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Abstract: Pathogenic variants in THAP1 can cause dysto-
niawith apenetranceof about 50%.Theunderlyingmech-
anisms are unknown and can be considered as means of
endogenous disease protection. Since THAP1 encodes a
transcription factor, drivers of this variability putatively
act at the transcriptome level. Several transcriptome stud-
ies tried to elucidate THAP1 function in diverse cellular
and mouse models, including mutation carrier-derived
cells and iPSC-derived neurons, unveiling various differ-
entially expressed genes and affected pathways. These in-
clude nervous system development, dopamine signalling,
myelination, or cell-cell adhesion. A network diffusion
analysis revealed mRNA splicing, mitochondria, DNA re-
pair, and metabolism as significant pathways that may
represent potential targets for therapeutic interventions.

Keywords: reduced penetrance, dystonia, DYT-THAP1,
iPSC, whole transcriptome

Introduction

Dystonia is clinically characterized by sustained or in-
termittent muscle contractions causing abnormal, often
repetitive movements, postures, or both [1]. Dystonic
movements are typically patterned, twisting, and may be
tremulous. Dystonia is a rare disease with a prevalence
of about 16 per 100,000 people [2] and may thus affect
some 16,000 people in Germany. Within the national re-
search consortium DysTract (http://dystract.cio-marburg.
de/de/), information on ∼2,500 of these patients has been
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collected in a database and DNA biobank for research to-
wards improved understanding of the genetic basis and
to develop individualized, i. e., pathophysiology-based,
treatment. Within the past 20 years, several genetic forms
have been identified for isolated (dystonia as the only
disease manifestation) and combined (dystonia in com-
bination with another movement disorder) dystonia [1].
The former includes the THAP1 (THAP domain-containing
apoptosis-associated protein 1) gene [3]. THAP1-linked
dystonia, previously referred to as DYT6 dystonia, is char-
acterized by early-onset dystonia with prominent cran-
iocervical and upper limb muscle involvement (Figure 1)
[4, 5]. Speech impairment due to laryngeal dystonia is com-
mon and very characteristic. However, the THAP1-linked
phenotype is highly variable, ranging from unaffected car-
riers to severe generalized dystonia, even within a sin-
gle family. The disease is inherited in an autosomal dom-
inant fashion with a penetrance of about 50% [4, 6, 7].
The THAP1 gene encodes a ubiquitously expressed tran-
scription factor consisting of 213 amino acids and is pu-
tatively regulating the expression of various target genes
[8], including TOR1A [9], the gene mutated in another
form of dystonia, and THAP1 itself [10]. Its DNA-binding
properties are associated with the N-terminal THAP do-
main (amino acids 1–81), including a zinc-finger struc-
ture. Towards the C-terminus, THAP1 contains a proline-
rich region (amino acids 96–108) and a coiled-coil domain
(amino acids 139–190) with a nuclear localization signal
(NLS, amino acids 147–162) [11]. To date, ∼100 missense,
nonsense, and frameshift mutations in THAP1 have been
described in dystonia patients of different ethnicities [4].
It is believed that the mutations act in a loss-of-function
mechanism [12, 13].

Reduced penetrance may reflect endogenous disease
protection. Therefore, understanding the underlying fac-
tors and processes might open novel therapeutic avenues.
However, factors contributing to incomplete penetrance
andvariable expressivity aswell as thediseasemechanism
of THAP1 dystonia are largely unknown. Despite identical
variants in the THAP1 gene, disease manifestation varies
considerably between individuals. Since THAP1 encodes
a transcription factor, it is tempting to speculate that the
drivers of this variability are acting at the transcriptomic
level accompanied by alterations at the genomic, epige-
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Figure 1: Phenotypic spectrum of reported carriers of THAP1mutations. In the left panel, the presence (red) or absence (blue) of the indi-
cated signs and symptoms is shown for 249 patients with THAP1mutations. In the right panel, the age variability at onset is illustrated
(modified from www.mdsgene.org [4]).

netic, proteomic,metabolomic, and/or environmental lev-
els. It can be hypothesized that identifying protective vari-
ants will enable expansion of genetic testing and thus
a more sophisticated prediction of the disease course in
THAP1 mutation carriers. Further, the elucidation of al-
tered (transcriptional) networks that contribute to disease
protection can unravel potential therapeutic targets by
manipulating these networks in the desired direction us-
ing, for instance, small molecules.

Transcriptional studies

Initial attempts to understand the role of THAP1 in tran-
scriptional regulation were carried out before establish-
ing the disease link to dystonia. At that time, researchers
investigated transcriptional changes in endothelial cells
[8]. They linked THAP1 function to cell cycle control:
Retroviral-mediated gene transfer of THAP1 in primary
human endothelial cells inhibited proliferation and G1/S
cell-cycle progression. THAP1 overexpression downregu-
lated > 50 genes encoding proteins associated with cell-
cycle/cell proliferation [8]. Further, a few other differen-
tially expressed genes (DEGs) were linked to diverse bio-
logical functions. siRNA-mediated THAP1 knock-down re-
sulted in inhibition of S-phase DNA synthesis. Of note,
this early study had already indicated downregulation of
THAP1when over-expressed [8], the mechanism of which,
i. e., autoregulation, was resolved later [10].

To unravel the THAP1-mediated diseasemechanism in
dystonia, the search for neuronal targets and DEGs is on-
going, and different cellular and mouse models have been
established. In mutant or overexpression THAP1 models,
it is expected that target expression will be altered. Mean-

while, several dysregulated genes have been found us-
ing these models. Table 1 summarizes relevant candidate
DEGs from unbiased transcriptome studies [8, 14–22].

By this long list of DEGs and the diverse pathways af-
fected by dysfunctional THAP1, the role of THAP1 seems
to be manifold: Transgenic mice expressing heterozygous
loss-of-function THAP1 showed alterations in the expres-
sionof genes involved innervous systemdevelopment [14].
THAP1 is also necessary for the timing of myelination ini-
tiation in oligodendrocytes [16]. Further, dysregulation of
genes involved in the eIF2α (Eukaryotic Initiation Factor
2 alpha) signalling pathway, mitochondrial dysfunction,
and neuron projection development have been observed
in the brains of THAP1+/-(ΔExon2) knockout mice [15]. An
essential role for THAP1 in cell survival and proliferation
has been demonstrated in murine embryonic stem cells
[23]. Moreover, it was found that wild-type THAP1 regu-
lates genes involved in cell growth and proliferation in
neuronal cells, while mutant THAP1 leads to the dysregu-
lation of genes related to synaptic function, a process that
has been reported as a pathogenic mechanism of other
subtypes of dystonia [19]. In patient-derived cortical neu-
rons, dopamine signalling seemed to be altered and in-
volved in disease expression [17].

DNA-binding of the transcription
factor THAP1

It is thought that transcriptional regulation via THAP1 is
mediated by binding of THAP1 to promoter regions within
the nuclear DNA. There is a significant co-binding with
other transcription factors, such as HCFC1 [24] or YY1 [16],
as also underlined by the ENCODE CHIP-Seq studies. YY1

http://www.mdsgene.org
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encodes another transcription factor with a recognized
and established role in myelination; pathogenic variants
in YY1 cause a severe neurodevelopmental disorder [25]
as well as early-onset dystonia [26, 27]. It has been shown
that THAP1 modulates the DNA occupancy of YY1 in non-
conditional knockout mice and that loss of THAP1 im-
pairs myelination in the central nervous system via a cell-
autonomous role in decreased DNA occupancy and oligo-
dendrocyte lineage [16]. Of note, YY1 has been found to
be upregulated in cortical neurons of manifesting when
compared to non-manifestingmutation carriers or healthy
controls [17]. The low percentage (around 10%) of over-
lap betweenRNA-Seq andChIP-Seq datasetsmayhighlight
the role of important THAP1 co-factors like YY1 and HCFC1
and indicate a different role of THAP1 in regulating gene
expression other than direct binding at DNA, as in other
zinc-finger factors [23].

Further, THAP1 ChIP-Seq analysis in neuronal cells
overexpressing THAP1 revealed that THAP1 is able to bind
and activate promoter regions of different SOD2 isoforms
in SK-N-AS human neuroblastoma cells [19]. Knockout of
SOD2 inmice seems to impairmitochondrial enzyme activ-
ity leading to elevated reactive oxygen species (ROS) con-
tent in synaptosomes, altering synaptic function [28]. This
discovery is a possible means of how THAP1 mutations
cause an expressional change of genes related to synaptic
function.

Pathway analyses in the
pathogenesis of THAP1
To put the different DEGs from the various THAP1 stud-
ies into a broader picture, gene enrichment analysis has
been performed using Gene Ontology (GO) terms or KEGG
pathways. Affected pathways are diverse and include pe-
ripheral nervous system development, cytoskeleton, neu-
ron projection development, dopamine signalling, myeli-
nation, axonal guidance, long-term synaptic depression,
cell-cell adhesion, gliogenesis, andmusclemovement and
spasm [14, 15, 17, 29]. In fact, higher brain regions such as
those underlying sensorimotor function may be dysfunc-
tional, acting jointly with abnormalities attributable to the
noradrenergic system originating in the locus coeruleus of
the brainstem.

The link to dopamine signalling seems particularly
interesting and strong: Links between dystonia and
dopamine are numerous [30], and although isolated dys-
tonia, especially DYT-THAP1, is usually not responsive to
dopaminergic treatment, recent data suggest that DRD4

expression levels may play a role in mediating penetrance
in THAP1 mutation carriers [17]. DRD4 is a member of the
dopamineD2-like receptor family, characterizedby its abil-
ity to inhibit adenylyl cyclase. DRD2 encodes a dopamine
receptor expressed by striatal medium spiny neurons and
plays a critical role in the indirect pathway of the basal
ganglia. Recently, DRD2 was demonstrated to have a fun-
damental role in motor control and balance in knockout
mice’s medium spiny neurons and cholinergic interneu-
rons [31]. Further, DRD2may be one of the indirect targets
involved in the pathogenic pathways disrupted by THAP1
transcriptional deficit [14]. Other studies also provided ev-
idence for changes in the dopamine signalling pathway as
one of the top hits among several neurotransmitter-linked
pathways upregulated in dystonia [14, 17]. A subnetwork of
differentially regulated genes connected to cell cycle regu-
lation and neurogenesis has been identified and may pro-
vide a molecular explanation for the disrupted dopamin-
ergic neurotransmission and neuronal biogenesis in the
pathogenesis of dystonia [31].

Further, a significant downregulation of genes related
to apoptosis, including CRADD (CASP2 And RIPK1 Domain
Containing Adaptor with Death Domain), SIX2 (Homeobox
protein SIX2), and a significant dysregulation of genes im-
plicated in autophagy and mitochondrial homeostasis in-
cluding ATF4 (Activating Transcription Factor 4), LYRM1
(LYR Motif Containing 1) and SOD2 (Superoxide dismutase
2) were observed in cortical neuronal precursors derived
from human iPSC as well as in mice [14, 15, 17].

Most studies on differential gene expression in neu-
ronal cells also revealed a transcriptional signature that
point to THAP1 as a regulator of inflammatory responses
by regulation of Interleukin-5 and Interleukin-6 produc-
tion [14, 16, 17, 21]. Further, GO analyses of biological pro-
cesses of upregulated genes in murine embryonic stem
cells revealed terms related to embryonic pattern specifi-
cation, chromosome organization, meiosis, and negative
regulation of cell differentiation [23]. Analysis of down-
regulated genes in transgenic mice andmurine embryonic
stem cells proved enrichment for processes involved in
neuronal development like axonogenesis, differentiation
of neurons, and cell projection assembly and organization
[14, 23].

Another pathway that repeatedly came up as being
regulated by THAP1 was the eIF2α pathway in mouse and
human models. Interestingly, the elF2α pathway seems to
be involved in the pathogenesis of different (monogenic)
forms of dystonia, such as DYT-TOR1A or DYT-PRKRA, and
probably also SGCE-linked myoclonus dystonia [17, 32].
The most recent evidence for the role of the elF2α path-
way stems from the discovery of pathogenic variants in a
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Figure 2: Protein Interaction Network related to THAP1. Interactions of the THAP1-mediated DEGs were obtained via StringDB. The colors of
the nodes symbolize the affiliation to specific GO:terms, colors of the edges symbolize the type of protein interaction. The most frequent
interaction among these genes is related to data mining in current studies (light yellow border). Only individual clusters are linked via co-
expression (black edge) or experimental evidence.

member of the eIF2α kinases family, EIF2AK2 (Eukaryotic
translation initiation factor 2 alpha kinase 2), in early-onset
generalized dystonia [32]. In addition to being a key com-
ponent of Endoplasmic Reticulum (ER) stress responses
and synaptic plasticity, the eIF2α signalling also regulates
important physiological events under homeostatic con-
ditions like the accumulation of misfolded proteins [15].
Thus, the eIF2α dysregulation may represent a point of
convergence between different forms of dystonia through
its influence on critical homeostatic neurodevelopmental
events. Therefore, it is conceivable that eIF2α signalling is
involved in the expressivity of THAP1mutations [15]. Inter-
estingly dysregulation of the eIF2α pathway has been ob-

served in cortical neurons and fibroblasts of dystonia pa-
tients as well [17].

Several of the affected pathways have recurrently been
implicated in response to alterations of THAP1. To test for
the functional relatedness of all the studies mentioned
above and to find regulatory interactions of all the iden-
tified THAP1-associated genes and proteins in an unbi-
ased way, we mapped the genes from Table 1 on the
protein interaction network from StringDB [33] (Version
11, confidence cutoff score 0.7). This database includes
both known and predicted protein-protein interactions of
various organisms that are inferred from direct physical
and indirect functional associations from high- and low-
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Figure 3: Hypergeometric test on Reactome pathways of proteins affected by differential gene expression in THAP1 knockdown models. The
dot plot includes pathways having at least three affected proteins at a significance cutoff of p < 0.05. Red and black font colors refer to up-
and down-regulated pathways, respectively. The dot size corresponds to the pathway set size.

throughput experiments, as well as computational predic-
tion.

In total, 45 genes were assigned to the human protein-
protein interactionnetwork,with 33proteins sharing 62 in-
teractions (Figure 2). Interestingly, we would expect only
27 interactions from a network of 45 randomly picked pro-
teins. Thus, we have significantly higher connectivity of
THAP1-associated proteins (p-value = 1.02 × 10−8), which
indicates their functional relatedness that should be inves-
tigated further.

To further investigate the function of the differentially
regulated transcripts and proteins in combination with
their neighbouring interacting proteins, we performed a
network diffusion on the protein-protein interaction net-
work from StringDB using the R library diffuStats [34]. Net-
work diffusion assumes that the effect of differential gene
regulation also spreads to the neighbours on a protein-
protein interaction network. The effect size is calculated
by “diffusing” the magnitude of differential regulation
across the protein interaction network until a steady-state
is reached. Considering all affected nodes above a certain
diffusion score thenprovides abroader viewof themolecu-
lar function affectedby the initial gene set.Herewe consid-
ered both the significance and direction of differential reg-
ulation of the 45 mapped genes by a log10 transform of the
reported p-values and the sign according to up- or down-
regulation. Network diffusion was done on a regularised
Laplacian kernel, and the 1%, or respectively 169, pro-

teins having the most positive or negative diffusion scores
were investigated separately for pathway enrichment by a
hypergeometric test [35]. Among the proteins affected by
upregulated transcripts, we found mRNA splicing, mito-
chondria, DNA repair, and metabolism as the most signif-
icant pathways, while glycosylation, axonogenesis, sph-
ingolipid, death receptor, and TNF signalling seem to be
downregulated (Figure 3). While transcriptome analyses
repeatedly revealed differential gene regulation correlated
with cell cycle regulation, neurogenesis, inflammatory re-
sponses, and cell death in different cell and mice mod-
els of THAP1-DYT, these overarching analyses expand the
pathways that may play a role in the pathophysiology of
(THAP1) dystonia and warrant further studies and valida-
tion.

Conclusions and outlook

THAP1 activities are likely due to the regulation of gene
expression via its role as a transcription factor. How-
ever, THAP1 downstream targets in neurons, the mech-
anism via which THAP1 mutations cause disease, and
the disease mechanism underlying isolated dystonia, in
general, are all largely unknown. There are no reported
THAP1 genotype-phenotype-predictors. A systems biology
approach that not only focuses on a single isolated com-
ponent of the regulatory mechanisms may help to shed
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further light on dysregulated pathways underlying THAP1
dystonia. These insights will probably allow predictions
as to the likely clinical course in THAP1mutation carriers
and are also expected to foster the development of disease-
modifying treatments with the ultimate aim of individual-
ized therapeutic strategies. Thus, certain systems biology
patterns may be associated with an overall favorable out-
come justifying a “wait and see” strategy, others may indi-
cate the preference for amore severe clinical course neces-
sitating more rigorous management. DYT-THAP1 is likely
caused by an interplay of molecular aetiologies that are
poorly understood, thereby limiting the efforts of design-
ing functional assays that could be utilized to screen for
novel therapeutics. In this context, identifying pathways
impacted by THAP1 mutations as factors influencing pen-
etrance and expressivity should beprioritized. These path-
waysmay represent the best potential targets for therapeu-
tic intervention, which could eventually offer widespread
benefit to a broad and diverse population of dystonia pa-
tients.
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