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Abstract

Purpose — This article summarizes the brain research
progress and main research techniques of type 2 diabetes
mellitus (T2DM) combined with cognitive dysfunction in
recent years, aiming to provide new ideas for the mechanism
research and treatment of cognitive dysfunction in diabetes.
Methods - We performed a systematic literature search
using the Google Academic database and the PubMed data-
base and then preparing the manuscript.

Results — Cognitive impairment in patients with T2DM is
linked to multiple structural alterations in the brain. These
alterations encompass cerebral atrophy, vascular damage,
increased white matter hyperintensities, microbleeds, a
reduction in gray matter volume in the cerebellar cortex,
modifications to the structure of the cerebellar dentate
nucleus, and frontal cortex damage. Moreover, it may
result in neuronal apoptosis and injury, a decline in the
generation and maturation of neurons, disrupted or wea-
kened neuronal autophagy, among other consequences.
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Investigators are employing sophisticated methods such
as diffusion tensor imaging, diffusion kurtosis imaging,
resting-state functional magnetic resonance imaging, cere-
bral blood flow examinations, and voxel-based morpho-
metry to investigate these affected brain areas.
Discussion — The pathogenesis of T2DM-related cognitive
dysfunction is not fully understood. This article reviews
recent advances in the study of T2DM-related cognitive
dysfunction and highlights key research methodologies,
offering new insights into the mechanisms and potential
treatments for cognitive impairment in diabetes. This review
provides a new direction for the study of the mechanism and
treatment of cognitive dysfunction in diabetes.
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1 Introduction

Diabetes mellitus (DM) is a prevalent chronic metabolic
disease characterized by disorders of glucose metabolism.
With the rise of an aging population and changes in life-
style, the number of individuals diagnosed with diabetes
has been increasing annually, with a notable trend toward
younger onset. Data from a national study carried out from 2018
to 2019 indicate that the general occurrence of diabetes in adults
over the age of 18 stood at 12.4%. The frequency was found to be
11.5% among females and 13.3% among males [1]. The Interna-
tional Diabetes Federation calculates that globally, there are
approximately 415 million individuals living with diabetes, of
which 90% suffer from type 2 diabetes [2]. By 2045, it is projected
that the global diabetic population will reach 783 million [3].
Complications of diabetes not only damage large blood vessels
and microvessels in the heart, brain, kidney, and nervous system
but also cognitive impairment (Figure 1). This review discusses
recent advances in research on cognitive impairment associated
with diabetes. Figure 2 shows the general structure of the con-
tent of this article.

Given the significant impact of diabetic complications
on cognitive function, we will next delve into the current
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Figure 1: Elements influencing cognitive impairment in T2DM include
persistent hyperglycemia, extended duration of the disease, the exis-
tence of vascular risk elements such as hypertension and obesity, as well
as complications from both microvascular and macrovascular diseases.
These factors are linked to a higher likelihood of cognitive dysfunction in
individuals with type 2 diabetes.

research status of diabetes-related cognitive impairment
both domestically and internationally.

2 Research status domestically and
internationally

Studies have shown that approximately 60-70% of diabetic
patients experience mild to moderate cognitive dysfunc-
tion [4]. Cognitive dysfunction in diabetes, particularly in
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type 2 diabetes mellitus (T2DM), is primarily linked to
brain tissue damage, often manifested as memory and
learning difficulties. Epidemiological studies indicate
that individuals with T2DM are 60% more likely to
develop Alzheimer’s disease (AD) compared non-T2DM
individuals [5]. Recent research suggests that cognitive
impairment in T2DM is associated with insulin resis-
tance and amyloid-beta deposition [6,7] (Figure 3). The
brain changes observed in these patients include cere-
bral small vessel lesions, white matter lesions, altered
cerebral perfusion, changes in brain volume, connec-
tivity, and metabolism.

In the past few years, researchers from around the
globe have directed their attention to how alterations in
neural circuits influence motor control in individuals with
diabetes. Ferris et al. have observed that diabetes causes
harm to the sensorimotor areas of the central nervous
system, subsequently impairing key motor control path-
ways that involve the cerebral cortex, cerebellum, and
basal ganglia. They emphasize that when studying move-
ment disorders in diabetic patients, it is crucial to consider
complications in the central nervous system rather than
focusing solely on the peripheral nervous system [8]. How-
ever, due to the unclear pathogenesis of cognitive impair-
ment in diabetes, there is currently no effective treatment
for this condition [9].

In summary, current research has already revealed
the close connection between T2DM and cognitive impair-
ment, and emphasized the necessity of further exploring
its neurobiological basis. Next, we will delve into the spe-
cific structural changes in the brains of T2DM patients to
uncover their potential links to cognitive impairment.
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Figure 2: This article explores the various structural and functional changes in the brain associated with type 2 diabetes, outlines the mechanisms of
diabetic cognitive impairment through an in-depth study of advanced imaging techniques and recent findings, and highlights potential areas for

further research. Figure support was provided by Figdraw.
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Figure 3: This schematic illustration shows the interaction of different components in brain insulin resistance across the extracellular space, the cell
membrane, and the intracellular compartment. Reproduced with permission from ref. [6]. Copyright 2024, Elsevier.

3 Brain structural changes
associated with cognitive
impairment in T2DM patients

3.1 Brain atrophy and gray matter changes
in T2DM

Brain imaging studies of T2DM patients reveal several
structural changes, including brain atrophy, cerebrovas-
cular disease, and alterations in brain microstructure,
with brain atrophy being the most significantly associated
with T2DM [10]. Two MRI studies conducted over time
have revealed an accelerated pace of general brain
atrophy, especially in those with reduced cognitive abil-
ities, without a notable rise in white matter hyperinten-
sities (WMHS). Type 2 diabetes is linked to reduced gray
matter volumes, whereas white matter volumes seem to
remain largely unchanged. Furthermore, the volume of
ischemic lesions across the brain increases in individuals
with T2DM. These indicators are related to cognitive
impairments due to diabetes but do not completely
account for them [11].

Hirabayashi et al. [12] indicate that T2DM is primarily
linked to volume reduction in several regions: the tem-
poral lobe cortex (including fusiform gyrus, inferior tem-
poral gyrus, transverse temporal gyrus, superior temporal
gyrus, and entorhinal cortex), frontal lobe cortex (central
anterior gyrus, superior frontal gyrus, anterior frontal
gyrus, and lateral orbitofrontal lobe), parietal lobe cortex
(central posterior gyrus, central parietal lobule, and ante-
rior cingulate lobe), occipital lobe cortex (parietal lobe),

cingulate cortex (posterior cingulate gyrus and cingulate
gyrus), insula, and subcortical gray matter nuclei
(putamen, thalamus). These findings are consistent with
previous studies, which also reported that gray matter
atrophy is distributed across the temporal lobe, frontal
lobe, precuneus, cingulate gyrus, insula, caudate, and
putamen regions (Figure 4).

3.2 WMHs in T2DM

WMHs are high-intensity areas on MRI scans associated
with an increased risk of stroke, cognitive decline, and
depression. Identifying the risk factors for WMHs is
crucial. Beyond age and hypertension, WMH is significant
in both prediabetes and diabetes [13] (Figure 5). T2DM
patients often exhibit an abnormal increase in WMHs,
which correlates with a higher cardiovascular risk, larger
WMH volumes (indicative of white matter dysfunction),
slower processing speeds, and attention deficits [14].

3.3 Cerebral infarction and microbleeds in
T2DM patients

Studies conducted by Manschot et al. [15] and Imamine
et al. [16] indicate that stroke in individuals with T2DM is
correlated with mild cognitive deficits, specifically
affecting processing speed, attention, and executive func-
tions. Several longitudinal investigations have also demon-
strated a connection between T2DM and the occurrence of
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Figure 4: Schematic representation of the brain regions.

stroke [17,18]. Thacker et al. [19] and associates discovered
that high levels of insulin resistance and increased fasting
plasma glucose are major risk factors for stroke in people
without diabetes. Microbleeds, a type of cerebral small
vessel disease, are commonly thought to be linked to
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cognitive decline, particularly in AD. Nevertheless,

research on the association between microbleeds and
T2DM is sparse. Studies generally agree that the incidence
of microbleeds in T2DM patients does not significantly
differ from that in healthy individuals [20].

Figure 5: Illustration of manual segmentation for WMHs (total WMH volume: 1,835 mm?). (a) Axial T2-weighted FLAIR image from a study subject in
his fifth decade. (b) Segmented WMH volume is highlighted in red. The segmentation was performed using ITK-SNAP version 3.6.0. WMH refers to
white matter hyperintensity. Reproduced with permission from ref. [13]. Copyright 2021, BMJ Journals.
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3.4 Frontal cortex damage in T2DM

The frontal lobe is a key component of the cognitive control
network [21]. Cognitive control, which is primarily the
responsibility of the prefrontal cortex (PFC), is supported
by a network of interconnected PFC regions across the
brain [22]. Research indicates that cognitive deficits in
T2DM are linked to structural harm in the brain, especially
in areas crucial for cognitive regulation, like the frontal
cortex [21]. Zhang et al. reported that T2DM patients with
cognitive impairments had lower density in the medial
frontal cortex when compared to healthy individuals,
implying a connection to cognitive deterioration [23].
Chen et al. found that under conditions of high working
memory (WM) demand, a larger number of frontal lobe
regions displayed diminished activation, marking the first
study to pinpoint specific brain mechanisms associated
with WM dysfunction due to diabetes [24]. Additionally,
some studies propose that the right frontal cortex could
act as a potential imaging biomarker for the early detec-
tion of cognitive impairment in T2DM patients [25].

3.5 Neural function and signal transmission
abnormalities

3.5.1 Neuronal cell apoptosis and injury

Abnormal neuronal activity and disrupted brain network
connectivity form the neural basis of cognitive dysfunction in
T2DM patients [26]. Neuronal apoptosis and injury of neurons
are associated with several pathological processes.

3.5.1.1 Neuroinflammatory response

Prolonged exposure to high glucose levels leads to abnormal
lipid metabolism, triggering an inflammatory response and dis-
rupting homeostasis. Studies have shown that the dysfunction
of cerebellar-brain default mode network (DMN) and executive
control network (ECN) circuits in T2DM patients may contribute
to cognitive and emotional abnormalities. High glucose levels
can damage the intrinsic patterns of cerebellar-brain ECN cir-
cuits [27]. Additionally, chronic hyperglycemia increases the
levels of pro-inflammatory cytokines, causing sustained activa-
tion of microglia, which ultimately leads to neuronal damage,
apoptosis, and cognitive decline [28].

3.5.1.2 Oxidative stress (OS) response

Injury to the blood-brain barrier (BBB) caused by hyper-
glycemia induces OS in neurons, leading to the release of
reactive oxygen species (ROS) in neuronal mitochondria,
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which triggers apoptosis [29]. Excessive ROS production
leads to OS, abnormal activation of brain immune cells
(microglia and astrocytes), and the release of many inflam-
matory factors, which damage hippocampal neurons, and
contribute to cognitive dysfunction [30]. Research suggests
that stilbene glycosides may improve cognitive dysfunction
in diabetic mice by inhibiting diabetes-induced OS [31].
Gamma-aminobutyric acid in the anterior part of the
striatum bed nucleus is projected to the arcuate nucleus
to mediate the stress response [32].

3.5.1.3 Endoplasmic reticulum (ER) stress
ER stress can regulate autophagy, induce neuronal apop-
tosis, and promote cognitive impairment. In T2DM, hippo-
campal injury combined with increased ER stress triggers
the unfolded protein response, leading to increased neu-
ronal apoptosis and cognitive decline [33].

3.5.2 Reduced neurogenesis and decreased neuronal
differentiation

The number of new neurons and their ability to differentiate
are closely related to their capacity for synaptic integration,
which is crucial for proper neural circuit formation. Studies
on diabetic mice have found that within 2-3 weeks after
neurogenesis, approximately 50% of the new neurons die
as they compete for synaptic integration [34].

3.5.3 Autophagy function of neurons is decreased or
damaged

Neuronal autophagy is a common pathophysiological
mechanism in both T2DM and AD, playing a key role in
cognitive dysfunction associated with diabetes [35]. Cogni-
tive decline in T2DM is associated with autophagy dysfunc-
tion caused by abnormal autophagosome formation and
neuronal degeneration. During the early stages of dia-
betes-associated cognitive decline (DACD), the body upre-
gulates autophagy to alleviate diabetes-induced neuronal
apoptosis and inhibit cognitive decline. However, the use
of autophagy inhibitors such as 3-methyladenine can
aggravate neuronal apoptosis induced by hyperglycemia,
further worsening DACD [36].

3.5.4 Dysfunctional neural signal transmission
3.5.4.1 Abnormal synaptic transmission

Synaptic signaling is crucial for proper neural conduction.
In T2DM, hyperphosphorylated Tau protein accumulates in
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neurons, forming neurofibrillary tangles (NFTs), a hall-
mark of AD. These NFTs interfere with normal neuronal
function, leading to impaired synaptic transmission, and
disrupted neural conduction.

3.5.4.2 Neurotransmitter abnormalities

Studies have shown a significant reduction in the synthesis
and release of acetylcholine in T2DM mice, which contri-
butes to cognitive decline. Additionally, in the hippo-
campus of diabetic rat models, the expression of NMDA
receptors decreases, hindering long-term potentiation
(LTP) and leading to deficits in memory and learning [37].

3.5.5 Changes of neurons in the hippocampus

Hippocampal synaptic plasticity is the physiological foun-
dation of cognitive function. The postsynaptic glutamate-
NMDA receptor complex regulates the synaptic plasticity of
hippocampal neurons and plays a key role in the develop-
ment of LTP and long-term depression [38]. Transmission
electron microscopy studies on TIDM rats have revealed
synaptic abnormalities, including reduced synapse num-
bers, shorter active regions, wider synaptic gaps, and
fewer, smaller, and less-defined synaptic vesicles [39]. Per-
sistent hyperglycemia leads to neurotoxic effects, such as
the accumulation of advanced glycation end products,
which damage synaptic mitochondria, increase OS, and
impair hippocampal synaptic plasticity [40].

In addition to changes in brain structure, advanced
imaging techniques can also reveal brain structural altera-
tions, monitor cerebral blood flow (CBF) and metabolic
abnormalities, capture neural functional and connectivity
abnormalities, evaluate the BBB and neuroinflammation,
and conduct longitudinal tracking and mechanism verifi-
cation, thus providing key tools for revealing the neural
mechanisms of cognitive dysfunction in T2DM.

4 Technology for detecting T2DM
patients

T2DM-related cognitive dysfunction is associated with a
range of structural alterations in the brain, including
atrophy, WMHs, and frontal cortex damage, among others.
To further our understanding of these changes and their
implications for cognitive function, advanced imaging
technologies play a crucial role. These technologies not
only help visualize the structural abnormalities but also
provide insights into the functional and metabolic aspects
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of the brain. In this section, we will outline the key tech-
niques currently employed in detecting cognitive dysfunc-
tion in T2DM patients and discuss their application value.

4.1 Diffusion tensor imaging (DTI)

DTI leverages the movement of water molecules within
tissues to assess the integrity of cerebral white matter
and analyze white matter fiber bundles. A key diffusion
parameter in DTI is mean diffusivity (MD); higher MD
values indicate greater damage to white matter fiber bun-
dles [41]. Studies have shown that T2DM patients exhibit
significantly higher MD values in both cerebral hemi-
spheres, indicating white matter damage [42]. A meta-ana-
lysis identified abnormalities in ten white matter regions,
including the corpus callosum, the fibrillar genera of the
corpus callosum, the bilateral anterior radial coronary
arteries, the bilateral supra-radial coronary arteries, the
bilateral cingulate bands, and the bilateral supra-occipital
fascicles [43]. DTI provides a valuable tool for the early
detection of microstructural brain lesions in T2DM.

4.2 Diffusion kurtosis imaging (DKI)

DKI is an advanced form of DTI that measures the
deviation of water molecule diffusion from a Gaussian dis-
tribution. DKI offers a more precise analysis of tissue
microstructures of tissues, including both white and grey
matter, compared to traditional DTI [44]. In T2DM patients,
DKI studies have detected microstructural abnormalities in
cerebral white matter even before cognitive decline
becomes apparent [45].

4.3 Resting-state functional magnetic
resonance imaging (rs-fMRI)

rs-fMRI tracks brain function by assessing blood oxygen
level-dependent signals during a state of rest in the patient
[46]. This method has gained extensive use in investigating
the neuropathological substrates contributing to cognitive
decline in T2DM.

Investigations using rs-fMRI have zeroed in on the
DMN, which comprises critical brain structures such as
the medial PFC, posterior cingulate gyrus, precuneus,
sub-parietal lobule, lateral temporal cortex, and hippo-
campus. Studies have observed that T2DM patients experi-
encing mild cognitive impairment exhibit a reduction in
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Figure 6: Map depicting the probability of gray matter atrophy due to T2DM. The highlighted voxels represent the brain regions where gray matter
atrophy is most probable as a result of T2DM, ranging from a false discovery rate of P < 0.001 (depicted in orange) to P < 0.0001 (depicted in yellow). A
comprehensive list of these areas can be found in Table S1. (a) Inferior area, (b) temporal area, (c) medial area, and (d) superior area. Reproduced with

permission from ref. [53]. Copyright 2013, Diabetes Care.

functional connectivity within various DMN areas,
including the right superior temporal gyrus, right middle
temporal gyrus, left angular gyrus, left supramarginal
gyrus, and the hippocampus, when compared to those
without the condition [47,48]. These observations imply
that disturbances in DMN connectivity are correlated
with cognitive deficits in T2DM, shedding light on the neu-
ropathological mechanisms at work.

4.4 CBF studies

CBF quantifies tissue blood perfusion and reflects changes
in cerebral hemodynamic, which are regulated by the

neurovascular unit to maintain normal neuronal function.
Altered CBF can cause neuronal damage and apoptosis
[49]. Research indicates that T2DM patients experience
inadequate perfusion in brain regions [50] such as the
occipital lobe, DMN-related domains, and cerebellum,
which may contribute to cognitive dysfunction [51].

4.5 Voxel-based morphometry (VBM) studies

VBM, introduced in 1995, is a technique for measuring
structural brain changes, initially used in schizophrenia
research [52]. Over time, VBM has been refined and is
now commonly used to analyze gray matter in various
brain disorders due to objectivity and high reproducibility.

Table 1: Associations between T2DM and MRI measures. Reproduced with permission from ref. [53]. Copyright 2013, Diabetes Care. Supplementary

information for Table 1 can be found in the Supplementary Material

MRI measures T2DM (n = 350) No T2DM (n = 363)

Association of T2DM with MRI P value for regression

Gray matter volume (mL) 579.9 (66.9) 583.4 (63.1)
Right hippocampal volume (mL)  2.32 (0.47) 2.77 (0.50)
Left hippocampal volume (mL) 2.22 (0.44) 2.61(0.48)
Total hippocampal volume (mL)  4.54 (0.86) 5.38 (0.91)
White matter volume (mL) 454.8 (62.1) 456.1 (55.5)
White matter lesion volume (mL) 6.04 (6.99) 7.10 (8.0)
Infarct yes/no (%)é"b 75 (21) 58 (16)
Microbleed yes/no (%)° 14 (4) 22 (6)

measures’

-13.1 (-18.7 to -7.6) <0.001
—0.47 (-0.54 to -0.40) <0.001
-0.41 (-0.48 to —0.34) <0.001
-0.88 (-1.01 to —0.75) <0.001
-6.14 (-11.9 to -0.42) 0.05
0.59 (-0.54 to 1.71) 0.32
0.62 (0.21 to 1.04) 0.001
—0.25 (-0.97 to 0.46) 0.41

Data are mean (SD) and B (95% CI). 'Adjusted for age, sex, and total intracranial volume. ®Not adjusted for total intracranial volume. ®Not adjusted for

stroke history.
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Extensive research has demonstrated that individuals
with T2DM exhibit a decrease in gray matter volume,
notably in the medial temporal lobe, medial frontal lobe,
and anterior cingulate gyrus, alongside a reduction in
white matter in the frontotemporal regions [53] (Figure 6
and Table 1). The atrophy observed in the hippocampal
area of T2DM patients is directly proportional to the extent
of whole-brain atrophy and may be associated with cogni-
tive decline [54]. Studies using VBM have revealed that a
decrease in gray matter density within the brain could be
an early sign of impending cognitive impairment in those
with T2DM [55].

5 Conclusions

The incidence of DM with cognitive dysfunction is on the
rise, often progressing to dementia, which causes signifi-
cant suffering for patients and their families. This
highlights the urgent need for more in-depth research to
identify ways to prevent or delay the onset of cognitive
dysfunction in DM patients. While brain atrophy has
been closely linked to cognitive dysfunction in T2DM, the
precise mechanisms remain unclear.

The pathogenesis of T2DM-related cognitive dysfunc-
tion is not yet fully understood, and neuroimaging studies
exploring changes in brain neural circuits in T2DM cogni-
tive dysfunction are still in their early stages. Some studies
have produced conflicting results, indicating the need for
further investigation. However, these findings lay the foun-
dation for more extensive and comprehensive future
research on T2DM with cognitive dysfunction. Further stu-
dies into the specific mechanisms of brain microstructure
damage caused by T2DM-related cognitive dysfunction
could lead to earlier interventions and improved quality
of life of these patients.
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