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Abstract: The causative mutation for Huntington disease
(HD), an expanded trinucleotide repeat sequence in the
first exon of the huntingtin gene (HTT) is naturally poly-
morphic and inevitably associated with disease symp-
toms above 39 CAG repeats. Although symptomatic medi-
cal therapies for HD can improve themotor and non-motor
symptoms for affected patients, these drugs do not stop
theongoingneurodegenerationandprogressionof thedis-
ease,which results in severemotor and cognitive disability
and death. To date, there is still an urgent need for the de-
velopment of effective disease‐modifying therapies to slow
or even stop the progression of HD. The increasing abil-
ity to intervene directly at the roots of the disease, namely
HTT transcription and translation of its mRNA, makes it
necessary to understand the pathogenesis of HD as pre-
cisely as possible.

In addition to the long-postulated toxicity of the
polyglutamine-expanded mutant HTT protein, there is in-
creasing evidence that the CAG repeat-containing RNA
might also be directly involved in toxicity. Recent stud-
ies have identified cis- (DNA repair genes) and trans-
(loss/duplication of CAA interruption) acting variants as
major modifiers of age at onset (AO) and disease progres-
sion. More and more extensive data indicate that somatic
instability functions as a driver for AO as well as dis-
ease progression and severity, not only in HD but also in
other polyglutamine diseases. Thus, somatic expansions
of repetitive DNA sequences may be essential to promote
respective repeat lengths to reach a threshold leading to
the overt neurodegenerative symptoms of trinucleotide
diseases. These findings support somatic expansion as a
potential therapeutic target in HD and related repeat ex-
pansion disorders.
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Introduction

Huntington disease (HD) is a slowly progressive and ulti-
mately fatal neurodegenerative disorder, which is inher-
ited in an autosomal dominant manner and characterized
bymovement disorders and changes in behavior andmen-
tal state. Typically, the motor defects include chorea and
loss of coordination. Neuropsychiatric symptoms cover
the entire spectrum of psychiatric illnesses, with depres-
sion, psychosis and obsessive-compulsive disorder most
frequently occurring in the course of the illness and be-
ing particularly stressful for patients, relatives and care-
givers [1].

In 1993, the DNA sequence and the precise nature
of the HD-associated mutation in the HTT gene on chro-
mosome 4 was determined. The underlying mutation is
the expansion of a physiologically polymorphic CAG trin-
ucleotide repeat in exon 1, which is translated into an
elongated polyglutamine tract in the huntingtin protein
(HTT) [2].

HD is the most common disorder of at least nine
CAG/polyglutamine diseases, including several spinocere-
bellar ataxias (SCAs), in which CAG repeat expansions en-
code elongated stretches of glutamines in the respective
entirely unrelated disease-associated proteins [3]. HD oc-
curs worldwide but its occurrence varies widely, with the
highest prevalence rates for HD reported for western pop-
ulations from Europe with up to 12 per 100,000 [4].

HTT is a soluble largely α-helical 3,144-amino-acid
(348-kDa) protein, essential for embryonic development
and involved in cellular activities such as vesicular trans-
port and recycling, endocytosis, endosomal trafficking,
autophagy and transcription regulation; however, the en-
tire range of its normal function(s) still remains incom-
pletely defined [5].

The average CAG repeat length in the general popu-
lation comprises 16–20 repeats; 36 or more CAG units are
pathogenic, with repeat lengths of 36–39 CAGs considered
reduced-penetrance (RP) alleles [6]. Individuals who carry
an expanded HTT allele can become symptomatic at any
time point in their life and be healthy until then with no
apparent signs of the disease. In the vastmajority of cases,
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the clinical course of HD slowly begins in adulthood, typi-
cally in themid-40s; the age of onset (AO) of disease refers
to the time where pre-manifest mutation carriers convert
into symptomatic HD patients. Formally, this point of time
is reached when the first characteristic motor signs like
chorea, bradykinesia or dystonia become overt [7].

The dominant genetic transmission and the fact that
AO, phenotype and disease progression do not signif-
icantly differ between homozygotes and heterozygotes
early led to the proposal of a toxic gain-of-function mech-
anism that acts through augmentation or dysregulation of
one or more normal functions of HTT, either at the RNA or
the protein level.

RNA-dependent mechanisms in the
molecular pathogenesis of HD
Although aggregated protein fragments are the
histopathological hallmark of not only HD but also sev-
eral other neurodegenerative diseases, their exact role
remains controversial. From early on, a predominant hy-
pothesis of toxicity in HD was protein misfolding and
accumulation of insoluble aggregates that trigger neu-
ronal dysfunction and lead to cell death [8–11]. Therefore,
prevention of aggregate formation appeared to be a uni-
versal strategy to reduce toxicity in HD and other polyg-
lutamine diseases. Since the observation that N-terminal
fragments of HTT accumulate in the nucleus, cytoplasm,
dendrites and neurites of neurons in HD affected brains,
many studies have supported the idea that the generation
of small fragments plays a critical role in HD pathogen-
esis, whereas the formation of large aggregates might be
part of a protective cellular mechanism to sequester solu-
ble toxic species [10, 12]. Initially, the proteolytic cleavage
of mutant HTT by caspases, calpains and other endopro-
teases was identified to be involved in the formation of
N-terminal fragments [13, 14]. In the meantime, however,
it has also been shown that aberrant splicing events at the
RNA level play a role in the formation of these fragments.
Beside the full-lengthHTT transcripts that differ in their 3′
UTR lengths, also CAG repeat length-dependent aberrant
splicing of exon 1 resulting in short polyadenylated mR-
NAs that are translated into highly pathogenic exon 1 HTT
proteins, both in human and mouse, has been described
[15, 16].

Furthermore, it has previously been shown that CAG
and CUG expansion transcripts can undergo a novel type
of protein translation in which homopolymeric proteins
are expressed in all three reading frames without an ATG

initiation codon. These repeat-associated non-AUG (RAN)
translated products are abundantly expressed in affected
regions of HD autopsy brains [17]. However, whether RAN-
translated products contribute to disease pathogenesis re-
mains unknown [18]. But it is becoming apparent that be-
side the abnormal function of the mutant protein, also di-
rect detrimental effects of RNA or RNA-dependent mecha-
nisms could provide amechanistic basis for themolecular
pathogenesis of HD and should be considered in the devel-
opment of RNA-targeted therapies to lower HTT levels [19].

Genetic modifiers – DNA repair
pathways, especially mismatch
repair, play a central role in the
pathogenesis of HD

As soon as the number of CAG triplets exceeds 40, the
length of the CAG repeat in the expanded HTT disease al-
lele inversely correlates with the AO and explains up to
70% of its variability. Especially in patients with the typi-
cal CAG repeat range (40–55 CAG triplets), which is asso-
ciated with mid-life adult onset of disease, considerable
variation of up to 40 years in AO of neurological symptoms
is described, even among individuals with identical repeat
lengths. This onset variability in patients bearing the same
mutations emphasizes the role of functional genetic differ-
ences in the genome of these patients that could modify
the rate and onset of pathogenesis.

Genetic research approaches in HD can therefore help
to understand the differences in clinical onset observed
between patients, as well as to identify novel biomark-
ers and therapeutic strategies to improve disease manage-
ment. Various human genetic strategies have been used in
the last two decades in order to search for these disease-
modifying factors that act before clinical diagnosis [20].

Until some years ago, the effort of discovering genetic
modifiers was dominated by targeted approaches inwhich
specific genes and variants were chosen on the basis of
known or suspected participation in the disease pathol-
ogy or to functional interaction with the (elongated) HTT
protein. A number of trans modifiers in different genes
have since been proposed as genetic HD modifiers, which
could, however, not yet be replicated in thenewer genome-
wide association studies (GWAS) applying the stringent
genome-wide significance threshold [20].

Interestingly, the GWAS in large patient cohorts all
provide evidence for variation in DNA repair genes that
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modify the AO [21–23]. The first GWAS of 4,082 HD pa-
tients using the difference between AO predicted by CAG
length and actual AO of motor symptoms identified FAN1
(FANCD2 and FANCI associated nuclease 1) on chromo-
some 15 and RRM2B (ribonucleotide reductase regulatory
TP53 inducible subunit M2B) on chromosome 8 [21]. In
addition, a suggestive association signal was detected on
chromosome 3p22.2 nearMLH1 (mutL homolog 1), a tumor
suppressor gene involved in DNA mismatch repair.

Further candidate single nucleotide polymorphism
(SNP) analyses in a cohort of 3,314 additional HD pa-
tients independently confirmed the chromosome 8 and
15 loci and moved the MLH1 association to genome-wide
significance [24]. Interestingly, the ortholog of MLH1 has
previously been indicated as a potential genetic modifier
of strain-specific HTT CAG instability [25]. Furthermore,
MSH3 (MutS homolog 3), another member of the DNAmis-
match repair proteins that has been extensively implicated
in the pathogenesis of HD in both mouse and cell stud-
ies, could be identified as a likely modifier of disease pro-
gression in HD [22, 26, 27]. The latest HD genetic mod-
ifier GWAS with more than 9,000 HD patients found an
association with a cis-eQTL for increased MSH3 expres-
sion in blood cells and identified additional loci with can-
didate modifier genes involved in DNA maintenance pro-
cesses, PMS1 (post-meiotic segregation increased 1 ho-
molog), PMS2 (post-meiotic segregation increased 2 ho-
molog) and LIG1 (DNA Ligase 1) [23].

Transcriptome-wide association studies (TWAS) inte-
grating gene expression with GWAS data provided addi-
tional support for the role of DNA repair in disease onset.
Here, the genes FAN1, PMS1, PMS2 and ASNSD1were asso-
ciatedwith later onset and increased expressionandMSH3
with decreased expression [23, 28].

CAA-loss and CAACAG-duplication
alleles as cis-acting AO modifiers
Another consistently significant GWAS signal is on chro-
mosome 4 near HTT. However, since neither HTT pro-
moter SNPs nor significant cis-eQTL SNPs could explain
the significant signal, the HTT CAG repeat sequence itself
came into focus again. In fact, previously described se-
quence variations in the HTT repeat sequence appear to
be associatedwith the significant signal on chromosome 4
[29–31]. Typically, the HTT allele involves a pure CAG re-
peat that is followed immediately downstream by an addi-
tional glutamine-encoding CAA-CAG sequence. Thus, the
total number of consecutive glutamines encoded by this

region, which ismeasured by the standard diagnosticHTT
PCR fragment-based genotyping assay, is typically equal
to the number of pure CAGs, plus two glutamines encoded
by the CAA-CAG sequence. Individuals carrying a loss of
the penultimate CAA codon (i. e., CAA-CAG to CAG-CAG),
therefore have an identical polyglutamine tract length as
subjects with the frequent CAA codon, but exhibit a longer
uninterrupted CAG sequence. Thus, in carriers of the loss
of repeat interruption (LOI) diagnostic testing causes an
underestimation of the uninterrupted CAG sequence by
two repeats since the polyglutamine repeat length is in-
ferred from fragment sizes based on the assumption of the
common interrupting sequence (Figure 1).

Interestingly, LOI carriers show a significantly earlier
onset than expected by their CAG length, whereas also ex-
isting rare CAA-CAG sequence duplications were associ-
ated with a delayed motor onset [23, 32, 33]. Identification
of these cis-acting modifiers, therefore, indicates that the
pure number of uninterrupted CAG repeats is the most sig-
nificant contributor to AO of HD and not encoded polyglu-
tamines.

Remarkably, the LOI variant was mainly observed in
carriers of alleles with RP (36–39 CAGs), suggesting that
the uninterrupted variant partially explains why some in-
dividualswho carryRPallelesmanifestHDas early asmid-
life, while others remain asymptomatic through advanced
ages [34].

Thus, the cis-acting AO modifiers have implications
for genetic diagnosis and counseling, especially when
dealing with an intermediate or RP allele range. The un-
derestimation by two CAG repeats in LOI carriers can have
a profound effect on a possible disease manifestation.
Therefore, diagnostic tests which currently do not assess
the loss of the CAA codon should be adjusted, especially
when dealing with individuals that carry alleles in the
lower end of the disease-associated CAG range or when in-
cluding patients in clinical studies with CAG repeat length
inclusion criteria.

But what underlies the phenotypic
effects of the LOI variant?
Originally, the instability of tandem repeatswas explained
with the simple DNA slippage model, which postulates
that repeats may be lost or gained during local misalign-
ment of DNA during replication [35]. However, this model
leaves some questions unanswered, including why repeat
interruptions lead to the stabilization of repeat expan-
sions.
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Figure 1: Interplay of inherited and somatic expansions to the progression of HD. The length of the HTT CAG repeat determines the disease
phenotype. The disease occurs in individuals who have inherited a repeat tract that has expanded beyond a certain length. Individuals who
carry an expanded HTT allele can become symptomatic at any time point in their life and be healthy until then with no apparent signs of
the disease. The normal range of CAG repeats is present in unaffected individuals (CAG on a gray background). HTT alleles expanded into
the pathological range (CAG on a red background) lead invariably to the onset of HD, and longer alleles are usually associated with an ear-
lier onset of the disease. Although people with reduced-penetrance (RP) alleles have the chance of being asymptomatic throughout life-
time, there are always cases that become symptomatic earlier than expected. Some of these HD patients carry a loss of the penultimate
glutamine-encoding CAA codon (in red) in their HTT allele. They have identical polyglutamine tract lengths as subjects with the frequent
CAA codon, but exhibit a longer uninterrupted CAG sequence (red arrow), thus indicating that the pure number of uninterrupted CAG repeats
(red arrow) makes a more decisive contribution to AO of HD than the number of encoded polyglutamines. Cis- and trans-acting modifiers like
the loss of the CAA repeat interruption or variations in DNA repair genes appear to significantly affect the rate at which somatic expansions
occur. Under the assumption that the repeat undergoes somatic expansion throughout lifetime, brain cells being most susceptible to dis-
ease pathogenesis in particular, HD becomes manifest and the first symptoms appear when the repeat length (the sum of the inherited and
somatic expansions, CAGn germline + CAGn somatic) exceeds a disease-specific threshold that may determine the onset of overt toxicity.

Findings that interruptions of the CAG repeat within
protein-coding transgenes mitigate toxicity and that an
untranslated CAG repeat RNA can cause toxicity on its
own further support a role of RNA in polyglutamine dis-
eases. In a Drosophilamodel of SCA3, altering the CAG re-
peat sequence to an interrupted CAA-CAG repeat within
the polyglutamine-encoding region did not affect ataxin-3
protein accumulation, but dramatically mitigated toxic-
ity and the expression of an untranslated CAG repeat of
pathogenic length conferred neuronal degeneration [36].
Naturally occurring interruptions found in several other
trinucleotide repeat disorders like SCAs, myotonic dystro-
phy type 1 (DM1), Friedreich ataxia (FRDA) and Fragile X
syndrome (FXS) have all been associated with the stabi-
lization of the respective trinucleotide repeat loci and in
some cases even with lower somatic instability and later
AO [37–48].

As early as 30 years ago, itwaspostulated that the abil-
ity of longer repeat regions to form stable secondary struc-
tures could lead to site-specific instability if the structure
inhibits the action of replication or repair proteins at the
repeat site [49]. It has been shown that trinucleotide re-
peat instability is mediated by the formation of unusual
secondary structures that differ from the canonical B-DNA
double helix during DNA replication, repair, recombina-
tion and gene transcription [50]. CAG repeats of sufficient

length form imperfect stem and loop structures in tran-
scripts [51]. HTT CAGs have been shown to form hairpins
in vitro in a tripartite way, where the base is composed of
interacting CAG and adjacent CCG repeats, followed by a
central motif consisting solely of CAG repeats and a termi-
nal section composed of the fold-back structure from CAG
repeats [52]. The folding properties, however, depend on
the interplay between repeated and specific flanking se-
quences, which have a significant influence on the corre-
lation between the repeat length, the stability of the hair-
pin structure and the ability of this structure to trigger RNA
pathogenesis in cells, suggesting a relevant role for the
RNA structure towards inducing a toxic effect [51]. Differ-
ent secondary structures may interfere with the progress
of RNA polymerase and involve various DNA repair pro-
cesses that can impact repeat expansion and contraction.
The presence of repeat interruptions in such structures
may facilitate their correct repair upon recognizing the
mismatches that arise from the misalignment of repeat in-
terruptions [53].

Somatic instability

The HTT CAG repeat is unstable in germline and somatic
cells, and expansion in both cell types has deleterious con-
sequences. Germ line expansions are responsible for the
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intergenerational instability of theHTT CAG repeat, a phe-
nomenon called anticipation. Transmission of the muta-
tion to offspring is characterized by the tendency to expan-
sion and the longer the repeat, themore severe the disease
and the earlier the onset of symptoms. Already more than
25 years ago a highly significant correlation between CAG
instability and the size of the parental CAG repeat as well
as somatic mosaicism in sperm was described for pater-
nal transmission in HD [54]. Later investigations in male
transgenic mice showed that in germ cells, expansion is
limited to the post-meiotic haploid cell, implying DNA re-
pair mechanisms rather than DNA replication in DNA syn-
thesis as the cause of the expansions [55]. Yet, somatic CAG
repeat expansion also occurs in several other tissues, in-
cluding the brain. Studies both in HD patient tissues and
in HD mouse models have shown that the expanded HTT
CAG repeat has a high tendency to further expand in so-
matic cells, whereas the degree of somatic instability is
highly tissue-specific, repeat length-dependent and age-
dependent [27, 56–70]. In transgenic and knock-in mouse
models of HD, increased somatic CAG expansion is de-
scribed in cells from the striatum, cortex and liver,whereas
in cells from the cerebellum, blood and tail the repeat
length is relatively stable [57, 63, 66, 71]. Large CAG repeat
expansions with a similar distribution pattern like in mice
were also demonstrated in post-mortem human tissues
[60, 62, 64]. The latest study revealeda similar profile of tis-
sue instability in seven adult and one juvenile HD patient
thatwas also apparent in an individualwith SCA1. Somatic
CAG expansion was observed in all tissues, but to differ-
ent degrees, with multiple cortical regions and neostria-
tum tending to have the greatest instability in the CNS and
liver in the periphery [72]. These similar tissue-specific pat-
terns of repeat expansion support the assumption that dis-
ease locus-independent trans factors cause the extent of
CAG expansion in different cell types. Beside the inherited
CAG length also previously identifiedDNA repair pathway-
relatedmodifier variationswere shown tomediate somatic
expansions in mouse models and humans. This supports
the assumption that abnormal structure-dependent inter-
actions of expandedRNA repeatswith various cellular pro-
teins and differing expression levels of repair genes might
be themain or a contributing factor of the cell-specific vul-
nerability/CAG expansion [25–27, 32, 67, 73, 74].

Conclusion
For nearly 30 years, scientists have been trying to un-
cover the basic principles that underlie the mechanisms
of repeat instability. Especially in polyglutamine diseases

the progressive, late-onset characteristics were initially at-
tributed to a low accumulating toxicity of the polyglu-
tamine proteins expressed from expanded CAG repeats.
However, a synopsis of earlier and more recent studies
shows that in addition to the abnormal function of the
mutated protein also direct RNA-damaging effects or RNA-
dependentmechanisms could represent amechanistic ba-
sis for the molecular pathogenesis of HD.

For HD as well as several types of SCA, variation in
DNArepair proteins aswell as sequence interruptionshave
been identified as major modifiers of AO and disease pro-
gression, implicating ongoing somatic expansions as a
common mechanism of disease. Thus, there is much to
suggest that the combination of the number of inherited
repeats together with the degree of somatic instability de-
termines the AO for a given disease and patient (Figure 1).

There is currently no cure for HD and pharma-
cotherapy is limited to symptomatic treatment of move-
ment disorders and psychiatric symptoms. For the mo-
ment, the most promising treatment appears to be tar-
geting the pathological processing of HTT mRNA, or up-
stream.Anumber of RNA-targeting therapies have recently
entered clinical trials, which aim to lower the mutant
HTT production by the use of antisense oligonucleotides
(ASOs) and RNAi. However, each of the different strategies
has specific advantages and disadvantages, as recently
seenby the failures of Roche andWaveTherapeutics’s ASO
candidates in HD [75].

Considering the influenceof somatic instability ondis-
ease onset andprogression, targeting the repeat instability
is a very attractive disease-modifying strategy in HD and
related expansion disorders, and possibly suppressing or
reversing somatic repeat expansion may halt or delay the
progression of the disease.
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