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Abstract: Noncoding repeat expansions are a well-known
cause of genetic disorders mainly affecting the central
nervous system. Missed by most standard technologies
used in routine diagnosis, pathogenic noncoding repeat
expansions have to be searched for using specific tech-
niques such as repeat-primed PCR or specific bioinfor-
matics tools applied to genome data, such as Expansion-
Hunter. In this review, we focus on GC-rich repeat expan-
sions, which represent at least one third of all noncoding
repeat expansions described so far. GC-rich expansions
are mainly located in regulatory regions (promoter, 5’ un-
translated region, first intron) of genes and can lead to
either a toxic gain-of-function mediated by RNA toxicity
and/or repeat-associated non-AUG (RAN) translation, or
a loss-of-function of the associated gene, depending on
their size and their methylation status. We herein review
the clinical and molecular characteristics of disorders as-
sociated with these difficult-to-detect expansions.

Keywords: tandem repeat, repeat expansion, GC-rich re-
peats, regulatory regions, DNA methylation, histone mod-
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gation, RAN translation, RNA structure, monogenic disor-
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The human genome is particularly enriched in repetitions
of adjacent nucleotide motifs, called tandem repeats [1, 2].
This dynamic class of variation has the highest mutational
rate and is consequently highly polymorphic within hu-
man populations. The instability of tandem repeats in-
creases in a length-dependent manner and their expan-
sion across generations is a well-known process resulting
in at least 50 human monogenic disorders [3, 4, 5]. Among
those, at least one third are GC-rich. Here, we aim to review
the disorders and mechanisms associated with GC-rich
repeat expansions, focusing mainly on well-established
monogenic conditions.
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Fragile X syndrome and associated
disorders caused by CGG
expansions in FMR1

The first noncoding GC-rich expansion disorder, described
in 1991, was Fragile X syndrome (FXS, MIM #300624) [6, 7].
FXS is one of the most frequent causes of intellectual
disability (ID) and/or autism spectrum disorder (ASD) in
males and is caused by CGG repeat expansions exceeding
200 repeats (full expansion) in the 5’ untranslated region
(UTR) of the FMR1 (FMRP translational regulator 1) gene
(MIM #309550) on chromosome X. Above this threshold,
CpGs contained within the CGG repeats are usually methy-
lated and associated with an absence of FMRI expression
[8, 9] (Figure 1A-B). Although point mutations leading to
a loss-of-function of FMRP, the protein encoded by FMRI,
are very rare, they can also cause FXS, confirming that
loss-of-function of FMR1 is the pathophysiological mecha-
nism associated with full expansion [10]. Females with full
FMRI1 expansion can also be affected depending on the X
inactivation status of the mutated allele in the brain, but
they usually present with milder symptoms compared to
male individuals [11, 12].

Remarkably, CGG repeat expansions in FMR1 ranging
from 55 to 200 repeats (premutations) were later found to
be associated with two other disorders: Fragile X-associ-
ated premature ovarian insufficiency (FXPOI, also known
as Premature Ovarian Failure 1 [POF1], MIM #311360) in
females [13] and Fragile X-associated tremor ataxia syn-
drome (FXTAS, MIM #300623) in males [14]. FXTAS is a
neurodegenerative disorder mainly affecting males over
50 years of age. Ovarian insufficiency (FXPOI) occurs in
20-25 % of female FMRI premutation carriers and consists
in absent or irregular cycles, lower fertility or infertility,
and premature ovarian failure (i. e., complete cessation of
menstrual periods before age 40). Contrary to full expan-
sions, premutations are not associated with hypermethy-
lation and do not prevent FMRI transcription and FMRP
expression [15]. Noncoding expansions in FMRI have
hence become a paradigm, illustrating how expansions in
a single gene may have different downstream impacts and
cause different disorders depending on their size [16].

Two major mechanisms have been proposed to ex-
plain FXTAS/FXPOI pathogenesis. One is a gain of func-
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Figure 1: Main pathogenic mechanisms associated with GC-rich repeat expansions. (A) Nonpathogenic situation (e. g., less than 50 GCC
repeats in FMRI1) associated with normal transcription and canonical translation. (B) Epigenetic gene silencing. Full-length GC-rich expan-
sions in gene promoters and/or 5’ untranslated regions (e. g., >200 CGG repeats in 5’UTR of FMRI causing Fragile X syndrome) are associ-
ated with DNA methylation at CpG sites. Expanded methylated alleles are locked in a chromatin configuration preventing gene transcription
and protein expression. (C) Sequestration of RNA-binding splicing factors. Intermediate CGG expansions (55 to 200 repeats) causing Frag-
ile X-associated tremor ataxia syndrome (FXTAS) can form stable RNA secondary structures able to bind specific RNA-binding proteins with
high affinity. These RNA molecules accumulate to form inclusions in the nucleus and sequester bound RNA-binding proteins. (D) Repeat-
associated non-AUG (RAN) translation is a noncanonical protein synthesis process in which peptide synthesis is initiated at the site of the
expanded repeats in absence of an AUG codon. In the case of FXTAS, RAN translation leads to the synthesis of toxic polyglycine peptides
that accumulate and form protein aggregates. Gain-of-function mechanisms described in (C) and (D) are mutually nonexclusive and can oc-
cur at the same time.

tion at the RNA level: unmethylated intermediate size
CGG repeats can form stable secondary structures called
G-quadruplexes and bind specific RNA-binding proteins,
such as hnRNP A2B1, DROSHA, SAM68, and TDP-43 [17,
18, 19]. Aberrant RNA—protein complexes form RNA foci
(also called inclusion bodies) and sequester bound pro-
teins, preventing them from performing their normal func-
tion [20, 21, 22] (Figure 1C). The second pathogenic mech-
anism is the expression of toxic polypeptides directly
produced by expansion by a process known as repeat-
associated non-AUG (RAN) translation [23, 24, 25, 26].
RAN translation is a noncanonical protein synthesis pro-
cess first described in spinocerebellar ataxia type 8 (SCAS,
MIM #608768) and myotonic dystrophy type 1 (DM1, MIM
#160900), in which peptide synthesis is initiated at the
site of the expanded repeats in absence of an AUG codon
[27] (Figure 1D). This process can theoretically occur in the
three reading frames on both sense and antisense DNA
strands, although only specific peptides are preferentially
expressed or toxic. CGG repeats mainly lead to the abnor-

mal expression of polyglycine (polyG) peptides that are
also able to accumulate and form protein aggregates via
a prion-like mechanism [24, 28, 29]. Although initially de-
scribed in a pathological context, RAN translation could
be a physiological process contributing to the regulation
of FMRI1 expression in neurons by creating an upstream
open reading frame (UORF) competing with FMRP expres-
sion [29].

RNA and protein gains-of-function are intimately
linked together and probably both contribute to the patho-
genesis of the disorder. Recent evidence shows that polyG
peptides interact with pathogenic CGG repeat-derived RNA
G-quadruplexes and that these RNA molecules could even
promote the formation of polyG aggregates [28].

GC-rich expansions associated with
a loss-of-function

So far, only a few disorders other than FXS have been as-
sociated with GC-rich expansions causing epigenetic gene
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silencing (Table 1). Like FXS, CCG repeat expansions in
the 5’'UTR of AFF2 (AF4/FMR2 family member 2, previously
FMR2, MIM #300806) on chromosome X are associated
with another X-linked ID disorder in males (FRAXE, MIM
#309548) described in 1993 [30]. Intragenic deletions of
AFF2 have been identified in patients with ID [31, 32] and
an excess of point mutations in AFF2 has been described
in males with ASD [33], further supporting the association
of this gene with neurodevelopmental disorders.

Expansions associated with a loss-of-function have
also been identified on autosomes. Most of the disorders
described so far are recessive and, in this case, the disease
is caused by an expansion in both alleles or by an expan-
sion in one allele and a point variant in the other allele.
The phenotype associated with expansions and point vari-
ants is usually identical. Such compound heterozygous al-
terations can be difficult to detect and their identification
needs the combination of expansion detection and stan-
dard gene panel or exome analysis. At least three disorders
corresponding to this description have been described so
far.

Dodecamer (CCCCGCCCCGCG) expansions in the
5’UTR of CSTB (cystatin-B, MIM #601145) are responsi-
ble for progressive myoclonic epilepsy type 1 (EPM1, also
known as Unverricht-Lundborg disease, MIM #254800),
a recessive neurodegenerative epileptic condition char-
acterized by tonic-clonic seizures and myoclonus [34].
Pathogenic CSTB expansions in both alleles or in one
allele plus a point variant in the other allele cause the
loss-of-function of cystatin B (stefin B), a small proteinase
inhibitor, whose precise function still remains largely un-
known [35].

More recently, CGG repeat expansions also leading
to loss-of-function through hypermethylation have been
described in XYLTI (xylosyltransferase 1, MIM #608124).
Recessive variants in this gene had previously been de-
scribed to cause Desbuquois dysplasia 2 (DBQD2, MIM
#615777), a skeletal dysplasia associated with develop-
mental delay, short stature, and facial characteristics. Ex-
pansions in XYLT1 were uncovered using a combination of
genome sequencing, microarray analysis, and Sanger se-
quencing in patients with Baratela-Scott syndrome (BSS),
another skeletal dysplasia sharing many clinical features
with DBQD2. The authors first identified homozygous or
compound heterozygous pathogenic variants or deletions
altering the coding region of XYLT1 in a few patients. Seg-
regation analysis of the variants within families revealed
allelic drop-out, which prompted the authors to look for
DNA methylation defects. This analysis revealed hyperme-
thylation of alleles without point variants, consecutive to
CGG expansions in the 5’UTR of XYLT1 in a region that was
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incorrect in the reference genome [36]. BBS and DBQD2
are thus allelic disorders both linked to loss-of-function of
XYLT1 as a result of point variants or noncoding CGG ex-
pansions.

Finally, noncoding expansions in GLS (glutaminase,
MIM #138280) in patients with global developmental de-
lay, progressive ataxia, and elevated plasma glutamine
(GDPAG, MIM #618412) were identified thanks to their as-
sociated biochemical phenotype. GLS encodes glutam-
inase, the enzyme catalyzing the first reaction of glu-
tamine catabolism, an obvious candidate gene for ele-
vated plasma glutamine. Heterozygous point variants in
this gene were identified by exome sequencing in only
two of three unrelated individuals with GDPAG, whereas
all three had strongly impaired glutaminase activity, sug-
gesting the existence of pathogenic variants undetected by
exome sequencing. The authors then applied Expansion-
Hunter to genome sequence data and detected a GCA re-
peat expansion in the 5'UTR of GLS [37]. Expansions were
either present in both alleles or in one allele, with a point
variant in the other allele, and and exhibited a number of
GCA repeats ranging from 400 to 1,500 (8-16 in control in-
dividuals).

Contrary to expansions causing FXS and BSS, expan-
sions in neither CSTB nor GLS are hypermethylated and
they both seem to lead to reduced gene transcription in-
dependently of DNA methylation [37, 38]. Unlike CGG ex-
pansions, GCA expansions in GLS do not contain any CpG,
which is the only substrate of mammalian DNA methyl-
transferases, and thus cannot be methylated. Instead, they
are associated with changes in histone modifications, in-
cluding a decrease in transcriptionally active (H3K27ac
and H3K4me3) marks and an increase in transcription-
ally silent (H3K9me3) modifications [37]. These findings
suggest a change in chromatin configuration as the re-
sult of the repeat expansion, as already shown for intronic
GAA expansions in FXN (Frataxin, MIM #606829) caus-
ing Friedreich ataxia (FRDA, MIM #229300). These expan-
sions alter the transcription of Frataxin by creating sec-
ondary DNA/RNA structures called R-loops, which block
RNA polymerase and are associated with repressive his-
tone marks [39, 40].

So far, only very few disorders have been associ-
ated with dominant repeat expansion causing a loss-of-
function: CGG expansions in DIP2B (Disco-interacting pro-
tein 2 homolog B, MIM #611379), associated with hyper-
methylation and a fragile site on chr12q13.12, have been
reported to lead to a dominant nonsyndromic ID disor-
der (FRA12A, MIM #136630) [49]. However, no additional
patients have been described since the initial study and
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this finding thus needs to be confirmed by additional re-
ports. Likewise, CGG expansions in the 5UTR of AFF3
(AF4/FMR2 family member 3, MIM #601464) result in hy-
permethylation associated with the FRA2A fragile site [44].
Like DIP2B expansions, this disease—gene association also
requires further evidence but point variants in AFF3 have
recently been associated with a dominant disorder includ-
ing intellectual disability, mesomelic dysplasia, horseshoe
kidney, and epileptic encephalopathy [59].

GC-rich expansions associated with
a gain-of-function

The first dominant noncoding repeat expansion disor-
ders described were myotonic dystrophy type 1 (DM1) and
spinocerebellar type 8 (SCA8), caused by CTG expansions
in the 3'UTRs of DMPK (dystrophia myotonica protein ki-
nase, MIM #605377) [56] and ATXN8OS (ATXN8 Opposite
Strand LncRNA, MIM #603680) [50], respectively (Table 1).
In the case of SCA8, a CAG expansion also exists on the re-
verse strand in the ATXNS8 coding gene (MIM #613289). The
consequence of expansions in DMPK at the RNA level have
extensively been studied. DMPK mRNA molecules con-
taining CUG expanded repeats accumulate to form inclu-
sions in muscle and neuron nuclei and sequester specific
splicing factors such as the muscleblind-like 1 (MBNL1)
protein. Consequently, the functional depletion of these
RNA-binding proteins results in splicing defects of tissue-
specific transcripts [60, 61]. RAN translation also occurs in
DM1 and is possibly the main pathophysiological mecha-
nism in SCA8, both mainly leading to the toxic expression
of polyglutamine (polyQ) peptides, which are well known
to adopt S-sheet structures prone to form insoluble fib-
rillar aggregates and neuronal intranuclear protein inclu-
sions [27, 62]. RNA-dependent pathophysiological mecha-
nisms and RAN translation of tetrapeptides (polyLPAC and
polyQAGR) also coexist in myotonic dystrophy type 2 (DM2,
MIM #602668), caused by CCTG/CAGG repeat expansions
in CNBP (CCHC-type zinc finger nucleic acid-binding pro-
tein, MIM #116955). These polypeptides are able to accu-
mulate specifically in neurons, astrocytes, and white mat-
ter structures and are toxic independently of RNA foci and
nuclear sequestration of MBNL1 by CCUG transcripts. This
suggests a pathophysiological model in which an RNA-
dependent pathogenic mechanism first occurs in the nu-
cleus and when sequestration capacity is exceeded, RNAs
are exported to the cytoplasm where they undergo RAN
translation [63].

Another example of these complexed intertwined
mechanisms is exemplified by hexanucleotide (GGGGCC)
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expansions in C9ORF72 (chromosome 9 open reading
frame 72, MIM #614260). These expansions located in
the 5’UTR (or first intron depending on the isoform) of
C90RF72 cause a dominant disorder characterized by fron-
totemporal dementia, amyotrophic lateral sclerosis, or the
association of both at the individual level and/or within
families (ALS/FTD, MIM #105550). C90RF72 G,C, repeats,
like GCC repeats, are able to adopt G-quadruplex struc-
tures [64], and they can sequester multiple RNA-binding
(mainly SRSF and hnRNP) proteins in a cell type-specific
manner [65]. RAN translation of C9ORF72 G,C, repeats
in sense and antisense produces five dipeptide proteins
(polyGA, polyGP, polyGR, polyPA, polyPR), three of which
(polyGR, polyPR, and polyGA) are highly toxic [66, 67,
68, 69, 70, 71, 72, 73]. Remarkably, polyPR and polyGA
peptides are able to spread from one cell to the other
via exosome-dependent but also exosome-independent
mechanisms [74, 75]. Finally, C9ORF72 G,C, repeats can
be methylated in a length-dependent manner and DNA
methylation inversely correlates with repeat size and age
at disease onset [76, 77, 78]. Loss-of-function of COORF72
is insufficient to lead to ALS/FTD and no truncating muta-
tions associated with ALS/FTD have been reported in this
gene, but recent evidence suggests that COORF72 haploin-
sufficiency could contribute to disease pathogenesis by
worsening the repeat-dependent gain-of-function mech-
anisms [79]. The examples of DM1, SCA8, and C9ORF72-
associated ALS/FTD show that mechanisms involving
toxic RNA, RAN translation, and loss-of-function through
hypermethylation are not mutually exclusive and can even
have additive effects, each explaining parts of the patho-
physiogenesis.

Recently, four additional dominant GC-rich repeat
expansions have been identified (Table 1). The most fre-
quent is a CGG repeat expansion in NOTCH2NLC (Notch
2 N-Terminal Like C, MIM #618025), one of four human-
specific genes (NOTCH2NLA, NOTCH2NLB, NOTCH2NLC,
and NOTCH2NLR) sharing a high degree (>99 %) of DNA
homology and originating from pericentromeric tandem
duplications of the 5 part of NOTCH2 on chromosome
1. These expansions, located in the 5’UTR/first exon of
NOTCH2NLC, cause a dominant neurodegenerative disor-
der called neuronal intranuclear inclusion disease (NIID,
MIM #603472). This condition is clinically variable and
characterized by eosinophilic intranuclear inclusions in
neurons, glial cells, fibroblasts, and muscles. The age at
onset is also highly variable, ranging from infancy to late
adulthood, although most patients show the first symp-
toms from the third decade of life. Clinical features in-
clude pyramidal and extrapyramidal symptoms, cere-
bellar ataxia, cognitive decline, peripheral neuropathy,
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and autonomic dysfunction [80]. Moreover, most patients
typically show white matter abnormalities on brain MRI
reminiscent of those occasionally observed in FXTAS, in-
cluding T2-weighted hyperintensity signals in the middle
cerebellar peduncles and high-intensity signals in the cor-
ticomedullary junction on diffusion-weighted imaging.
NOTCH2NLC expansions were concomitantly described in
three independent studies. Ishiura et al. used TRhist and
long-read Single Molecule Real-Time (SMRT) sequenc-
ing to identify NOTCH2NLC expansions [41]. Sone etal.
and Tian et al. first performed genome-wide linkage anal-
ysis to identify overlapping intervals on chromosomes
1p22.1-q21.3 and 1p13.3-23.1 before using SMRT and/or
nanopore long-read sequencing to detect and character-
ize NOTCH2NLC expansions [42, 43]. Numerous follow-up
studies revealed the presence of pathogenic NOTCH2NLC
expansions in patients with essential tremor (ETM6, MIM
#618866) [81, 82], FTD and Alzheimer-like dementias
[43, 83], Parkinsonism [43, 84, 85], multiple system at-
rophy [86], and oculopharyngodistal myopathy (OPDM3)
[87, 88]. NOTCH2NLC expansions are more frequent in
Japan and China, due to a founder effect in Asian pop-
ulations, but can also be present in patients from other
geographic origins including Europe and can even occur
de novo in sporadic cases [89]. Pathogenic expansions
range from 60 to more than 500 repeats whereas control
individuals have less than 40 CGG repeats [41, 42, 90, 91].
NOTCH2NLC is correctly annotated only in the hg38 refer-
ence genome and the diagnostic testing of the expansion
is complicated by the almost identical NOTCH2NL copies,
the GC-rich nature of the expansions as well as the pres-
ence of interrupting AGG motifs present in a subset of both
healthy and affected individuals [90]. NOTCH2NCL expan-
sions are not associated with DNA hypermethylation and
do not consistently alter the expression of NOTCH2NLC,
but antisense transcripts are specifically produced in af-
fected individuals, suggesting pathological mechanisms
involving a toxic gain of function at the RNA level and/or
the existence of RAN translation [41, 42, 92]. A recent study
confirmed that RNA molecules with expanded CGG repeats
can form RNA foci and sequester RNA-binding proteins
into p62-positive intranuclear inclusions specifically in
affected individuals [91].

Similar CGG expansions in at least three different
genes have been identified in oculopharyngeal myopa-
thy (OPML) and oculopharyngodistal myopathy (OPDM).
Two of these expansions both composed of CGG repeats
in LOC642361, a long noncoding RNA gene overlapping
the NUTM2B-AS1 antisense transcript (NUTM2B Antisense
RNA 1, MIM #618639) on Chr. 10g22.3, and in the 5'UTR of
LRP12 (low-density lipoprotein receptor-related protein 12,
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MIM #618299) were identified by Ishiura and collaborators
using the same strategy that initially detected NOTCH2NLC
expansions [41]. LRP12 expansions were detected in sev-
eral families with oculopharyngodistal myopathy (OPDM1,
MIM #164310), a neuromuscular disorder in which muscu-
lar weakness in the legs and arms is associated with exter-
nal ophthalmoplegia, dysphagia, and ptosis, while expan-
sions in LOC642361/NUTM2B-AS1 were found in a single
family with oculopharyngeal myopathy, limb weakness,
ataxia, ptosis, and white matter abnormalities similar to
those seen in NIID (OPML1, MIM #618637). Two indepen-
dent studies identified CGG repeat expansions in the 5’UTR
of GIPC1 (MIM #605072) in multiple families with OPDM2
(MIM #618940) using a combination of whole-genome se-
quencing and long-read sequencing [54, 55]. GIPCI expan-
sions lead to increased mRNA expression but do not af-
fect protein expression [54]. Altogether, these recent stud-
ies indicate that CGG expansions in multiple genes lead
to dominant neurodegenerative disorders irrespectively of
the gene where they occur by mechanisms that likely re-
semble those described in FXTAS and C9ORF72-associated
FTD/ALS [92].

The relationship between GC-rich repeat expansions,
DNA methylation, and gene expression remains unclear.
Although FMRI expansions have outlined a clear correla-
tion between expansion size and hypermethylation lock-
ing the gene in an unexpressed state, the same thresh-
old does not seem to apply to all genes equally. Indeed,
expansions containing more than 200 GCC repeats in
NOTCH2NLC or C90ORF72 for instance are not consistently
associated with DNA methylation. Contrary to full expan-
sions in FMRI, large expansions in these genes still allow
transcription of RNA molecules containing expanded re-
peats and RAN translation of toxic polypeptides able to ag-
gregate and form inclusions. DNA methylation could even
be protective in some NOTCH2NLC-associated NIID [91]
while worsening the effect of RNA and peptide toxicity in
C90RF72-associated ALS/FTD [79]. In this setting, study-
ing how DNA methylation impacts the progression of each
disorder associated with GC-rich expansions is of crucial
importance as this information could be used to design
new treatment strategies based on Cas9 methylation edit-
ing, as recently suggested for FXS [93].

Perspectives on the identification of
GC-rich expansions

Most recent studies reporting repeat expansions relied on
large and/or multiple families that allowed the identifica-
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tion of a genomic interval prior to the expansion. Some
of the recently identified disorders turned out to occur
quite frequently, suggesting that many rarer disorders as-
sociated with undetected repeat expansions exist. Indeed,
because of their repetitive nature, high degree of poly-
morphism, and abundance in human genomes, repeat ex-
pansions remain difficult to detect by standard amplifica-
tion or sequencing technologies. Repeat expansions can
be looked for from short-read sequencing data using spe-
cific tools such as LobSTR [94], HipSTR [95], TREDPARSE
[96], ExpansionHunter [97], STRetch [98], GangSTR [99],
and exSTRa [100], but most of these tools need inputs re-
garding the genomic region and repeat motifs and their
use is often limited to detect already known expansions.
So far, only two bioinformatics tools, TRhist [101] and Ex-
pansionHunter DeNovo [102], can detect any type of repeat
expansions at a genome-wide scale. However, since short
reads encompassing repeats usually map to multiple ge-
nomic regions and are clipped off or discarded, the exist-
ing tools tend to perform poorly in estimating the num-
ber of repeats on each allele and underestimate the num-
ber of repeats, especially in the case of very large expan-
sions. For this reason, long-read technologies including
Oxford Nanopore sequencing and SMRT sequencing have
become the new standard to detect and characterize re-
peat expansions [103]. These powerful technologies detect
several hundreds of structural variants per individual that
mostly correspond to polymorphic repeat elements. The
normal repeat ranges and associated allele frequencies of
these repeat variations have not yet been described in large
control populations, and the detection of expansions with-
out hypothesis on the expanded motif or genomic region
where it is located thus remains a challenge in practice.
However, this field is rapidly evolving. Specific tools like
NanoSatellite [104] and tandem-genotypes [105] have al-
ready been developed to specifically study repeats present
in long-read data and we can hope that the identification
of repeat expansions will be soon integrated to standard
genetic pipelines.

Although GC-rich repeat expansions are mainly
known to cause monogenic disorders, it is very likely that
this type of genetic variation also largely contributes to the
genetic architecture of complex disorders [106]. A recent
study investigating the contribution of tandem repeats to
the risk of developing ASD in cohorts of >5,000 patients
showed that repeat expansions were more prevalent in
subjects with ASD (23.3%) than their healthy siblings
(20.67 %). These findings suggest that repeat expansions
at more than 2,500 loci account for 2.6 % of autism risk
[107]. Most of the top candidate regions identified are GC-
rich and include known repeat expansion loci (FMR1, FXN,
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and DMPK) as well as new loci in genes associated with
monogenic disorders, such as MBOAT7, CDON, IL1IRAPLI,
and FGF14. Another study focusing on de novo repeat
changes showed a significant excess of repeat expansion
in ASD subjects. Interestingly, these de novo repeat ad-
ditions mainly occur in conserved fetal brain regulatory
regions [108]. Repeat expansions located in regulatory re-
gions, which are very often GC-rich, have been shown to
have a significant impact on gene expression [109, 110].
This observation holds true for copy number variation in-
volving microsatellites (i. e., motifs less than 1-9 bp), but
for variable number of tandem repeats (VNTR), involved
motifs are >10 bp [111]. Further studies are therefore re-
quired to address this complexity and clarify the role of
tandem repeat expansions in rare and more common hu-
man disorders.
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