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Abstract
Background ‒ Sepsis-associated encephalopathy (SAE) is
a complex neurological complication of sepsis involving acti-
vation of microglia in the central nervous system (CNS),
blood–brain barrier (BBB) dysfunction, neurotransmitter
dysfunction, impaired brain metabolism, and mitochondrial
dysfunction. Neuroinflammation is a critical component of
the pathogenesis. The phosphatidylinositol 3-kinase/protein
kinase B (PI3K/Akt) signaling pathway, as a key intracellular
signaling pathway, plays a crucial role in regulating neuro-
inflammation, maintaining the integrity of the BBB, and
promoting neuronal cell survival.
Objective ‒ This review aims to summarize the role of the
PI3K/Akt pathway in SAE-associated neuroinflammation
and highlights potential therapeutic targets and strategies
for its management.
Methods ‒ We systematically reviewed recent basic and
clinical studies on PI3K/Akt signaling pathway in neuro-
inflammation associated with SAE, as well as the develop-
ment of pathway-specific agonists and inhibitors.
Results ‒ The PI3K/Akt pathway serves as a crucial intra-
cellular signaling axis involved in the regulation of neuroinflam-
matory processes. Accumulating evidence indicates that targeted
modulation of this pathway may alleviate neuroinflammation
associated with SAE and enhance neurological recovery.
Conclusion ‒ Targeting the PI3K/Akt pathway represents
a promising therapeutic approach for SAE. Advances in the
development of specific agonists and inhibitors provide
new opportunities for clinical translation and drug dis-
covery in neuroinflammatory conditions.

Keywords: sepsis-associated encephalopathy, PI3K/Akt
pathway, neuroinflammation, blood–brain barrier, cog-
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1 Introduction

Sepsis is a systemic inflammatory response syndrome
(SIRS) caused by infection, characterized by dysregulation
of the body’s immune response to infection. It is one of the
key causes of death in critically ill patients in the intensive
care unit [1]. Among these, sepsis-associated encephalo-
pathy (SAE) is one of the most common complications of
sepsis, with an incidence rate as high as 70% [2], which
significantly increases the morbidity and mortality rate
and diminishes the quality of life of the patients [3,4].
The pathogenesis of SAE is complex and multifactorial,
with contributing key factors including activation of micro-
glia in the central nervous system (CNS), blood–brain
barrier (BBB) dysfunction, brain edema, neurotransmitter
dysfunction, impaired brain metabolism, and mitochon-
drial dysfunction [5–8]. Additional mechanisms, such as
the accumulation of amyloid-β and tau proteins, activation
of the complement system, and direct neuronal injury, may
also contribute to the development of SAE [9]. Overall, SAE
results from the synergistic effects of multiple factors,
rather than a single cause. Among these, neuroinflamma-
tion has been shown to play a crucial role throughout the
SAE process and is closely associated with prognosis.

Neuroinflammation is an immune response activated
by microglia and astrocytes in the CNS, usually occurring
in response to CNS injury, infection, toxin stimulation,
or autoimmunity [9]. Systemic inflammation induced by
sepsis is mediated by the excessive release of proinflam-
matory cytokines – such as interleukin-1β (IL-1β), tumor
necrosis factor-α (TNF-α), and interleukin-6 (IL-6) – which
increases the permeability of the BBB, thereby facilitating
inflammatory factors to enter the brain and trigger an
inflammatory response in the CNS. The sustained inflam-
matory response disrupts the BBB and facilitates the infil-
tration of peripheral immune cells. This exacerbates CNS
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injury, leading to neuronal damage [10,11], demyelination
[12], impaired regeneration [13], and synaptic dysfunction.

Among the numerous molecular pathways implicated
in neuroinflammation, the phosphatidylinositol 3-kinase/
protein kinase B (PI3K/Akt) signaling pathway has been
extensively studied for its involvement in various physiolo-
gical processes within the CNS, including cell survival,
autophagy, neurogenesis, neuronal proliferation and differ-
entiation, synaptic plasticity, anti-apoptosis, anti-oxidative
stress, and neural repair [9,14]. Recently, several studies
have confirmed that this pathway is closely related to the
development of neurological diseases and plays an impor-
tant role inmodulating various pathological changes [15–17].

Based on the roles of neuroinflammation and PI3K/Akt
pathway activation in the pathogenesis of SAE, this article
aims to elucidate their specific roles and interrelationships
in SAE development. The following sections will comprehen-
sively describe the neuroinflammation triggered by sepsis,
the underlying mechanisms of the PI3K/Akt pathway, its role
in SAE, and the potential treatment of SAE through targeting
the PI3K/Akt pathway.

2 Sepsis-induced
neuroinflammation

The presence of neuroinflammation in SAE has been clearly
demonstrated [18,19]. Autopsy studies of patients who died
from sepsis revealed significantly increased expression of
markers associated with acute neuroinflammation, sug-
gesting that neuroinflammation may play a critical role in
the progression of SAE [20]. While infection does not occur
directly in the brain, peripheral inflammatory signals can
trigger widespread neuroinflammation through both neu-
ronal and humoral pathways [21]. Neuroinflammation is
initiated by multiple biological mechanisms, including
immune responses, oxidative stress, the release of inflamma-
tory mediators, and damage to the BBB. Although neuroin-
flammation can initially have a protective effect, prolonged
or excessive inflammation can result in neural tissue damage.

Neuroinflammatory responses can be classified into
two categories: secondary inflammatory responses induced
by peripheral immune cells and primary inflammatory
responses triggered by resident immune cells. Initially,
during sepsis, pathogens or their associated toxins – such
as lipopolysaccharide (LPS) – stimulate the host immune
system, leading to an exaggerated inflammatory response
and the subsequent development of SIRS. These peripheral
inflammatory signals affect the CNS through two main

pathways: humoral and neuronal. Through the humoral
pathway, elevated circulating pro-inflammatory factors
(TNF-α, IL-1β, and IL-6) enter the brain via the disrupted
BBB and directly activate CNS inflammation. In a septic
environment, the intense secretion of inflammatory factors
and chemokines recruits peripheral immune cells, such as
neutrophils and macrophages, to the brain, thereby exacer-
bating neuronal damage [22,23]. Neuroinflammation can
also be amplified through neurotransmission, with the
vagus nerve upregulating pro-inflammatory gene expres-
sion by transmitting signals to the nucleus tractus solitarius
of the medulla oblongata [24]. This central-peripheral
inflammation cascade amplifies the inflammatory response.
In sepsis, microglia become hyperactivated, releasing large
amounts of pro-inflammatory cytokines (TNF-α, IL-1β) and
chemokines (MCP-1). Overactivated microglia induce apop-
tosis and synaptic damage in neurons, stimulate reactive
oxygen species (ROS) production [25], and further trigger
oxidative stress and inflammatory cascades. Astrocytes are
also activated [26], and synergize with microglia to exacer-
bate the inflammatory response. This includes breaking
down matrix components in the BBB, leading to barrier
disruption, and secreting large quantities of inflammatory
factors (IL-6), which promote the spread of inflammation.
Cytokines and chemokines also disrupt the integrity of the
BBB by affecting the expression of tight junction proteins
(Claudin, Occludin) [22,23,27]. The sepsis-induced immune
response produces an abundance of pro-inflammatory fac-
tors (TNF-α, IL-1β), which bind to specific receptors and
activate apoptotic signaling pathways such as Fas and Cas-
pase [28,29]. This activation ultimately leads to neuronal and
glial cell death, causing further damage to the nervous
system. Additionally, activated inflammatory mediators
and immune cells generate ROS and reactive nitrogen spe-
cies, leading to increased oxidative damage [30,31]. These
free radicals damage cell membranes, proteins, and DNA,
which further contribute to neuronal dysfunction, apoptosis,
and long-term neurological impairment. Sepsis-induced oxi-
dative stress also disrupts mitochondrial function, compro-
mising the cellular energy supply. Mitochondrial damage
exacerbates neuronal apoptosis and creates a vicious cycle
by releasing cytokines and activating neuroinflammatory
pathways [32].

3 PI3K/Akt pathway and its role in
brain tissue

The PI3K/Akt signaling pathway consists of two main com-
ponents: phosphatidylinositol 3 (PI3K) and its downstream
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serine/threonine protein kinase B (PKB, also known as
Akt). PI3K is a class of intracellular lipid kinases, classified
into types I, II, or III based on substrate specificity and
sequence homology [33,34]. Akt is a proto-oncogene pro-
duct that, upon activation, modulates a variety of down-
stream signaling molecules, including mammalian target
of rapamycin (mTOR) [35] and glycogen synthase kinase-3
(GSK-3) [36], among others.

The PI3K/Akt signaling pathway is a central intracel-
lular regulatory network involved in diverse biological pro-
cesses, including cell survival, proliferation, metabolism,
protein synthesis, immune regulation, and stress responses.
By promoting proliferation, inhibiting apoptosis, and enhan-
cing cell survival, this pathway plays a critical role in tumor-
igenesis and has emerged as a prominent target for cancer
therapy [37–39]. Akt, a key effector of the PI3K/Akt pathway,
regulates glucose and lipid metabolism, as well as cell differ-
entiation and growth [40], and holds therapeutic potential
for diabetes and metabolic disorders. The PI3K/Akt/mTOR
pathway also plays a critical role in bone and joint diseases,
such as osteoarthritis [41], and in erythroid hematopoiesis
[40], suggesting its potential as a novel therapeutic target. In
neurological disorders, the PI3K/Akt pathway regulates neu-
ronal survival, mitigates inflammation, preserves BBB integ-
rity, and exerts neuroprotective effects in conditions such as
Alzheimer’s and Parkinson’s diseases [42,43]. Thus, the PI3K/
Akt pathway holds broad clinical potential across various
diseases, including cancer, metabolic disorders, neurological
conditions, and osteoarticular diseases.

In normal brain tissues, the PI3K/Akt signaling
pathway plays a crucial role in neuronal survival, synaptic
plasticity, energy metabolism, BBB integrity, and neurode-
velopment [44]. The activation of this pathway depends on
upstream ligands such as derived brain-derived neuro-
trophic factor (BDNF) and insulin-like growth factor 1
(IGF-1), and mediates multiple regulatory effects on neu-
ronal anti-apoptosis, resistance to oxidative stress, synaptic
plasticity, and energy metabolism through downstream
targets including mTOR, GSK-3β, and cAMP response ele-
ment-binding protein 2 [45]. For example, Akt inhibits the
mitochondrial apoptotic pathway by phosphorylating pro-
apoptotic proteins such as BAD and Caspase-9, thereby
preventing premature neuronal apoptosis and contri-
buting to the maintenance of the functional integrity of
brain tissue [46]. Akt exerts antioxidant effects by acti-
vating the Nrf2 pathway and scavenging ROS [47]. It also
activates mTOR-dependent protein synthesis to support
dendritic spine formation and long-term potentiation
(LTP) [47], and promotes the membrane translocation of
the glucose transporter GLUT4 to enhance neuronal glu-
cose uptake. In addition, Akt plays a key role in stabilizing

the intracerebral microenvironment by maintaining the
expression of endothelial tight junction proteins, such as
Zonula Cccludens-1 (ZO-1), at the BBB [48].

However, in the pathological state of SAE, the systemic
inflammatory response and oxidative stress lead to inhibi-
tion of the PI3K/Akt signaling pathway. Proinflammatory
cytokines, such as TNF-α and IL-1β, released during sepsis
indirectly suppress the activity of the PI3K catalytic subunit
p110 via activation of the nuclear factor kappa B (NF-κB)
pathway [25]. Simultaneously, excessive ROS promote the
conversion of phosphatidylinositol (3,4,5)-trisphosphate
(PIP3) to phosphatidylinositol 4,5-bisphosphate (PIP2) by
activating the lipid phosphatase PTEN, a negative regulator
of PI3K, thereby impairing Akt membrane localization and
phosphorylation [49]. Mitochondrial dysfunction further
exacerbates energy metabolism disorders and reduces the
efficiency of Akt activation [25]. Akt inactivation results in
the dephosphorylation of BAD, which in turn activates Bax/
Bak-mediated mitochondrial cytochrome c release and trig-
gers the caspase cascade, ultimately enhancing neuronal
apoptosis. Additionally, GSK-3β disinhibition leads to Tau
protein hyperphosphorylation, promoting the formation of
neurofibrillary tangles and downregulating the expression
of synapse-associated proteins such as PSD-95, contributing
to synaptic damage [50]. Decreased Akt activity in endothe-
lial cells also compromises tight junction integrity, aggra-
vating brain edema and neuroinflammation.

In summary, the PI3K/Akt pathway plays a critical role
in maintaining CNS homeostasis under normal conditions.
However, in SAE, its expression and activity are markedly
altered, resulting in the loss of its original protective func-
tions and, in some cases, contributing to disease progres-
sion. Comparing the dynamic changes of this pathway
between physiological and pathological states may help
elucidate its role in SAE pathogenesis and provide a theo-
retical foundation for targeted therapeutic interventions.
(Figure 1).

4 PI3K/Akt pathway and
neuroinflammation in SAE

As discussed previously, sepsis-induced neuroinflamma-
tion is a core pathogenic mechanism of SAE. Within the
pathophysiological framework of SAE, the PI3K/Akt
pathway plays a dual regulatory role in both CNS injury
and neuroprotection. It does so by modulating the expres-
sion of neuroinflammatory factors, regulating microglial
activation, maintaining the integrity of the BBB, and con-
trolling neuronal apoptosis. The PI3K/Akt pathway is a
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classical signaling cascade that regulates neuronal survival
and neurogenesis, making it a crucial player in the pro-
gression and potential treatment of SAE [40,51]. In the CLP
mouse model, protein expression levels of PI3K and Akt in
hippocampal tissues were significantly decreased [52–54],
whereas activation of the PI3K/Akt pathway attenuated
SAE-related damage [52–57].

4.1 Regulation of inflammatory factors

The PI3K/Akt pathway suppresses the excessive release of
pro-inflammatory cytokines during sepsis through multiple
mechanisms. First, it initiates a negative feedback regula-
tory loop that significantly reduces the overexpression and
secretion of pro-inflammatory cytokines, including TNF-α,
IL-1β, and IL-6 [58–60]. Second, the pathway upregulates
the expression of anti-inflammatory mediators, such as
IL-10, which subsequently inhibits pro-inflammatory cyto-
kine production via paracrine signaling [58]. Additionally,
the PI3K/Akt pathway inhibits the activation and nuclear
translocation of NF-κB, further modulating inflammation
[61]. It also contributes to the regulation of the Th1/Th2 cyto-
kine balance [62], thereby attenuating the inflammatory cas-
cade. Clinical studies have confirmed that pharmacological
agents like dexmedetomidine [63] and metformin [64] can

activate the PI3K/Akt pathway, inhibiting pro-inflammatory
cytokine release and improving sepsis-associated brain and
lung injury.

4.2 Regulation of microglia polarization

The PI3K/Akt signaling pathway plays a crucial role in reg-
ulating microglia polarization. It modulates microglial
M1/M2 polarization by influencing multiple signaling path-
ways [65], including NF-κB [66] and chemokine receptor
CXCR7 [67], which promote the transformation of microglia
to the M2 phenotype and enhance their anti-inflammatory
properties. M2-polarized microglia secrete anti-inflamma-
tory cytokines, such as IL-10 and TGF-β [68], thereby redu-
cing the neuroinflammatory response. Agents like treti-
noin and curcumin have been demonstrated to inhibit
the activation of pro-inflammatory M1 microglia while pro-
moting the anti-inflammatory properties of M2 microglia,
presumably via activation of the PI3K/Akt pathway [69].
Furthermore, the PI3K/Akt pathway indirectly regulates
microglial inflammation by modulating the neuron-
derived BDNF-PI3K/Akt signaling axis [70,71]. Akt increases
the secretion of BDNF from neurons by enhancing vesi-
cular transport, which in turn strengthens the inhibitory
effect of neurons on microglial inflammation. Compounds

Figure 1: Differences in PI3K/Akt pathway in normal brain tissue and SAE conditions. ROS: reactive oxygen species.
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like pineoside [72] and paeoniflorin [72] regulate the BDNF-
PI3K/Akt axis, achieving a balanced regulation of microglia
M1/M2 polarization and alleviating neuroinflammatory
disorders such as SAE.

4.3 Maintenance of BBB integrity

The PI3K/Akt pathway plays a crucial role in maintaining
the integrity of the BBB. Akt regulates the expression of
tight junction proteins, such as Claudin, Occludin, and ZO-1,
through the activation of the PI3K/Akt pathway, thereby
preserving BBB structural integrity [73,74]. Chen et al.
[75] demonstrated in an in vitro BBB model that activation
of the PI3K/Akt pathway enhances the transcription and
translation of tight junction proteins, resulting in
decreased permeability of endothelial cell monolayers.
Wang et al. [76] found that in a murine model of sepsis
treatment with a PI3K-selective agonist significantly
increased the expression of tight junction proteins in brain
microvascular endothelial cells. Additionally, the PI3K/Akt
pathway inhibits the TNF-α- and IL-1β-induced expression
of matrix metalloproteinases, thereby reducing extracel-
lular matrix degradation and protecting the BBB structure
[77]. Zhi et al. [78] observed that selective PI3K agonist
treatment significantly reduced levels of S100β and
neuron-specific enolase in the cerebrospinal fluid of sepsis
patients, along with other markers of BBB damage, and
improved neurocognitive function scores. Gong et al. [79]
reported that combined administration of a PI3K agonist
and an anti-inflammatory agent significantly reduced the
morbidity and mortality of patients with SAE, and the
levels of tight junction protein degradation products,
such as Occludin and Claudin-5 fragments, were notably
lower in the peripheral blood of treated patients. This sug-
gests that the combination regimen may exert neuropro-
tective effects by preserving BBB integrity.

4.4 Regulation of neuronal apoptosis

Neuronal apoptosis is a key pathological feature in sepsis-
induced neuroinflammation, with its regulatory mechanisms
linked to the PI3K/Akt pathway. First, the PI3K/Akt pathway
inhibits neuronal apoptosis by regulating several down-
stream effector molecules. Activated Akt effectively blocks
Bad-induced apoptosis by phosphorylating Bad at the
Ser136 site, preventing its binding to Bcl-2. Additionally,
the pathway upregulates the nuclear translocation of the

antioxidant-related transcription factor Nrf2, which increases
the expression of superoxide dismutase and catalase, thereby
reducing oxidative stress-induced neuronal injury. Puerarin
has been shown to reduce neuronal apoptosis by inhibiting
oxidative stress through the PI3K/Akt/Nrf2 pathway [80].
Furthermore, the PI3K/Akt pathway promotes neural repair
and regeneration. Akt-mTOR signaling enhances myelin
sheath growth and stability during development by
driving cap-dependent translation to facilitate myelin for-
mation [81]. It has also been demonstrated that resvera-
trol can activate PI3K/Akt signaling to promote axonal
regeneration and neurological recovery. Additionally,
the PI3K/Akt pathway may play a role in regulating
synaptic plasticity by modulating the reorganization of
post-synaptic proteins, such as PSD-95 [82], and influences
synaptic transmission efficiency as well as LTP [83]. More-
over, novel PI3K agonists have shown promising neuropro-
tective effects in animal models, providing new intervention
targets for the treatment of SAE [84].

4.5 Discovery of new molecules

In recent years, several novel molecules have been identi-
fied as regulators of the PI3K/Akt pathway, with significant
effects on the development and progression of SAE. Protein
kinase N2 (PKN2), in particular, exerts a broad range of
regulatory effects on the PI3K/Akt signaling pathway
through mechanisms such as direct phosphorylation, mod-
ulation of membrane localization, and catalytic activity.
PKN2 can directly phosphorylate the p85 regulatory sub-
unit of PI3K [85], inducing a conformational change that
alters its interactions with other signaling molecules.
Furthermore, PKN2 affects the membrane localization of
PI3K, thereby modulating its enzymatic activity [85]. Wang
et al. [86] demonstrated that PKN2 overexpression acti-
vated the mTOR pathway in PC12 cells, reducing H2O2-
induced oxidative damage and apoptosis. Additionally,
PKN2 modulates Akt activity by phosphorylating its
Ser473 site [87], a key step in regulating the function of
Akt within the PI3K/Akt pathway. By phosphorylating Akt
at this critical site, PKN2 influences the activity and sub-
strate specificity of Akt, thereby affecting downstream sig-
naling processes. In addition, PKN2 may play a role in
regulating the integrity of the BBB [88]. Bai et al. [89] found
that H2 alleviates septic brain injury by activating PKN2
phosphorylation, which is associated with the PI3K
pathway. While PKN2 exerts a broad range of regulatory
effects on the PI3K/Akt signaling pathway, there are cur-
rently fewer studies focusing on its role in septic
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encephalopathy. This presents an opportunity for future,
more in-depth research. PTEN, as a negative regulator of
the PI3K/Akt pathway, inhibits AKT activation by depho-
sphorylating PIP3 and converting it to PIP2 [90]. This action
helps maintain normal neuronal function and survival,
protecting against neuronal injury caused by dysregulated
signaling. Furthermore, the signaling between PTEN-
induced kinase 1 (PINK1) and the Parkin pathway is crucial
in SAE. High expression of PINK1 can activate mitochon-
drial autophagy through up-regulation of Parkin, which
reduces inflammatory responses, preventing neuroinflam-
mation and alleviating cognitive impairments in SAE mice.
In the absence of PINK1, there is a suppression of Ca2+

transients in the hippocampus, leading to elevated intra-
cellular Ca2+ levels, which exacerbate sepsis-induced cog-
nitive dysfunction in mice, highlighting the vital role of
PINK1 in maintaining neuronal stability [91]. Girdin can
inhibit the production of pro-inflammatory cytokines, pro-
mote neuronal survival, and prevent apoptosis by regu-
lating the activation of the PI3K/Akt pathway, thereby
alleviating neuroinflammation [92,93]. Phosphorylated Girdin
enhances the activity of intracellular anti-apoptotic factors,
such as Bcl-2 and mTOR, which reduce programmed cell
death [94]. Additionally, Girdin regulates microglial activa-
tion, as overactivation of microglia exacerbates the neuroin-
flammatory response. Rheb (Ras homolog enriched in
brain), a small GTP-binding protein, plays a key role in the
PI3K/Akt/mTOR signaling pathway by directly activating
mTOR, which is crucial for neuroprotection. In an LPS-
induced neuroinflammation model, upregulation of Rheb
was linked to astrocyte proliferation and neuronal apoptosis
[95]. The Rheb-mTOR signaling pathway contributes to neu-
roinflammation-induced astrocyte activation and neuronal
apoptosis through cell cycle activation [96]. Moreover, spe-
cific overexpression of Rheb in retinal ganglion cells signifi-
cantly reduced cell death and effectively induced axonal
regeneration [97], suggesting that Rheb promotes neural
repair, potentially alleviating sepsis-induced neuroinflam-
mation. Additionally, BAG3 is involved in regulating Akt
downstream targets like mTORC1, affecting cellular autop-
hagy processes. BAG3 forms a complex with CHIP (C-ter-
minus of Hsc70 interacting protein) [98], which facilitates
the ubiquitination and degradation of key inhibitors nega-
tively regulating PI3K/Akt signaling, such as phosphatase
and Tensin homolog deleted on chromosome 10 (PTEN),
thereby positively regulating this pathway. Bcl-2-associated
athanogene 3 (BAG3) also plays a protective role in sepsis-
induced acute kidney injury (AKI), and studies have shown
that sevelamer sodium can attenuate AKI in a rat sepsis
model through inhibition of the PI3K/Akt pathway, with
BAG3 involved in this protective mechanism. Although there

are currently fewer studies directly examining these mole-
cules in SAE, they play critical roles in the PI3K/Akt signaling
pathway, which is integral to SAE pathogenesis. Future
research should focus on how these molecules specifically
contribute to SAE and whether they can be targeted for
effective therapeutic interventions, potentially offering
more effective treatments for patients with SAE (Figure 2).

5 Therapeutic potential of PI3K/Akt
pathway modulators

IGF-1 attenuates the inflammatory response and amelio-
rates SAE by activating the PI3K/Akt pathway. Treatment
with recombinant human IGF-1 significantly reduced
serum levels of IL-1β, TNF-α, and IL-6 in patients with
SAE, while also improving the Glasgow Coma Score
(GCS), strengthening BBB integrity, reducing neuroinflam-
mation, and enhancing cognitive function [99,100]. BDNF
activates the PI3K/Akt signaling pathway through the TrkB
receptor, upregulates the expression of the anti-apoptotic
protein Bcl-2, and promotes the expression of synaptic
plasticity-associated proteins (PSD95) [101,102]. BDNF has
been shown to significantly ameliorate memory deficits
in a mouse model of sepsis and reduce the expression of
pro-inflammatory cytokines in the CNS. Several studies
have shown that various naturally active compounds exert
neuroprotective effects by modulating the PI3K/Akt sig-
naling pathway. Curcumin significantly increased the level
of phosphorylated Akt in neurons (the p-Akt/Akt ratio
increased 2.1-fold), promoting the nuclear translocation
of Nrf2 and enhancing cellular resistance to oxidative
stress [103]. Resveratrol significantly reduced the volume
of cerebral infarcts and neurological damage scores in cer-
ebral ischemia/reperfusion rats, significantly lowering
levels of myeloperoxidase, TNF-α, and upregulating p-Akt
expression. The use of Akt inhibitors blocked the effects of
resveratrol. Resveratrol was also shown to reduce neu-
ronal apoptosis, as evidenced by an increase in the Bcl-2/
Bax ratio and a decrease in the number of TUNEL-positive
apoptotic cells [104]. Additionally, quercetin and rhodiola
rosea glycosides synergistically activate PI3K/Akt down-
stream targets, significantly reducing pro-inflammatory
factors and improving cognitive function [105,106]. Olea-
nolic acid [107] and dihydromyricetin (DHM) [108] inhibit
oxidative stress through activation of the PI3K/Akt
pathway, thereby exerting neuroprotective effects. Based
on their role in other neuroinflammatory diseases, these
natural compounds may have important therapeutic
potential in SAE. In cases of overactivated PI3K/Akt
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signaling, the PI3K-selective inhibitor LY294002 exerts a
bidirectional modulatory effect, reducing inflammatory
responses and neurotoxicity [104,109]. However, the tar-
gets of PI3K inhibitors need to be carefully selected to avoid
inhibiting neuroprotective effects.

Several PI3K inhibitors have been developed for tumor
therapy, such as PI-103, BKM120, and GDC-0941 [110,111].
These inhibitors block tumor cell proliferation and sur-
vival by targeting key nodes of the PI3K/Akt pathway,
including PI3K, Akt, and mTOR. Some PI3K inhibitors
have been approved for the treatment of specific hemato-
logic malignancies. For example, Linperlisib, the first
highly selective PI3Kδ inhibitor marketed in China, has
been approved for the treatment of relapsed and/or refrac-
tory follicular lymphoma (FL), demonstrating significant
clinical efficacy and good tolerability [112]. In addition,
Duvelisib [113], a dual PI3Kδ and PI3Kγ inhibitor, has also
been approved by the FDA for the treatment of adult
patients with relapsed/refractory chronic lymphocytic

leukemia (CLL), small lymphocytic lymphoma (SLL), and
FL who have received at least two prior therapies.
Although these drugs have shown effectiveness in treating
specific types of hematologic malignancies, their potential
application in neuroinflammatory and neurological disor-
ders requires further research and exploration. Although
most compounds targeting the PI3K/Akt pathway – such as
estrogen [114], resveratrol, curcumin [115], GDC-0941, duve-
lisib, and leniolisib [112] – have already entered clinical
trials for other diseases (oncology, metabolic disorders,
and neurodegenerative diseases), their clinical application
in sepsis, especially SAE, remains largely unexplored or is
still in its infancy. This suggests that, in the future, com-
pounds with established clinical safety profiles could be
prioritized for translational research in SAE, particularly
through the use of animal models to verify their target
specificity and neuroprotective efficacy (Table 1).

Figure 2: Inflammatory signaling regulates SAE through the PI3K/Akt pathway. PAMPs: pathogen-associated molecular patterns; DAMPS: damage-
associated molecular patterns; LTA: lipoteichoic acid; NTS: nucleus tractus solitarius; BBB: blood–brain barrier.
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6 Conclusion

Neuroinflammation is a key contributor to the pathogen-
esis of SAE, leading to CNS injury and adversely affecting
cognitive function and patient survival. The underlying
mechanisms primarily involve the activation of microglia
and astrocytes, the release of pro-inflammatory cytokines
and chemokines, disruption of the BBB structure,
increased oxidative stress, and mitochondrial dysfunction.
Among the numerous signaling pathways implicated in
SAE, the PI3K/Akt pathway has emerged as a central reg-
ulator. This pathway plays a pivotal role in modulating
neuroinflammatory responses, preserving BBB integrity,
and promoting neuronal survival. Several studies have
demonstrated that activation of the PI3K/Akt pathway by
specific compounds can attenuate inflammation and neu-
ronal damage, thereby alleviating SAE-related symptoms.
However, the majority of these findings remain at the pre-
clinical stage, and no PI3K/Akt-targeted agents have yet
demonstrated clinical efficacy in SAE treatment.

As mentioned above, the PI3K/Akt signaling pathway
plays a key role in regulating neuroinflammation, apop-
tosis, and BBB function, and holds great promise for clin-
ical application. Activation of this pathway can reduce
brain tissue damage and improve cognitive function,
making it applicable to a variety of neurological diseases,
including SAE. In addition, the PI3K/Akt pathway is closely
related to immune system homeostasis. Moderate activa-
tion of this pathway can inhibit excessive immune
responses and reduce systemic inflammation, which is par-
ticularly important in SAE, a condition characterized by a
pathological “inflammatory storm.” Currently, several
drugs targeting this pathway have entered clinical trials
for oncology and metabolic diseases and have demonstrated
favorable safety profiles. As a potential therapeutic target,
the PI3K/Akt pathway is expected to offer a novel interven-
tion strategy for diseases such as SAE in the future.

Despite these advances, several critical knowledge
gaps remain. The PI3K family comprises multiple isoforms
– PI3Kα, PI3Kγ, and PI3Kδ – each with distinct cellular
distribution and functions. For example, PI3Kγ, as a central
driver of microglial inflammatory responses, promotes M1-
type polarization through the activation of chemokine
receptors (the CXCL12–CXCR4 axis), thereby inducing
NLRP3 inflammasome activation and the infiltration of
peripheral immune cells into the brain [118]. PI3Kα, on
the one hand, maintains neuronal metabolism and anti-
apoptotic functions via the Akt/mTOR pathway [119]; on
the other hand, its overactivation may exacerbate mito-
chondrial autophagy disorders due to oxidative stress

[120]. Current research on the roles of these isoforms in
SAE is limited, fragmented, and lacks systematic compar-
ison and precise localization. Moreover, most studies have
been conducted in acute animal models or in vitro systems,
and their clinical relevance and translational potential
remain to be validated. Notably, the PI3K/Akt pathway is
intricately linked with multiple other signaling cascades –
including MAPK, JAK/STAT, NF-κB, mTOR, and NLRP3 –

which can induce diverse, and sometimes opposing, biolo-
gical outcomes. This complexity makes it challenging to
predict the net effect of pathway activation or inhibition
in the inflammatory milieu of SAE.

Future studies should aim to delineate the cell-type-
specific and stage-specific roles of individual PI3K isoforms
during SAE progression and evaluate their potential as
therapeutic targets in terms of efficacy and safety.
Additionally, integrating single-cell transcriptomics and
multi-omics approaches may provide insights into the
dynamic crosstalk between the PI3K/Akt pathway and
other signaling networks. On this basis, the development
of selective, brain-targeted PI3K modulators, and the inves-
tigation of combination therapies – such as anti-inflamma-
tory agents paired with BBB-protective compounds – may
accelerate the translation of preclinical findings into clini-
cally viable interventions for SAE.
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