing), causative monogenic etiologies were identified in up to 40%
of children with early epileptic encephalopathies (West syndrome,
epilepsy with migrating seizures of infancy, Dravet syndrome) and
in more than 20% of late epileptic encephalopathies (e. g., con-
tinuous spikes and waves during sleep [CSWS]). Modified after
[25, 30, 43].

seling and treatment decisions, which included precision
medicine approaches and also decisions for palliative care
[5]. Recent publications have also described implications

for treatment decisions, for epilepsy surgery, and for the
relevance and care in elderly people with epilepsy [44–
46].

Knowledge of the genetic and cellular causes will
provide novel opportunities for individualized “precision
therapy” of epilepsy and developmental disorders, and
there is hope that the prognosis of these disorders will im-
prove in the future. Following the increasingnumber of ge-
netically identified causes of epilepsy, the number of pub-
lications on precision therapy has been increasing in re-
cent years (Figure 3).

Precision therapy can be summarized as very different
concepts.

Specific therapeutic approaches for monogenic epilepsy syndromes
(precision therapies)

Empirical therapy of known neurological disorders
Carbonic anhydrase inhibitors to reduce episodic ataxias and
seizures in epilepsy-associated CACNA1A and KCNA1 and
presumably also in KCNA2 [20, 47]
Avoidance of sodium channel blockers in SCN1A-associated Dravet
syndrome [48].
Sodium channel blockers as the first therapeutic option in
KCNQ2-associated neonatal seizures [49]
Use of sodium channel blockers and avoidance of levetiracetame in
PRRT2-related infantile epilepsy [50]
Direct antagonization of genetic effects
Sodium channel blockers for gain-of-function mutations in SCN2A
[51]
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Retigabine (currently not available) as a KV7/KCNQ-type potassium
channel opener in KCNQ2 encephalopathy [52]
Potassium channel blockers (aminopyridines) for gain-of-function
mutations in KCNA2 [20]
Primidone as a specific channel blocker in TRPM3-associated
epilepsy (Transient Receptor Potential Melastatin 3) [53, 54]
Use of agonists in cases of reduced ion channel or receptor function
L-serine therapy for GRIN2B- and other GRIN-associated
developmental disorders [55, 56]
Inhibition of overactive cellular signaling pathways
mTOR inhibitors in tuberous sclerosis [57]
Alpelisib in PIK3CA-associated overgrowth syndrome [58]
Correction of disturbed protein structure
Chemical chaperones can improve various aspects of impaired
protein function in missense mutations. In animal models, this has
been shown for sodium and phenyl butyrate in LGI1-associated
epilepsy and in STXBP1-associated encephalopathy [59, 60]. US
study: NCT04937062, contact the author for individual treatment
protocols.
Protein replacement/enzyme replacement therapy
Intrathecal enzyme replacement therapy for neuronal ceroid
lipofuscinosis [61]
Gene therapy (ASO, CRISPR/Cas9, gene replacement therapy)
Several novel concepts are on the horizon and await first-in-man
studies. These include antisense oligonucleotides (ASOs) to reduce
the expression of overactive ion channels or proteins as a specific
therapeutic approach for numerous epilepsies due to mutations
with a dominant-negative effect. The absence of an allele in these
disorders (haploinsufficiency) is usually associated with a less
severe phenotype than mutations that additionally disrupt the
healthy allele. In these disorders and epilepsies, carriers of
whole-gene deletions are less severely affected than carriers of
single point mutations (e. g., in SCN2A, KCNT1, KCNA2, SPTAN1).
ASOs have already been successfully tested in animal models and
first-in-man trials are underway for various monogenic epilepsies,
similar to the successful implementation of ASOs in spinal muscular
atrophy [62]. Another ASO technology has also been introduced to
increase protein levels in disorders with a loss-of-function
mechanism from haploinsufficiency. Targeted Augmentation of
Nuclear Gene Output (TANGO) has been successfully used in mouse
models of Dravet syndrome [63].

As the number of treated children with rare mono-
genic epilepsies is increasing, so is the knowledge of the
benefit of specific therapeutic approaches. Some early
gene-based “precision therapies,” such as quinidine for
KCNT1-associated epilepsy with migrating seizures in in-
fancy, have now failed to confirm high expectations in
larger patient groups, and common antiseizure medica-
tions have been shown to be superior to precision therapy
approaches [10]. So far genetic findingswill have a positive
impact on therapy in isolated cases only and it is impor-
tant to counsel parents and relatives on the limits of pre-
cision medicine, as genetic diagnosis can give too much
hope and about one fifth of parents expect immediate im-
provements in therapy [64].

The concept of epileptic encephalopathy in the sense
that epilepsydeterminesdevelopmental prognosis accord-
ing to the type, duration, and disease onset of the syn-
drome and timing of treatment is increasingly being chal-
lenged. Recent epidemiological studies show that etiol-
ogy is the most important risk factor for developmen-
tal disability [5]. At the same time, the EPISTOP study
demonstrated that nonspecific, prophylactic antiepilep-
tic therapy with vigabatrin reduces the risk of epilepsy
and seizures in children with tuberous sclerosis. Unfor-
tunately, however, intellectual disability and especially
autism at 2 years of age occurred independently and were
not significantly improved by preventive anti-epileptic
treatment [65]. These findings question a direct connec-
tion between epilepsy, EEG activity, and a subsequent de-
velopmental disorder and highlight the need to develop
new treatment approaches with disease-modifying capac-
ities. In a mouse model, neurocognitive and behavioral
deficits were rescued by targeting the overactivemTOR sig-
naling pathway. In Germany, we currently lead a study
of preventive therapy with sirolimus, an mTOR inhibitor,
aiming to randomize newborns and young infants with
tuberous sclerosis throughout Germany in order to reduce
the 40–50% risk of mental retardation in affected per-
sons.

Monogenic DEE are rare diseases and the respec-
tive phenotypic variation is only slowly being recognized.
The prognosis of childhood epileptic and genetic en-
cephalopathies remains poor despite advances in diagno-
sis and therapy. Knowledge of genotype–phenotype cor-
relations between single genes and the respective age-
related epileptic encephalopathy is important to better un-
derstand specific cellular mechanisms leading to distinct
epilepsy syndromes (Figure 4). Natural history studies and
the implementation of patient registries through collabo-
rations with parental and patient advocacy groups (such
as https://stxbp1-ev.de/ or https://www.cdkl5-verein.de/)
are important to define patient-centered outcomes and to
provide access to new therapies.

Conclusion for practice

– Genetic causes are increasingly recognized and cellu-
lar mechanisms in childhood epilepsies are better un-
derstood.

– Because of the limited genotype–phenotype correla-
tion and the increasing number of monogenic disor-
ders, primarywhole-exome sequencing shouldbeper-
formed.

https://stxbp1-ev.de/
https://www.cdkl5-verein.de/
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Figure 3: Number of publications in PubMed for search terms “epilepsy and gene” (blue) and “precision medicine and epilepsy” (green).
The number of publications on precision medicine (green) has rapidly increased during the last 5 years, following the increase in identified
genetic causes (blue) (source: www.pubmed.gov). Modified after [30].

Figure 4: Genotype–phenotype correlation of genes associated with developmental and epileptic encephalopathies (DEE) and age-
related electroclinical epileptic encephalopathies (EE), personally curated by the author from the Online Mendelian Inheritance in Man
database, reviews and genotype–phenotype studies, not scaled (neonatal: early myoclonic encephalopathy [EME], Ohtahara syndrome;
infantile: epilepsy with migrating seizures in infancy [EIMFS], West syndrome, Dravet syndrome; childhood: Lennox–Gastaut syndrome,
myoclonic-atonic epilepsy, epilepsy-aphasia spectrum [continuous spikes and waves during sleep, Landau–Kleffner syndrome]). Single
encephalopathies such as EIMFS (KCNT1) or Dravet syndrome (SCN1A) have a high genotype–phenotype correlation (red lines). By con-
trast, West syndrome has a low genotype–phenotype correlation and a high number of different genetic alterations have been identified
[1, 7, 9, 15, 30, 33, 43].

http://www.pubmed.gov
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– By studying the pathophysiological processes, we
hope to improve prognosis of these severe childhood
developmental disorders in the long run.
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