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Abstract: Autism Spectrum Disorder (ASD) is a complex
neurodevelopmental condition with increasing preva-
lence, often associated with oxidative stress, mitochon-
drial dysfunction, and neuroinflammation. This review
explores the role of neuronutritions and polyphenols as
potential therapeutic strategies for managing ASD. Neu-
ronutrition focuses on bioactive dietary compounds that
activate vitagenes, which are crucial genes involved in
cellular stress response. Nutrients such as sulforaphane,
acetyl-L-carnitine, and omega-3 fatty acids have shown
promise in improving oxidative stress and mitochondrial

function in ASD patients. Polyphenols, including resver-
atrol, epigallocatechin-3-gallate (EGCG), luteolin,
and curcumin, have demonstrated neuroprotective ef-
fects by reducing neuroinflammation and enhancing
antioxidant defense. Both neuronutrients and poly-
phenols leverage hormesis, which is a biological response
to mild stressors, to improve cellular resilience and brain
health. Clinical studies support their potential in allevi-
ating ASD symptoms, suggesting that targeted dietary
interventions could complement conventional treat-
ments. Further research is required to understand the
long-term efficacy andmechanisms of these interventions
for ASD management.

Keywords: neuronutrition; hormesis; vitagene; autism
spectrum disorder

Introduction

Neuronutrition is an emerging interdisciplinary field that
studies the effects of dietary components on neurological
disorders by targeting key molecular mechanisms such as
neuroinflammation, oxidative/nitrosative stress, mitochon-
drial dysfunction, gut-brain axis disturbances, and neuro-
transmitter imbalances [1]. This emerging field combines
insights from neuroscience, nutrition, and biochemistry to
develop targeted dietary interventions for neurological dis-
orders. Neuronutrition research aims to identify specific
nutrients and bioactive compounds that can modulate brain
function, and potentially prevent or alleviate neurological
disorders. By focusing on the molecular mechanisms, it may
be possible to develop personalized nutritional strategies
that complement existing treatments and improve the out-
comes of patients with various neurological conditions. Di-
etary components include proteins, carbohydrates, fats,
prebiotics, and probiotics, all of which influence neurobi-
ology, neurochemistry, cognition, and behavior [2]. Nutri-
tional components, particularly dietary antioxidants, play a
significant role in activating and regulating vitagenes, which
are a group of genes involved in preserving cellular ho-
meostasis during stressful conditions. They encode proteins
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such as heat shock proteins (Hsp), sirtuins, and thioredoxins,
which are crucial for the cellular stress response system.
Nutrients such as carnosic acid, resveratrol, sulforaphane,
dimethyl fumarate, acetyl-L-carnitine, and carnosine have
been shown to activate vitagenes, contributing to the upre-
gulation of protective proteins and enhancing cellular stress
tolerance and redox homeostasis [3]. Nutritional activation
of vitagenes is crucial for mitigating oxidative stress, which
is associated with aging and various neurodegenerative
diseases.

AutismSpectrumDisorder (ASD) is aneurodevelopmental
disorder characterized by impairments in social communica-
tion and restrictive and repetitive behaviors. In the
United States, ASD has a prevalence rate of approximately
2.3 % among children aged 8 years and 2.2 % among adults [4].
Over the past decade, the prevalence of ASD has markedly
increased, likely due to advancements in diagnostic criteria,
enhanced screening methodologies, and increased public
awareness and recognition of this disorder.

Review methods

A comprehensive literature search was conducted in
PubMed, Scopus, and Web of Science databases for studies
published between January 2000 and June 2024. Search
terms included combinations of “autism spectrumdisorder,”
“ASD,” “neuronutrition,” “polyphenols,” “vitagene,” “horm-
esis,” “oxidative stress,” “mitochondrial dysfunction,” and
“Nrf2.” Both preclinical and clinical studies were considered.

Inclusion criteria were: (i) peer-reviewed original
studies or systematic reviews/meta-analyses in English; (ii)
human clinical trials, in vivo, or in vitro studies addressing
nutritional or hormetic interventions relevant to ASD; and
(iii) data on molecular mechanisms or clinical outcomes.

Exclusion criteria included: (i) studies without mecha-
nistic or behavioral endpoints, (ii) case reports, or (iii) in-
terventions unrelated to nutritional modulation.

Neuronutrition studies and
mechanism of action in ASD

Recent studies have increasingly highlighted the role of
targeted nutrients in improving behavioral, cognitive, and
physiological outcomes in individuals with ASD [5]. Patients
with ASD often exhibit antibodies against vitamin trans-
porters at the blood-brain barrier, leading to cerebral
vitamin deficiencies. Restrictive eating behaviors and long-
term treatments, such as antiepileptic drugs for comorbid

psychiatric conditions, further increase the risk of vitamin
and nutrient deficiencies in children with ASD [6]. While
pharmacological interventions like risperidone and aripi-
prazole can reduce irritability and aggression, they are often
associated with side effects including changes in appetite,
weight, and sleep patterns [7]. Specificmetabolic phenotypes
such as increased oxidative stress, mitochondrial dysfunc-
tion, and reduced methylation capacity indicate heightened
nutritional demand in ASD [8]. Table 1 summarizes the
recent evidence-based data on nutrients studied in ASD.

Oxidative stress and impaired redox homeostasis are
significant concerns in ASD patients. The activation of vita-
genes and the subsequent cellular stress response can
potentially ameliorate some pathophysiological processes
associated with ASD. For instance, the neuroprotective roles
of sulforaphane and hydroxytyrosol, compounds known to
activate vitagenes, have been explored for their potential
benefits in ASD by enhancing the heat shock response and
improvingmitochondrial function, thusmitigating oxidative
damage and improving behavioral symptoms [18]. These
findings underscore a growing interest in hormetic in-
terventions, setting the stage for exploring polyphenols and
other hormetic compounds as promising strategies to sup-
port cellular stress responses and neuroprotection, which
will be discussed in the following sections.

Hormesis and neuroprotective
mechanisms

The neuronutrients that induce hormesis are those com-
pounds that at low doses elicit a beneficial effect, whereas at
higher doses, they are detrimental [19, 20]. Hormesis is a
biological phenomenon characterized by a biphasic dose-
response to an environmental agent or stressor [21]. In the
context of cellular biology and health, hormesis involves
the mild stress-induced stimulation of protective mecha-
nisms, resulting in enhanced cellular resilience and function
(Figure 1). Hormetic dose–response relationships are typi-
cally characterized by biphasic patterns, often represented
as inverted U- or J-shaped curves. These phenomena have
been consistently documented across a broad spectrum of
biological systems, ranging from prokaryotes to humans,
and involving diverse cell types. A distinctive feature of
hormesis is the consistency of its quantitative parameters,
which remain largely unaffected by variations in biological
model, cell lineage, measured endpoint, triggering agent, or
mechanistic pathway. The defining trait of the hormetic
response is a relatively small but reproducible stimulatory
effect, generally between 30% and 60 % above baseline
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levels. This effect spans numerous biological outcomes,
including but not limited to cellular proliferation, organ-
ismal growth, reproductive capacity, cognitive performance,
and longevity – underscoring its potential significance in
health promotion, disease mitigation, and therapeutic ap-
plications, particularly in neuroprotection [22]. The concept

of hormesis suggests that a certain degree of challenge or
stress may be beneficial for health and longevity, in contrast
to the notion that all stressors are inherently harmful [23].

Hormetic responses can also result from over-
compensation to disruption in homeostasis, enhancing
antioxidant defenses, selective apoptosis, immunological

Table : Evidences-based data on nutrients in ASD treatment.

Nutrient Mechanism of action Evidence (sample and
duration)

Primary outcomes Safety/adverse events Reference

Vitamin D VDR-mediated immune,
serotonergic, neuro-
protective regulation.

Meta-analysis of  RCTs
(n= children;
– weeks)

Core ASD symptoms: no
significant improvement;
irritability modestly improved
(−.) in baseline-deficient
children; High heterogeneity.

Generally safe; no severe or
serious adverse events
reported; supplementation
tolerable within studied
dose ranges.

Li et al. []

Omega-
fatty acids

Anti-inflammatory, supports
neuronal membrane fluidity
and neurotransmission.

Meta-analysis of  RCTs
(n= children;
– weeks).

Small, non-significant effects
on overall ASD behaviors
(−.), hyperactivity (−.),
stereotyped behavior
(−.), communication
(−.), emotional difficulty
(−.). Moderate
heterogeneity.

Safe and well tolerated; no
serious adverse events
observed in pediatric ASD
trials.

Jia et al. []

Cobalamin
(B)

Enhances methylation, redox
metabolism; ↑GSH, cysteine,
SAM; ↓GSSG, SAH

Meta-analysis of 
studies (n=;
– weeks)

Improved methylation (SAM/
SAH, homocysteine), redox
biomarkers (GSH, GSSG),
clinical symptoms (commu-
nication, daily living, social
skills); moderate effect in
responders (.). Moderate
heterogeneity.

Mild, transient adverse
events (hyperactivity, irrita-
bility, sleep disturbances)
reported in a minority of
participants; no serious
adverse events.

Rossignol and
Frye []

Folinic acid
(B)

Supports one-carbon
metabolism, methylation,
DNA/RNA synthesis

Meta-analysis of  RCTs
(n=; – weeks)

Reduced ASD symptoms
(MD −.; %
CI −., −.; p=.);
small sample, needs larger
trials.

Mild and transient adverse
events; overall well tolerated
in pediatric populations.

Soetedjo et al.
 []

L-Carnitine Supports mitochondrial
function, β-oxidation, and
energy metabolism

Three randomized trials
(Geier [], Fahmy [],
Goin-Kochel []), sam-
ple – children, age
.– years; doses –
mg/kg/day; duration
 weeks– months.

Improvements in hyperactiv-
ity, social behavior, and core
ASD symptoms measured by
CARS, CGI, ATEC; dose-
dependent efficacy; rapid
improvement in children with
metabolic deficiencies
(TMLHE), small sample,
needs larger trials.

Generally well tolerated;
mild gastrointestinal symp-
toms or strong body odor at
higher doses; no serious
adverse events.

Malaguarnera
and Cauli
 []

Sulforaphane Activates Nrf–ARE and
vitagene/HSP pathways;
modulates glutathione
redox, mitochondrial effi-
ciency, and inflammatory
signaling.

Meta-analysis of  RCTs
(n=, – weeks)

Improved total symptoms
(SMD −.), aberrant
behavior (−.), hyperactiv-
ity (−.), social interaction
(−.), social communica-
tion (−.), restricted/re-
petitive behavior (−.). No
sig. effect on irritability,
anxiety, sensory sensitivity,
social motivation. Moderate
heterogeneity.

Well tolerated; adverse
events comparable to
control

Wang et al.
 []
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responses, and intercellular communication [23]. The
mechanisms of action of hormesis involve various cellular
signaling pathways and molecular mechanisms. These typi-
cally include the activation of enzymes such as kinases and
deacetylases, and transcription factors like Nrf-2 (Nuclear
factor erythroid 2-related factor 2) and NF-κB, which lead to
increased production of cytoprotective and restorative pro-
teins [22]. Nrf2 is a member of the nuclear factor erythroid 2–
like (NRF) transcription factor family, which consists of basic
leucine zipper (bZIP) proteins structurally related to nuclear
factor erythroid 2 (NFE2, also known as p45). These factors
are defined by the presence of a conserved 43-amino acid
Cap‘n’Collar (CNC) domain. Within this group, the vertebrate-
specific NRF subfamily – which includes NRF1 (NFE2L1),
NRF2 (NFE2L2), and NRF3 (NFE2L3) – is critically involved in
regulating gene expression in response to oxidative and
reductive stress conditions [24]. Under basal conditions, Nrf2
is sequestered in the cytoplasm by Keap1 (Kelch-like ECH-
associated protein 1), which promotes its ubiquitination and
proteasomal degradation. Upon exposure to oxidative stress,
Nrf2 is released from Keap1, translocates to the nucleus, and
binds to antioxidant response elements (ARE) in the promoter

regions of target genes. This binding induces the expressionof
a range of cytoprotective genes, including those encoding for
heme oxygenase-1 (HO-1), glutathione S-transferase (GSTs),
and NAD(P)H quinone oxidoreductase 1 (NQO1) [24]. Two
recent studies have further explored a possible mechanism
of neuroprotection via the activation of Nrf2: (i) mediated
by pyridoxine, which induces glutathione synthesis via
PKM2-mediated Nrf2 transactivation [25], and (ii) via a non-
canonical activation of the p62-Keap1-Nrf2 pathway, which
acts both in oxidative stress and in modulating autophagy
[26]. The non-canonical activation of Nrf2 by p62 and PKM2-
mediated activation by pyridoxine converge on the same
outcome: the upregulation of antioxidant defenses, partic-
ularly GSH synthesis, to protect cells from oxidative dam-
age and excessive autophagy. Recent evidence suggests that
dysregulated autophagy contributes to neuroinflammatory
mechanisms in autism spectrum disorder. Since USP18
facilitates the autophagic degradation of Gasdermin D to
suppress pyroptosis, modulation of this pathway may
represent a potential mechanism linking impaired cellular
clearance with neuroimmune activation in ASD [27]. This
understanding highlights the potential therapeutic signifi-
cance of targeting the Nrf2 pathway to mitigate oxidative
stress-related cellular damage (Figure 2).

Several studies have demonstrated that nutrient-
activating hormesis can bolster antioxidant defenses and
attenuate neuroinflammation. For instance, a variety of
phytochemicals, including stilbenoids, quinones, terpe-
noids, and carotenoids, have been shown to activate the
Nrf2 signaling pathway through multiple distinct mecha-
nisms. These include: (1) disruption of the Nrf2–Keap1
interaction, (2) covalent modification of critical cysteine
residues on Keap1 via oxidation or alkylation, (3) modu-
lation of upstream kinases such as GSK3β, p38 MAPK,
ERK, AMPK, and PI3K/AKT, and (4) epigenetic regulation
involving DNAmethylation and histone modifications [28].
In addition, polyphenols exhibit a broad spectrum of bio-
activities, including antioxidant, anti-inflammatory, anti-
amyloidogenic, anti-α-synuclein, and antidepressant ef-
fects [28]. Sulforaphane, derived from cruciferous vegeta-
bles, activates the Nrf2 pathway, reduces oxidative stress,
and improves behavioral outcomes in children with ASD
[29]. Similarly, resveratrol and hydroxytyrosol exhibit
neuroprotective effects by modulating oxidative stress
pathways and enhancing mitochondrial function [30].
Notably, hydroxytyrosol, a compound derived from olive
extract, markedly reduces amyloid-β aggregation and
β-amyloid-induced paralysis – effects that are abolished
when stress response genes such as skn-1/Nrf2 and hsp-16.2
are silenced [30]. Similarly, resveratrol confer protection
against proteotoxic stress through pathways involving the

Figure 1: The key stage of the hormetic response to cellular stress
includes an initial adaptation and activation of defense mechanisms, a
preconditioning response activated by mild stress exposure, the
activation of vitagenes, and the incremental activation of mitochondria to
produce more energy. Cells and organisms adapt to low stress levels by
activating defense mechanisms and repair processes. Exposure to mild
stress can help an organism to better withstand more severe stressors in
the future. Hormetic stressors can activate vitagenes, which are genes
involved in cellular stress response and protection. Mild mitochondrial
stress can improve mitochondrial function and cellular energy
production, while when stress becomes excessive or chronic induces
pathophysiological conditions, such as in neuroinflammation and
ultimately neurodegeneration. Hormetic stress often induces an
increased production of endogenous antioxidants.
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unfolded protein response, autophagy, and proteasomal
degradation, all reliant on skn-1/Nrf2 signaling [31]. It has
been demonstrated that the Nrf2-Keap1 pathway is also
modulated by Coriolus Versicolor and Hericium Erinaceus,
two species of mushrooms that contain bioactive com-
pounds that can enhance the body’s antioxidant defenses
and provide neuroprotective effects. For example, the
upregulation of Nrf2-regulated genes in these mushrooms
has been linked to their ability to mitigate oxidative stress
and inflammation, thereby offering therapeutic potential
in neurodegenerative diseases [32]. In a recentMetanalysis
by Yang J and colleagues, it has been underlined the
beneficial roles of Nrf2 activators in improving autism-like
behaviors by acting against inflammation, oxidant stress,
and inflammation [33]. Further studies should investigate
the mechanism of action by which nutrients, such as
polyphenols and mushrooms, modulate the Nrf2-Keap1
pathway, and the correlation with ASD pathophysiology.

The concept of hormesis, in which low doses of a stressor
stimulate protective responses, is closely related to the func-
tion of vitagenes. These vitagenes are involved in cellular
mechanisms that adapt to mild stress, thereby improving cell

survival and longevity by encoding proteins that protect
against oxidative damage [3]. Thus, by modulating vitagenes,
hormetic nutrition offers a promising approach formanaging
ASD by leveraging cellular stress responses and innate im-
mune signaling. Incorporating specific hormetic nutrients
into the diet can enhance cellular resilience, optimize mito-
chondrial function, and potentially ameliorate the neurolog-
ical and behavioral symptoms associated with ASD.

Within themitochondria, vitagenes play a significant role
in regulating the cellular response to oxidative stress and
maintaining mitochondrial function. Mitochondria are the
major sources and targets of reactive oxygen species (ROS),
which are byproducts of cellular respiration. Through their
encoded proteins, vitagenes help mitigate the damaging ef-
fects of ROS by enhancing antioxidant defenses and repairing
damaged proteins and lipids. This protective mechanism is
crucial for sustaining mitochondrial bioenergetics and pre-
venting cellular damage, which can lead to various age-
related diseases and neurodegenerative disorders [33]. Mito-
chondrial dysfunction and oxidative stress are significant
factors in ASD pathology. Numerous studies have demon-
strated the co-occurrence of mitochondrial abnormalities

Figure 2: Mechanisms of canonical and non-canonical Nrf2 activation the figure depicts the canonical and non-canonical pathways for the activation of
nuclear factor erythroid 2-related factor 2 (Nrf2). Under basal conditions (dark blue), Nrf2 resides in the cytoplasm,where it associateswith Kelch-like ECH-
associated protein 1 (KEAP1), facilitating its ubiquitination and subsequent degradation via the proteasome. During oxidative stress (red), Nrf2 dissociates
from KEAP1, translocates into the nucleus, and binds to antioxidant response elements (ARE) within the promoter regions of target genes. This interaction
drives the expression of cytoprotective genes such as heme oxygenase-1 (HO-1), glutathione S-transferases (GSTs), and NAD(P)H quinone oxidoreductase
1 (NQO1) and γ-glutamate-cysteine ligase (γ-GCL). In the non-canonical activation pathway (yellow), polyphenol-induced inhibition of autophagy elevates
the levels of p62, a protein that competes with KEAP1 for Nrf2 binding. This competitive interaction results in Nrf2 activation independent of KEAP1.
Additionally, pyridoxine-mediated Nrf2 activation (light blue) constitutes another neuroprotective mechanism. Here, pyridoxine enhances glutathione
synthesis by trans-activating Nrf2, a process reliant on the involvement of pyruvate kinase M2 (PKM2).
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and elevated oxidative stress markers in individuals with
ASD [34].Mitochondrial dysfunction in ASD is characterized
by deficiencies in electron transport chain (ETC) com-
plexes, which impair cellular energy production and lead to
increased ROS production. This imbalance between ROS
production and antioxidant defenses results in oxidative
stress, which can cause extensive cellular damage and
contribute to the neurodevelopmental deficits observed in
ASD [35].

Role of polyphenolic compounds in
autism spectrum disorders

Polyphenols, a type of secondary metabolite, have been
identified in 8,000 plant species. Many of these polyphenols
possess a bitter taste, while some have been found to have an
astringent taste. The bitter taste receptors, such as taste re-
ceptor 2 (T2R) and transient receptor potential (TRP), are
expressed in the digestive tract, including the oral cavity.
The interaction between polyphenols and bitter taste re-
ceptors, and the subsequent transduction of these signals to
the central nervous system, has been identified. The acti-
vation of T2R has been demonstrated to induce the secretion
of gastrointestinal hormones, such as glucagon-like peptide-
1 (GLP-1), into the bloodstream, as well as the release of
neurotransmitters into the vagus nerve. The latter is known
to regulate appetite via the nucleus of the solitary tract, and
so on [36]. Furthermore, the perception of astringency is
recognized by TRP channels expressed on gastrointestinal
sensory nerves and transmitted to the central nervous sys-
tem, activating the hypothalamic-pituitary-adrenal (HPA)
axis, which is a stress response, and enhancing sympathetic
nerve activity. Within the HPA axis, corticotropin-releasing
hormone (CRH), a stress hormone and neurotransmitter, is
secreted, promoting the projection of noradrenaline from
the locus coeruleus to the entire brain. Noradrenaline is
known to enhance memory and learning. Consequently, the
impact of polyphenols on brain function is significant [37],
and it is anticipated that they will improve the symptoms of
autism.

Resveratrol (RSV) is a polyphenolic compound present in
grapes, peanuts, and red wine that has anti-inflammatory,
antioxidant, and neuroprotective effects [38]. RSV has been
observed to ameliorates brain edema, increases blood
brain barrier (BBB) permeability, alters aquaporin profile,
and augments GFAP glial fibrillary acidic protein (GFAP)

expression in rat models of autism induced by prenatal
exposure to valproic acid (VPA) [39]. An in vivo study showed
that RSV (5, 10, and 15mg/kg) improved the symptoms of
autism spectrum disorders (ASD) in rats [40], reducing tumor
necrosis factor-α (TNF-α) expression, neuroinflammation, and
oxidative stress, making it a promising molecule against
ASD [41]. Furthermore, oral administration of RSV amelio-
rated autistic behavior by reducing neuroinflammation in a
propionic acid (PPA) model of autism [42]. It is noteworthy
that the reduction in autistic traits was correlated with
the possible alleviation of gastrointestinal (GI) alterations in
animals, since PPA is a compound produced by intestinal
bacteria [43]. Using a genetical animal model of ASD, it
has been reported that intraperitoneal (i.p.) RSV improves
social behavior, reduces the activation of Th cells, promotes
T-regulatory cell function [44], and decreases the production
of several pro-inflammatorymediators in the central nervous
system (CNS) [45]. Sunand et al. found that a polyphenol–
probiotic complex containing RSV, acetyl-l-carnitine, and
curcumin reversed autistic traits and modulated biochemical
levels of inteleukin-6 (IL-6), TNF-α, brain-derived neurotrophic
factor (BDNF), serotonin (5-HT), and acetylcholinesterase
(AchE) in rats [46]. An open-label pilot trial studied the effect
of 200mg/d trans-resveratrol on five boys aged 10–13 years
diagnosedwith autism. RSV treatment significantly improved
ASD symptoms and increased miR-195-5p, an important
modulator of inflammatory and immunological pathways,
suggesting the efficacy and safety of RSV in pediatric autistic
subjects [47].

EGCG, theprimary catechin in green tea, is also present in
apples, peaches, kiwis, blackberries, pears, and nuts such as
pistachios, hazelnuts, and walnuts [48]. In vitro, 3 μM EGCG
restored dendritic and synaptic defects in neuronal models
of CDKL5 deficiency disorder (CDD), a rare X-linked neuro-
developmental disorder characterized by seizures, motor
impairments, and autistic-like features [49]. In Cdkl5-KOmice,
low-dose EGCG (25 mg/kg daily, i.p., for 30 days) rescued glu-
tamatergic synaptic contacts and spine morphology, whereas
higher doses produced pro-apoptotic and hepatotoxic effects,
consistent with the hormesis concept [49]. Similarly, in ASD
rat models, EGCG at 2mg/kg normalized key neurotransmit-
ters and neurochemicals, including serotonin, glutamate, and
nitrite [50].

EGCG rapidly crosses the blood–brain barrier and
modulates intracellular Ca2+, ERK1/2, and NF-κB pathways,
reducing IL-8 levels and supporting neuroprotection [51]. It
also regulates gut microbiota–derived short-chain fatty
acids (SCFAs), particularly butyrate, which enhances
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mitochondrial function often impaired in ASD [52, 53].
Maternal butyrate supplementation in autistic mouse
models has been shown to rescue social and repetitive
behavioral deficits in offspring [54]. Beyond ASD, EGCG
exhibits antioxidant properties and promotes neuro-
genesis and neuroplasticity in Down syndrome mouse
models, indicating broader neuroprotective potential [55].

Although pediatric ASD trials are currently lacking,
EGCG has been studied in childrenwith Down syndrome and
fragile X syndrome at 9 mg/kg/day (≈400–600 mg/day in ad-
olescents) over several months, demonstrating good tolera-
bility with hepatic monitoring [56].

Recent evidence has shown that other polyphenols that
are structurally similar to EGCG, such as luteolin or quer-
cetin, have achieved clinical benefits in the disease [57].
Luteolin exerts neuroprotective effects by reducing IL-6,
TNF-α, nitrotyrosine, and NF-ĸB serum concentrations,
improving neuroplasticity and neurogenesis, and inhibiting
mast cell activation [58, 59]. In particular, Bertolino et al.
investigated the effect of the association of ultramicronized
fatty acid amide palmitoylethanolamide (PEA) with the
polyphenol luteolin in VPA mice and the effect of PEA
(700 mg) with luteolin (70 mg) in microgranules, twice a
day, in a 10-year-old male child with ASD. The treatment
ameliorated social and non-social behaviors in mice and
improved patient clinical symptoms with a reduction in
stereotypes [60]. These data suggest that ASD symptom-
atology may be improved by agents that control the activa-
tion of mast cells and microglia [60]. Similarly, luteolin and
PEA reduced proinflammatory molecules, such as IL-1β, NF-
κB, and TNF-α, influenced apoptosis markers in the hippo-
campus and cerebellum, and promoted enhanced neuro-
plasticity and neurogenesis in ASD animals [61]. Quercetin
present in Chamomile sp., Sophora sp., and C. sinensis ex-
tracts promotes mitochondrial protection by increasing the
scavenging antioxidant activity of ROS generated in the cell
[62]. An open-label pilot study showed that children with
ASD undergoing polyphenolic treatment based on an oral
formulation consisting of luteolin (100 mg/capsule), quer-
cetin (70 mg/capsule), and quercetin glycoside rutin (30 mg/
capsule), at a dose of one capsule per 10 kg of weight per day
for 26 weeks, showed significant improvement in several
abilities, such as communication, concentration, and coop-
eration, with a parallel decrease in abnormal clinical traits
[63] and a reduction in serum levels of TNF-α and IL-6 [64].

Syringic acid (SA) is a polyphenolic compound with
anti-inflammatory, antiapoptotic, antioxidant, and neu-
romodulatory activities [65]. SA can prevent behavioral
impairment, restore antioxidant enzyme and neuro-
transmitter levels, reduce neuroinflammation, improve
neuronal integrity, and reduce p38 mitogen-activated

protein kinase (MAPK) expression in a dose-dependent
manner in VPA-treated rats [65].

Curcumin is a potential neuroprotector in psychiatric,
neurodevelopmental, and neurodegenerative disorders [66]
that easily crosses the BBB, increasing the glutathione
(GSH) concentration, reducing mitochondrial dysfunction
and oxidative stress, and improving ASD quality [67].
Treatment with curcumin orally administered for 4weeks at
different doses (50/100/200 mg/kg) has been shown to in-
crease antioxidant defense, restore normal mitochondrial
function, and ultimately improve behavioral defects in ASD
rats [64], as well as abnormal body and brain weight values
[68]. Furthermore, two studies were performed using the
BTBRT+ltpr3tf/J (BTBRT) mousemodel of ASD. The first, using
20 mg/kg of curcumin, reported enhanced neural stem cell
proliferation and improved short-term memory and socia-
bility [69]. The second study evaluated three different doses
of curcumin (25/50/100 mg/kg), showing the restoration of
several oxidative stress markers in the hippocampus and
cerebellum, with a dose-dependent increase in sociability in
curcumin-treated mice [70]. Taken together, these results
suggest that this polyphenolic molecule could be effective
in preventing autistic behavioral and biochemical traits.
Autism is classified as a pervasive developmental disorder
(PDD). All PDDs have qualitative impairment in social
relatedness and often interfere with symptoms, including
irritability. Yokukansan (TJ-54), a traditional Japanese med-
icine that contains a mixture of dried herbs, 4 g of atracty-
lodis lancease rhizome, 4 g of Poria, 3 g of Cnidii rhizoma, 3 g
of Angelicae radix (Angelica acutiloba), 2 g of radix bupleuri,
1.5 g of radix glycyrrhizae, and 3 g of uncariae uncis cum
ramulus [71], is widely prescribed for psychiatric disorders
by acting mainly on the glutamatergic and serotonergic
nervous systems. A 12 week prospective, open-label study of
20 children and adolescents diagnosed with PDDs showed
that treatment with TJ-54 at dosages from 2.5 to 7.5 g/day
resulted in significant amelioration of irritability, stereo-
typy, hyperactivity, and inappropriate speech [72]. TJ-54
mechanism of action as a partial D2 agonist, 5-HT1A agonist,
and 5-HT2A antagonist [73] may prove important for both its
effectiveness and tolerability in PDDs.

Bacopa monnieri (BM) (Plantiginaceae), commonly
called Brahmi, is a perennial herb found in northeast India.
It is used in Indian traditional medicine; Ayurveda, as a
memory booster, has antioxidant, anti-inflammatory, anti-
pyretic, analgesic, sedative, and antiepileptic properties [74].
In particular, several studies have shown that BM exerts
a memory-enhancing effect as well as neuroprotection
through the presence of bacoside A (Abhishek et al. [74]). BM
at 80 mg/kg ameliorated social deficits, repetitive behavior,
and cognitive andmotor impairments in a VPAmodel of ASD
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[74]. Moreover, BMwas found to have significant antioxidant
and anti-inflammatory properties, ultimately improving the
histopathological score and reducing the upregulated mRNA
and protein expression of AMPA in both the hippocampus
and prefrontal cortex [74]. Recently, it has been demonstrated
that grape seed extract (GSE) alleviates oxidative damage [75]
by modulating nuclear factor erythroid 2–related factor 2
(Nrf2) activity, an essential transcription factor responsible
for antioxidant defence and inflammatory cytokine expres-
sion [76]. Indeed, GSE exerts protective effects against these
changes and ameliorates autism symptoms [77]. Interestingly,
gallic acid, a major component of grape seeds, can facilitate a
decrease in the number of cerebellar Purkinje and granular
cells in autistic rats [78],making it a possible therapeutic agent
for ASD.

Isothiocyanate sulforaphane (SF), present in high
amounts in broccoli sprouts, has been reported to amelio-
rate autistic symptoms by increasing GSH production and
reducing oxidative phosphorylation, lipid peroxidation,
and neuroinflammation [79]. This double-blind, placebo-
controlled clinical trial aimed to investigate the beneficial
effects of risperidone and SF treatment in alleviating irri-
tability in children with ASD. Compared with the placebo
group, patients in the SF group showed greater improve-
ments in irritability and hyperactivity symptoms [80]. The
efficacy of SF was investigated in another randomized
parallel double-blind placebo-controlled clinical trial in
children with ASD. SF treatment leads to improvements in
sociability, communication, irritability, stereotypy, hyper-
activity, and inappropriate speech. Significant changes
were also observed in the levels of biomarkers of gluta-
thione redox status, mitochondrial respiration, inflamma-
tory markers, and heat shock proteins [81].

Boswellia species gum resin contains many terpenes
such as, mon, di, tri, tetra and pentacyclic triterpenes besides
containing complex phenolic, flavonoids and other active
compounds. The in vitro, in vivo and some clinical studies
have shown that these bioactive substances exhibit extensive
biological activities among those anti-inflammatory, protect-
ing nervous system against many neurological disorders,
antioxidants, free-radical scavenging, immunomodulating
and other biological activities [82]. On the other hand,
Boswellia sacra gum resin contains significant amounts of
terpenes compared to many other Boswellia species. For
instance, it contains large amounts of boswellic acids such as
AKBA, alpha and beta boswellic acids [83]. There are accu-
mulating evidences that these boswellic acids play a potential
role as natural phytochemicals in reducing the pathogenic
factors associated with various neurological disorders [84].

Furthermore, according to recently published literature,
pentacyclic triterpenes play significant roles in many biolog-
ical activities, such as inhibiting the release of some pro-
inflammatory cytokines, such as IL-1β, and other cytokines
mainly produced by bloodmonocytes, which are increased in
nearly 100% of autistic children beside enhancing the in-
flammatory cytokines IL-10 [85]. A recent study showed that
autism may be accompanied by abnormalities in the inflam-
matory response system, specifically IL-6, IL-10, and TNF-α in
whole blood [86]. However, more clinical studies in humans
are required at this stage to confirm the role of such bioactive
substances, and their neuroprotective potentialmakes thema
promising option for treating major neurological disorders,
including autism, which is a complex neurological disorder
of largely unknown cause.

Emerging in vitro and in vivomodels
to understand neuronutrition

Conventional pharmacological strategies have shown limited
efficacy in treating neurodegenerative diseases, often due to
restricted mechanisms of action and insufficient neuronal
uptake [87]. As an alternative, neurohormesis has gained
attention for its potential to activate adaptive, cytoprotective
responses through mild metabolic stress. Within this frame-
work, low-dose polyphenols have demonstrated neuro-
protective and antioxidant effects by modulating key cellular
pathways, notably the Nrf2 signaling cascade and vitagene
network. Emerging in vitro and in vivo models are increas-
ingly employed to investigate these mechanisms, offering
valuable tools to elucidate the role of diet-derived compounds
in promoting brain health and resilience through neuro-
nutritional strategies [88].

The emergence of reprogramming technologies and the
subsequent refinement of induced pluripotent stem cells
(iPSCs)-based protocols for neuronal differentiation and 3D
cerebral organoid generation has inaugurated a new para-
digm in preclinical disease modeling with significant impli-
cations for drug discovery. By reprogramming adult cells
into pluripotent stem cells, researchers can now readily
generate a diverse range of neural cell types, including
neurons, astrocytes, and oligodendrocytes, offering un-
precedented opportunities to study human brain develop-
ment and disease [89].

By recapitulating key developmental stages, these
models allow for the study of factors and mechanisms that
can perturb physiological function by interfering with these
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developmental processes. In the last decade, iPSC-derived
brain models were successfully employed to model neuro-
development and neurodevelopmental disorders [90–92], to
study prenatal toxins exposure [93–97], and gene-environment
interactions [98, 99].

iPSCs can also be used to derive three-dimensional (3D)
cerebral organoids that better recapitulate the complex ar-
chitecture and structural organization of the developing
human brain [100]. Cerebral organoids have been effectively
employed to investigate the pathophysiological mechanisms
underlying ASD [101, 102].

Regarding the testing of novel therapeutic molecules,
the ability to generate patient-specific brain tissue provides
a unique opportunity to directly test compounds on cells
derived from the individual patient, thereby increasing the
precision and relevance of drug discovery efforts. iPSCs-
derived models can help stratify patients based on their
molecular profiles, facilitating the identification of new
therapeutic targets [103]. In particular, iPSC-derived patient-
specific neural progenitor cells (NPCs) have been successfully
employed for drug discovery in the context of neuropsychi-
atric disorders. Unlike immortalized cell lines conventionally
used in drug discovery pipeline, NPCs rely on mitochondrial
respiration and are sensitive to oxidative phosphorylation
impairments, thus may represent a valuable model to carry
out drug screenings for neurological disorders where mito-
chondrial function is impaired such as ASD [104, 105].

Other studies conducted in iPSCs-derived brain models
have demonstrated the potential of insulin-like growth fac-
tor 1 (IGF-1), a drug in clinical trials for ASD, in correcting
neuronal deficits in both idiopathic and syndromic forms of
ASD [102, 106, 107]. Additionally, drugs like gentamycin and
roscovitine have shown potential in addressing specific
molecular defects underlying these disorders. These find-
ings highlight the potential of iPSC-derived models to
accelerate the development of targeted therapies for neu-
rodevelopmental disorders [100].

The nematode Caenorhabditis elegans (C. elegans), with
its conserved neural system and molecular pathways, has
emergedas avaluablemodel for studyingneurodevelopmental
disorders such as ASD. Several studies have demonstrated that
low-dose treatments with polyphenolic compounds, such as
hydroxytyrosol and oleuropein, enhance stress resistance
and extend lifespan in C. elegans by activating the SKN-1/Nrf2
signaling pathway,which is crucial for oxidative stress defense
and longevity regulation. Furthermore, a recent study has
demonstrated that extracts from olive leaves efficiently scav-
enged free radicals in vitro and significantly increased the
expression of antioxidant enzymes extending lifespan and
increased stress resistance in C. elegans [108]. Additionally,
phenolic acid metabolites like protocatechuic, gallic, and

vanillic acids have been shown to improve mitochondrial
function, heat-stress resistance, and chemotaxis in C. elegans,
indicating their potential as hormetic agents in neuro-
protective strategies [109]. Collectively, these findings under-
score the importance of hormetic signaling and autophagic
mechanisms in mediating the protective actions of dietary
polyphenols against neurodegenerative pathologies in geneti-
cally amenable C. elegansmodels.

Conclusion and future perspectives

Nutritional interventions have shown promise in mitigating
oxidative stress and improving mitochondrial function in
ASD patients. Nutrients such as sulforaphane, hydroxytyr-
osol, omega-3 fatty acids, and acetyl-L-carnitine can activate
vitagenes, upregulate antioxidant defenses, and enhance
mitochondrial biogenesis [110]. Clinical studies have sup-
ported the efficacy of these nutritional interventions in
improving the symptoms and metabolic profiles of children
with ASD. For instance, supplementationwith vitamin D and
omega-3 fatty acids has been associated with enhanced so-
cial skills and reduced hyperactivity [111], whereas acetyl-L-
carnitine has been shown to ameliorate mitochondrial
dysfunction and oxidative stress in ASD [112]. These findings
highlight the potential of targeted nutritional strategies to
support mitochondrial health and reduce oxidative stress,
thereby contributing to the better management of ASD
symptoms.

The advent of 3D cell models and iPSC-based tech-
niques has transformed neuroscience by enabling the
generation of diverse neural cell types and cerebral orga-
noids, allowing researchers to model brain development,
neurodevelopmental disorders, and drug discovery with
unprecedented precision. These patient-specific models,
which recapitulate human brain architecture and mito-
chondrial functions, have proven effective in identifying
therapeutic targets and testing drugs for conditions such as
ASD, highlighting their potential to accelerate targeted
therapy development. Despite limitations in reproduc-
ibility, scalability, and translatability to human disease
[113], organoid models offer a valuable platform for inves-
tigating neuroprotective mechanisms and screening novel
therapeutic compounds for autism and other brain disor-
ders. While their adoption for large-scale drug screening is
currently hindered by these challenges, they have the po-
tential to bridge the gap between preclinical and clinical
research [114].

While in clinical research traditional approaches to
managing ASD have primarily focused on behavioral
interventions and pharmacological treatments, emerging
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research suggests that neuronutrition strategies, including
targeted dietary interventions and supplementation, may
offer promising alternatives for improving cognitive func-
tion, reducing oxidative stress, and alleviating ASD symp-
toms. The evidence presented underscores the potential of
specific nutrients, such as sulforaphane, hydroxytyrosol,
omega-3 fatty acids, and acetyl-L-carnitine, in mitigating
oxidative stress and enhancing mitochondrial function in
ASD patients. Clinical studies have demonstrated tangible
improvements in ASD symptoms and metabolic profiles
following nutritional intervention. As research in this area
continues to evolve, it is becoming increasingly clear that a
multidisciplinary approach incorporating neuronutrition,
hormetic diet principles, and vitagen-targeted supplemen-
tation could play a crucial role in ameliorating ASD symp-
toms and significantly enhancing the quality of life of
affected individuals.

Furthermore, research underscores the connection
between atypical brain activation patterns and distinctive
eye behaviors in individuals with ASD [115]. While direct
evidence linking the eye as a model of the brain in autism
research remains uncertain, studies have consistently
identified unique gaze behaviors and eye movement
patterns in individuals with ASD. These discoveries have
spurred the development of diagnostic tools, such as the
Gaze-Based Autism Classifier (GBAC), which leverages
eye-tracking data and machine learning to enhance the
precision of ASD detection [116]. Exploring the clinical
impact of neuronutrition strategies in ophthalmology may
pave the way for novel translational insights and therapeutic
advancements. Moreover, emerging evidence suggests that
lipid imbalances may play a role in neuroinflammation and
synaptic function, critical factors implicated in ASD patho-
physiology [117]. Recent studies suggest a possible integration
of lipidomics tear analysis and neuronutrition, presenting an
intriguing avenue for advancing our understanding of ASD
[118]. Tear lipidomics can provide a non-invasive biomarker
source, capturing metabolic alterations and lipid profile
changes associated with neurodevelopmental conditions
like ASD. When combined with neuronutrition strategies,
such as tailored dietary interventions rich in omega-3 fatty
acids or other lipid-modulating nutrients, lipidomics anal-
ysis could offer valuable insights into individualized
treatment approaches. Such strategies might not only
improve systemic lipid profiles but also target neuro-
inflammatory pathways and mitochondrial dysfunctions
commonly observed in ASD [119]. By leveraging the synergy
between lipidomics and neuronutrition, researchers and
clinicians could develop novel diagnostic tools and thera-
peutic approaches that address the underlying metabolic
and neurological complexities of ASD.

Implementing neuronutrition strategies in the man-
agement of ASD requires a comprehensive and individual-
ized approach. The foundation of this approach is engaging a
registered dietitian or nutritionist with expertise in ASD to
develop a tailored dietary plan. This professional should
possess specific knowledge of the unique nutritional needs
and challenges associated with ASD, including experience
in creating meal plans that address common sensory sensi-
tivities and food aversion. While research on its efficacy
is mixed, some individuals with ASD have reported im-
provements in behavior, communication, and gastrointes-
tinal symptoms following this diet. However, it is crucial to
implement these dietary changes under professional su-
pervision. Neuronutrition strategies should be integrated
with existing behavioral and pharmacological treatments
to provide a comprehensive approach to ASD management.
Regular evaluation and modification of neuronutrition stra-
tegies in collaboration with healthcare professionals are
essential for optimizing outcomes. Educating family mem-
bers, caregivers, and school personnel about an individual’s
neuronutrition plan ensures consistency across all environ-
ments. Providing clear guidelines, meal plans, and strategies
for managing dietary needs in various settings is crucial for
the success of the neuronutrition approach.

In conclusion, modifying dietary habits and supple-
menting with specific neuronutrients based on targeted
neuronutritional goals represents a promising multidis-
ciplinary strategy for promoting brain health and pre-
venting and treating neurological disorders. Finally,
exploring the use of functional foods and nutraceuticals
may offer specific benefits for individuals with ASD. By
adopting this comprehensive and individualized neuro-
nutritional approach, it is possible to improve the man-
agement of ASD symptoms and enhance the overall quality
of life of individuals with ASD. The study of neuro-
nutrition, hormetic diet, and vitagen-targeted supple-
mentation may ameliorate ASD symptoms and improve
patients’ quality of life.
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