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Abstract

Background — Cancer stemness, hypoxia, and glycolysis
collectively influence colorectal cancer (CRC) progression.
However, the intricate relationships among these factors
remain incompletely understood.

Methods - This study (1) explored hypoxia and glycolysis-
related genes (HGRGs) in CRC by mRNA stemness index
(mRNAsi), analyzed the gene expression profiles from
Gene Expression Omnibus and The Cancer Genome Atlas
(TCGA) databases, (2) established a Cox-prognostic model based
on singlesample gene set enrichment analysis, differentially
expressed gene analysis, weighted gene co-expression network
analysis, and Least Absolute Shrinkage and Selection Operator
(LASSO) and Cox regression analyses, and (3) assessed the pre-
dictive accuracy of the model. Decision curve analysis (DCA) was
employed to determine the clinical utility of the model.
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Results — Ten HGRGs were selected based on mRNAsi to
create the LASSO model. High-risk CRC patients in the
TCGA dataset displayed unfavorable clinical outcomes
and responses to immunotherapy. Consensus cluster ana-
lysis revealed two distinct colon adenocarcinoma/rectal
adenocarcinoma clusters, with patients in cluster 2 having
a worse prognosis compared to patients in cluster 1. A five-
gene prognostic nomogram was developed through uni-
variate and multivariate Cox regression analyses, with
DCA confirming its accuracy.

Conclusions — This innovative prognostic model, incor-
porating ALDOB, AQP1, IL1A, PHGDH, and PTGIS, is highly
accurate in predicting patient survival.

Keywords: colorectal cancer, mRNAsi, stemness, hypoxia,
glycolysis, prognostic model

1 Introduction

Colorectal cancer (CRC) is the third most dominant global
malignancy, profoundly impacting the gastrointestinal
tract [1]. Despite multiple treatment modalities, including
radiotherapy, targeted therapy, chemotherapy, surgery,
immunotherapy, and traditional Chinese medicine, which
have shown promise in extending patient survival, CRC
continues to stand as the second most prominent contri-
butor to cancer-related mortality, primarily attributing to
early metastasis, late-stage diagnosis, and rapid progres-
sion [1-4]. Therefore, it is urgent to identify novel thera-
peutic targets and early diagnostic markers for CRC. CRC is
a heterogeneous disease influenced by complex genomic
variation and abnormal biological microenvironments [5].
Single-gene/factor prediction models often have limita-
tions, whereas multigene-based models show excellent
predictive power across a wide range of cancers [6-8].
Therefore, there is an urgent need to identify reliable
genetic profiles for early CRC diagnosis, prognostic assess-
ment, and targeted therapy.
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Cancer stem cells (CSCs) represent a specialized and
rare cell population present within tumor cell commu-
nities. They are self-renewing and play a key role in
tumour formation, metastasis, recurrence, and resistance
to therapeutic agents, with important implications for
tumor progression and prognosis [9,10]. In CRC, CSCs are
identified and defined by specific markers, including
CD133, CD24, CD166, Lgr5, EpCAM, CD44, CD29, ALDHI,
and B-catenin [11,12]. Recently, sequencing data analysis
has emerged as a key approach to cancer prognosis assess-
ment, which provides a new analytical perspective by
characterizing cancer stemness using stemness-associated
genes and the mRNA stemness index (mRNAsi) derived
from machine learning algorithms [13]. Studies have
explored the application of stemness scores in predicting
prognosis, assessing immunotherapy response, and evalu-
ating clinical outcomes in cancers, including glioblastoma,
lung cancer, cutaneous melanoma, and CRC [14-17].

Hypoxia is a common feature of most solid tumors,
resulting from increased oxygen consumption and vascular
disturbances, and is frequently associated with a poor prog-
nosis [18,19]. Hypoxia has profound effects on intracellular
and extracellular metabolic processes, triggering the acti-
vation of hypoxia-inducible factors. These factors in turn
stimulate the transcription of important genes involved in
various processes such as angiogenesis, pH regulation, glu-
cose metabolism, tumor invasion, and metastasis [20,21].
Moreover, recent research has shown that a hypoxic tumor
microenvironment can influence the efficacy of che-
motherapy in CRC patients [22,23]. In CRC cells, a modified
energy metabolism, particularly abnormal activation of the
glycolytic pathway, has been observed [24,25]. In the pre-
sence of sufficient oxygen, cancer cells rely mainly on gly-
colysis to produce energy [26]. In cancer cells, glycolysis
accounts for the production of 50-60% of total adenosine
triphosphate [27]. Aerobic glycolysis creates a specific
microenvironment that favours the unrestricted growth
and invasion of cancer cells [28]. Currently, investigations
have developed hypoxia and glycolysis (HG)-related prog-
nostic signatures for CRC patients [29,30], and hypoxia and
glycolysis-related genes (HGRGs) are anticipated to serve as
valuable prognostic biomarkers for CRC.

The main focus of the study was to identify HGRGs by
analyzing tumor stemness in CRC patients, to study their
pattern in normal and tumour tissues, and to use them as
potential prognostic markers. We identified 30 HGRGs
related to mRNAsi and validated their expression levels
using The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) datasets. Further insights into
their functional implications were gained through Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
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Genomes (KEGG) pathway analyses. A prognostic model
comprising ten genes was developed using the Least
Absolute Shrinkage and Selection Operator (LASSO) model.
Consensus clustering of these genes identified two colon
adenocarcinoma/rectal adenocarcinoma (COADREAD) sub-
types and compared their survival, tumor mutational
burden (TMB), and microsatellite instability (MSI) in the
Tumour Immune Dysfunction and Rejection (TIDE) data-
base. Finally, a prognostic nomogram incorporating five
genes was introduced through LASSO—Cox regression ana-
lysis, and its predictive performance was verified using
decision curve analysis (DCA). The DCA curve takes the
sensitivity and specificity of the predictive model as the
horizontal axis and the benefit as the vertical axis. If
the decision curve of the predictive model is above the
decision curve of the reference strategy, the clinical utility
of the predictive model is higher; conversely, the clinical
utility is lower. In conclusion, this study enriches our
understanding of the pathogenesis of CRC and paves the
way for personalized and tailored patient care.

2 Materials and methods

2.1 Data manipulation

The gene expression matrix data for COADREAD and rele-
vant clinical details were retrieved from TCGA (https:/
portal.gdc.cancer.gov/) and UCSC Xena (http://genome.ucsc.
edu), respectively [31,32]. The raw read counts were con-
verted to Fragments Per Kilobase per Million using the R
package limma [33]. Samples lacking key clinical data were
eliminated, yielding in a final dataset comprising 644 cancer
samples and 51 normal samples. Validation datasets for COA-
DREAD were obtained from GSE14333 [34], GSE74602 [35],
GSE87211 [36], and GSE161158 [37] from the GEO database
[38] using the GEOquery package [39].

Hypoxia-related genes with a relevance score of >1 as
the screening criterion were collected from GeneCards, a
database containing extensive information about human
genomes [40], using the term “hypoxia” as the primary search
keyword, resulting in 2041 genes. We also collected 3147
hypoxia-related genes from 65 reference gene sets in MSigDB
[41] using “hypoxia” as the keyword. Additionally, we
searched the AmiGO2 website (http://amigo.geneontology.
org/amigo) [42] using “hypoxia” as the keyword and obtained
298 hypoxia-related genes. By considering the common genes
identified across these three sources, we collected 130
hypoxia-related genes. Similarly, we searched the GeneCards
database, using the term “glycolysis” to compile a list of
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glycolysis-related genes and retrieved 851 genes with a rele-
vance score of >1 as the screening criterion. Additionally, we
found 753 glycolysis-related genes from 21 reference gene sets
in MSigDB using “glycolysis” as the search term. By consid-
ering the common genes across these two sources, we col-
lected 158 glycolysis-related genes. Ultimately, we obtained a
subset of 273 HGRGs. Additional details can be found in
Table S1.

In addition to gene expression data, we retrieved
somatic mutation data, including single-nucleotide poly-
morphism (SNP), for COADREAD from TCGA and processed
the data with the R package maftools [43]. These genomic
characterizations were designed to explore the potential
association between the pattern of genetic variation in
HGRG-related genes and their expression levels and prog-
nosis, and to assess the impact of genomic instability on
immunotherapy response. Specifically, (1) analysis of
somatic mutation types and frequencies by maftools can
reveal the relationship between the mutational load of
HGRG-related genes and patient prognosis; (2) copy
number variation (CNV) analysis (GISTIC 2.0) can help to
identify the genomic amplification/deletion events that
drive the expression of HGRG; and (3) analysis of the
MSI/TMB data in combination with the TIDE scores can
assess the genomic instability’s role in the regulation of
immune escape. Information regarding TMB and MSI in
the COADREAD dataset was acquired from cBioPortal
(https://www.cbioportal.org/) [44].

2.2 Dataset normalization and merging

We normalized COADREAD datasets from both TCGA and
GEO using the R package limma. We then used the R
package sva to remove the batch effects found in the COA-
DREAD datasets (GSE14333, GSE74602, GSE87211, and
GSE161158) from GEO and created a merged COADREAD
dataset. The differences between the GEO datasets pre-
and post-processing were illustrated in the distribution
box and principal component analysis (PCA) plots.

2.3 Stemness index calculation

The mRNAsi for each sample was calculated using the
stemness training dataset by single-sample gene set enrich-
ment analysis (sSGSEA). The mRNAsi score for COADREAD
patients was computed in accordance with the expression
profile of the TCGA-COADREAD dataset with the R package
GSVA [45]. The resulting score enabled the categorization
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of cancer samples into separate groups and facilitated cor-
relation analysis.

2.4 Differentially expressed gene (DEG)
analysis

The individuals afflicted with COADREAD from TCGA were
stratified into two mRNAsi cohorts with a median mRNAsi
score as the threshold. Subsequently, DEGs between the two
groups were uncovered based on P < 0.05 and |log, fold
change (FC)| > 0. Genes with Log2 FC > 0 or < 0 are consid-
ered up-regulated and down-regulated genes, respectively.
Finally, we obtained mRNAsi-related HGRGs for subsequent
analysis by taking the intersection of DEGs and HGRGs.

2.5 Gene set enrichment analysis (GSEA)

We conducted GSEA [46] using the R package clusterProfiler
[47] to examine DEGs distribution pattern and determine
their impacts on phenotypes based on the c2.cp.v7.2 symbol
reference in the MSigDB. The GSEA parameters were config-
ured as: seed value of 2020, calculation number of 100,000,
minimum of five genes per set, and a maximum of 500 genes.
P-values were corrected using the Benjamini-Hochberg
method to assess the statistical significance of enrichment.
Gene sets with P < 0.05 and false discovery rate (FDR)
(q value) <0.25 were considered significant enrichment.

2.6 HGRG score calculation

The abundance of individual genes within the dataset was
assessed using the ssGSEA method. The HGRG score for each
sample was computed according to the TCGA-COADREAD levels
and mRNAsi-related HGRGs using the ssGSEA algorithm from
the R package GSVA and used for sample grouping and correla-
tion analysis. COADREAD patients were divided into two
groups, using the median HGRGs score as the cut-off value.

2.7 Weighted gene co-expression network
analysis (WGCNA)

WGCNA [48] was employed to delineate gene correlation
patterns across multiple samples. Highly coordinated gene
sets and potential biomarkers or therapeutic targets were
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identified by examining their connectivity and correlations
with phenotypes using the R package WGCNA [49]. Corre-
lation coefficients were first calculated for any two genes,
and then weighted correlation coefficients were applied to
ensure a scale-free distribution of gene connections within
the network. Subsequently, a hierarchical clustering tree
between genes was built based on the correlation between
genes. Different gene modules were used to describe dif-
ferent branches of the tree based on unique colors, and the
importance of each module was assessed. The top 25% of
genes with the most pronounced differences in gene
expression in the ARDS dataset were entered with a
minimum number of 50 genes, a soft power threshold of
10, no module merging (shear height of 0), and a minimum
distance of 0.2. Following this, the correlation between the
HGRGs scores and various modules was computed. Simulta-
neously, genes in each module were considered signature
genes. Prominent modules exhibiting strong correlation coef-
ficients were selected, and their intersection with mRNAsi-
related HGRGs was used as hypoxia and glycolysis-related
module DEGs (HGRMDEGs) for further analysis.

2.8 GO and KEGG annotation analyses

The expression levels of HGRMDEGs were validated using a
validation set, and genes with inconsistent validation
results were excluded. The HGRMDEGs were annotated
by GO [50] and KEGG [51] analyses using the R package
clusterProfiler based on P < 0.05 and an FDR value (g value)
of <0.25 and the Benjamini-Hochberg method.

2.9 LASSO model

LASSO regression was used to construct prognostic models
to address the risk of overfitting in high-dimensional
genetic data. Tenfold cross-validation (seed = 2,020)
assessed model stability through repeated sampling, and
a penalty term of A = 0.01 prevented model complexity
while preserving key genes. A median risk score grouping
strategy maximized survival differences between the two
groups to ensure clinical translational value.

2.10 Immunotherapy analysis

Gene expression profile was analyzed based on the TIDE
database [52] to determine the likelihood of tumor immune
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evasion. Elevated TIDE scores indicate an increased like-
lihood of immunosurveillance evasion and reduced suc-
cess of immunotherapy. Sample matrices from the
TCGA-COADREAD dataset were uploaded to obtain TIDE
scores for each COADREAD patient and analyzed for their
association with HGRGs.

2.11 Protein-protein interaction (PPI)
analysis

PPI network of HGRMDEGS between known and predicted
proteins was predicted by searching the STRING [53] with a
minimum interaction score of 0.4 to ensure moderate con-
fidence. Local regions with close connections were identi-
fied by visualizing the PPI network using Cytoscape
software (version 3.9.1) [54]. The GeneMANIA website [55]
was utilized to predict genes functionally similar to the
target genes and to construct an interaction network of
HGRMDEGs from the LASSO model. miRNA interactions
with HGRMDEGs were predicted using the ENCORI data-
base [56]. Subsequently, miRNAs with supported database
counts greater than three were filtered out, and the
mRNA-miRNA interaction was analyzed using Cytoscape
software.

2.12 Consensus clustering

Consensus clustering [57], a method based on resampling,
was utilized to establish consensus and evaluate the stabi-
lity of clusters identified using a clustering algorithm.
Using the R package ConsensusClusterPlus, different COA-
DREAD disease subtypes were identified based on
HGRMDEG [58]. In this procedure, the cluster counts
ranged from 2 to 8, and the entire sample set was repeated
1,000 times at a sampling rate of 80%. clusterAlg parameter
was set to “km” (k-means algorithm), and the distance
parameter was set to “euclidean.”

2.13 Drug sensitivity analysis

To assess the potential sensitivity of CRC patients in the
TCGA cohort to commonly used anticancer drugs, a com-
putational pharmacology approach was wused. The
Genomics of Drug Sensitivity in Cancer (GDSC) database
v2.0 (https://www.cancerrxgene.org/) was first used as a
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training set, which contains drug dose-response data (IC50
values) and gene expression profiles of human cancer cell
lines. Then, a drug sensitivity prediction model was con-
structed by a ridge regression algorithm based on gene
expression data (RNA-seq or microarray) from the GDSC
training set with IC50 values using the pRophetic R soft-
ware package. For each drug, pRophetic performed feature
selection (screening the most relevant genes based on the
correlation between gene expression and IC50), model
training (constructing a ridge regression model using the
screened gene features and cell line IC50 values), and
cross-validation (evaluating the model performance with
Pearson’s correlation coefficient and RMSE using LOOCV or
k-fold cross-validation on the GDSC training set and
recording the average metrics). Subsequently, the trained
model was applied to the gene expression profiles of TCGA
samples (which should be consistent with the detection
platform and normalization method of the GDSC training
set), and the predicted IC50 values of each sample for dif-
ferent drugs were output by pRophetic (the lower the IC50,
the higher the sensitivity). Finally, the TCGA samples were
grouped according to HGRG scores (or variables such as
risk group), and the Wilcoxon rank-sum test was used to
compare the differences in predicted IC50 between the
groups, screen for significant drugs (P < 0.05), and visualize
the IC50 distribution.

2.14 Immune activity analysis

Estimating Stromal and Immune Cells in Malignant Tissue
Using Expression Data (ESTIMATE) uses gene expression
profiles of tumor samples to detect the relative proportions
of tumor cells and infiltrating normal cells. It also quantifies
immune activity to derive an immune score. To gain insight
into the prognostic impact of genes associated with stromal
and immune cells, we analyzed the immune response of
tumors using expression profiles from the TCGA-COADREAD
dataset and using the R package ESTIMATE [59]. In addition,
we quantified the immune activity in the cancer samples
using gene expression profiling to derive an immune score
for each cancer sample. Subsequently, we assessed the asso-
ciation between the immune infiltration profile of COADREAD
patients and the HGRG score.

2.15 Immune infiltration analysis

CIBERSORTX is an online tool for analyzing immune cells
utilizing a deconvolution algorithm to examine the relative
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fraction of immune cells in cancer tissues. We provided the
grouped gene expression data to the CIBERSORTX website,
which was then combined with a signature gene matrix
called LM22 to produce immune cell infiltration matrix
data. We further analyzed the transcriptome data and
accurately quantified the immune and stromal cells in
the tissue using the R package MCPcounter [60]. In addi-
tion, we calculated an enrichment score for each sample
using the ssGSEA algorithm to reflect the overall infiltra-
tion level of 28 types of immune cells.

2.16 Cox model

To examine the clinical prognostic value of HGRMDEGS
obtained from the LASSO prognostic model in COADR-
EAD, we performed univariate Cox regressions using the
TCGA-COADREAD dataset to examine the expression pat-
tern in relation to clinical variables. Multivariate Cox
regression was examined for variables with P < 0.1, and
the optimal set of variables was determined by stepwise
regression. Based on the Cox model, we generated forest
plots and nomograms to estimate 1-, 3-, and 5-year sur-
vival for COADREAD patients and built calibration curves
using the R package rms to determine their accuracy. We
built DCA plots using the R package ggDCA [61] to assess
the performance of the nomogram model in predicting
survival in COADREAD patients.

2.17 Statistical analysis

Drug sensitivity and all other data were assessed using R
software. Continuous variables were shown as the
median + quartile interval, and the differences between
the two groups were examined using the Wilcoxon rank
sum test. The statistical significance in normally distrib-
uted variables and categorical variables between two
groups was analyzed using the Chi-square or Fisher’s
exact tests. Differences among different groups were
examined with the Kruskal-Wallis test. LASSO regression
analysis was conducted with the R package glmnet [62].
Receiver operating characteristic curve (ROC) and the
time-dependent ROC [63] were established with the R
package pROC and timeROC, respectively. Survival curves
were analyzed with the R package survival and visualized
with the survminer package. Significant variations in sur-
vival time between the two groups were evaluated with
the log-rank test. Spearman’s rank correlation analysis
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was used to evaluate correlation coefficients between two
numerators or scores, unless specified otherwise. All P
values were two-tailed, and P < 0.05 was determined as
statistical significance.

3 Results

3.1 Flow chart

The workflow is shown in Figure 1.

3.2 Stemness-related gene screen reveals
198 HGRGs

We first created a merged COADREAD dataset by elimi-
nating the batch effect in the GEO-COADREAD datasets
(GSE14333, GSE74602, GSE87211, and GSE161158). We then
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used distribution box plots and PCA plots to compare the
datasets before and after correction (Figure Sla—d). These
visual illustrations clearly show that the samples in the
COADREAD dataset successfully eliminate the batch
effect.

We calculated mRNAsi values for all patients in the
TCGA-COADREAD dataset using the ssGSEA algorithm to
assess their stemness levels. Subsequently, we divided these
patients into two groups based on the median mRNAsi
value. We plotted Kaplan—-Meier curves (Figure 2a) and
found a statistically significant difference in the prognosis
of these two groups of patients, with the low mRNAsi group
having a worse prognosis. Among the 19,572 genes in the
TCGA-COADREAD dataset, we identified 11,934 DEGs, of
which 6,388 genes were overexpressed and 5,546 genes
were underexpressed in the high mRNAsi group (Figure
2b). We intersected DEGs associated with mRNAsi with
HGRGs and obtained 198 HGRGs associated with mRNAsi,
as shown in the Venn diagram (Figure 2c). These genes are
shown in Table S2, and the first 40 genes are shown in the
heatmap.
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Figure 1: Study flow chart.
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3.3 Hypoxia, glycolysis, and oncogenic
pathways drive CRC stemness

We identified biological functions and pathways associated
with these DEGs by GSEA. Several significantly enriched
pathways can be seen in the pathway map (Figure 3a-i)
and are listed in Table S3. Among them, cellular response
to hypoxia (Figure 3a) and glycolytic pathway (Figure 3b)
were associated with HG phenotypes, whereas Notch
(Figure 3c), JAK-STAT (Figure 3d), Wnt (Figure 3e), MAPK
(Figure 3f), PI3K-AKT (Figure 3g), Hedgehog (Figure 3h),
and FceRI-mediated NF-kB activation pathway (Figure 3i)
were associated with hotspot molecules.
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3.4 WGCNA analysis and HGRG score cross-
validation reveal 50 core stemness-
regulated genes in CRC

Based on the levels of the 198 mRNAsi-associated HGRGs
(Table S2), we calculated HGRG scores for all cancer sam-
ples in the TCGA-COADREAD dataset using the ssGSEA
algorithm. We created a stacked bar chart to visualize
the distribution of all clinical stages in the high and low
HGRGs subgroups (Figure 4a—d). Our analyses showed no
significant differences between the two groups, except for
some changes observed in the T stage relative to the N and M
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stages. We further performed WGCNA analysis on all genes
in the dataset and identified the top 25% of genes with the
most significant differences between patients by setting the
screening threshold criterion to 0.85 (Figure 4e). These
genes were further clustered into nine modules by setting
the optimal soft threshold to 10 (Figure 4f and g) and the
branch merge cutoff height to 0, i.e, no modules were
merged (Figure 4f). Subsequently, we analyzed the correla-
tion between their expression patterns in these modules
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and the HGRGs scores of COADREAD patients (Figure 4g).
Four modules with robust correlations (P < 0.05, |r| 2
0.30), namely MEred (r = 0.37, P = 9 x 107%), MEyellow
(r =049, P =9 x 10™*"), MEbrown (r = 0.36, P = 1 x 107%),
and MEgrey (r = -0.38, P = 7 x 107%*), were selected and
further analyzed. We then intersected the 198 mRNAsi-
related HGRGs with the genes in the MEred module
(Figure 4h), MEyellow module (Figure 4i), MEbrown
module (Figure 4j), and MEgrey module (Figure 4Kk) of the
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Figure 3: Hypoxia, glycolysis, and oncogenic pathways drive CRC stemness. Genes in the TCGA-COADREAD dataset were significantly enriched in the
cellular response to hypoxia (a), glycolysis (b), Notch (c), JAK-STAT (d), Wnt (e), MAPK (f), PI3K-AKT (g), Hedgehog (h), and FceRI-mediated NF-kB (i)

signaling pathways.
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TCGA-COADREAD dataset. We identified 50 HGRMDEGs
and presented them in Venn diagrams (Table S4).

3.5 Chromosomal localization and PPI
network analysis reveal functional
clusters among differentially expressed
30 HGRMDEGs in CRC

We compared the expression levels of 50 HGRMDEGSs
(Table S4) between the cancer and normal groups in the
COADREAD and TCGA-COADREAD datasets (Figure 5a and b).
The analyses revealed 30 HGRMDEGs with consistent
expression trend in both datasets, including ADM, ALDOB,
ALDOC, ANG, AQP1, CBFA2T3, CCNA2, CD44, ENO1, EPASI,
HK3, HMOX1, IL1A, IRS2, JUND, KCNMB1, LDHB, MMP14,
MYCN, NDRG1, NUP210, PCK1, PHGDH, PLAT, PMAIP]I,
PRKACB, PIGIS, STC1, STC2, and VEGFA. We further
explored the chromosomal localization analysis of these 30
HGRMDEGs to observe their distributions. The chromosome
localization map (Figure 5c) showed that these genes were
primarily located on chromosomes 1, 2, 5, and 8, with each
hosting three genes. The genes on the same chromosome
might have functional connections. We then analyzed the
PPI of these 30 HGRMDEGS in the STRING database by set-
ting the required minimum interaction score to medium
confidence (0.4). Subsequently, a PPI network comprising
27 genes was established and visualized using Cytoscape
software (Figure 5d). Notably, at the lowest interaction score
of 04, all genes interacted with at least one HGRMDEG,
except CBFA2T3, JUND, and NUP210, which did not interact
with other HGRMDEGs.

3.6 A 10-gene hypoxia-glycolysis signature
predicts poor prognosis in CRC and
unveils a core metabolic mechanism

GO enrichment (Table S5) unveiled 30 HGRMDEGs with
predominant association with biological processes (BPs),
such as response to hypoxia (GO: 0001666), cellular
response to hypoxia (GO: 0071456), and glycolytic process
(GO: 0006096) (Figure 6a), and molecular functions (MFs)
including lyase activity (GO: 0016829), receptor-ligand
activity (GO: 0048018) and carbon-carbon lyase activity
(GO: 0016830) (Figure 6b). Further, KEGG enrichment ana-
lysis (Table S5) demonstrated their significant enrichment
in the HIF-1a signaling pathway (hsa04066), glycolysis/glu-
coneogenesis (hsa00010), and type II diabetes mellitus

ALDOB, AQP1, IL1A, PHGDH, and PTGIS in CRC == 9

(hsa04930) pathways. We further performed GO and
KEGG enrichment analyses on these 30 HGRMDEGs based
on the logFC values between the two mRNAsi groups in the
TCGA-COADREAD dataset and calculated the corre-
sponding Z-scores for each gene. The results are presented
in the form of chord plots (Figure 6c) and circle plots
(Figure 6d) with logFC. The circle plot shows that carbon-
carbon cleavage enzyme activity (GO: 0016830) was signif-
icantly upregulated. The glycolysis/gluconeogenesis
(hsa00010) pathway was selected to illustrate the KEGG
pathway (Figure 6e).

3.7 The LASSO model stratifies CRC risk with
survival prediction and accuracy

To examine the prognostic value of the 30 HGRMDEGS
(ADM, ALDOB, ALDOC, ANG, AQP, CBFA2T3, CCNAZ2,
CD44, ENO1, EPAS1, HK3, HMOX1, IL1A, IRS2, JUND,
KCNMB1, LDHB, MMP14, MYCN, NDRG1, NUP210, PCK1,
PHGDH, PLAT, PMAIP1, PRKACB, PTGIS, STC1, STC2,
VEGFA) in the TCGA-COADREAD dataset, we conducted a
LASSO regression analysis and developed a prognostic
model consisting of 10 HGRMDEGs (ALDOB, ALDOC,
AQP1, CCNA2, IL1A, JUND, NDRG1, PHGDH, PITGIS,
VEGFA) (Figure 7a and b). The risk factor plot (Figure 7c)
visually depicts the risk groupings derived from the LASSO
model. We categorized the cancer samples into two risk
groups using the median risk score as the threshold. Sub-
sequently, we plotted a prognostic Kaplan-Meier curve to
compare survival outcomes between the two risk groups
(Figure 7d). The analysis showed that the prognosis was
significantly worse in the higher risk group (log-rank P <
0.001). We then plotted the prognostic time-dependent ROC
curves for the risk scores (Figure 7e). The area under the
curve (AUC) of the ROC curves for 1-, 3-, and 5-year survival
was all greater than 0.6, suggesting that higher-risk scores
were associated with worse prognosis in COADREAD. We
further compared the levels of 10 HGRMDEGs in the LASSO
prognostic model between the two groups (Figure 7f) and
observed significant differences in the expression of these
genes between the two groups (P < 0.01). To investigate the
association between risk scores and HGRGs scores in COA-
DREAD patients, we visualized the correlation between the
two using a scatterplot (Figure 7g), which showed a signif-
icant (P < 0.05) but very weak (|r| < 0.3) linear correlation.
In addition, ALDOB (AUC = 0.711), CCNA2 (AUC = 0.770), and
PHGDH (AUC = 0.705) had some accuracy in predicting
COADREAD high- and low-risk patients (Figure 7h-Kk).
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Figure 4: WGCNA analysis and HGRG score cross-validation reveal 50 core stemness-regulated genes in CRC. The proportions of the clinical-
pathological (a), as well as clinical T (b), M (c), and N (d) stages in the two HGRG score groups. (e) The scale-free network of optimal soft thresholding
power screening in the TCGA-COADREAD dataset. (f) Gene dendrogram and module colors. (g) The relationship between module eigengenes and
HGRGs scores in the TCGA-COADREAD dataset. The Venn diagrams showing the overlaps between HGRMDEGs and the genes in the MEred module (h),
MEyellow module (i), MEbrown module (j), and MEgrey module (k) of TCGA-COADREAD dataset.

3.8 Correlation and functional analysis samples in the TCGA-COADREAD dataset, we first investigated
reveal VEGFA dominance and mRNAsi- the correlation between them using the Spearman algorithm
linked genes in CRC and presented the results in the form of correlation heatmaps

(Figure 8a) and correlation chord plots (Figure 8b). The results

Based on the levels of 10 HGRMDEGs (ALDOB, ALDOC, AQP1, Showed a linear correlation of ALDOC with NDRG1, AQP1
CCNA2, IL1A, JUND, NDRG1, PHGDH, PTGIS, VEGFA) in cancer  With CCNA2, IL14, and PTGIS, and CCNAZ with PTGIS (|r|
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Figure 5: Chromosomal localization and PPI network analysis reveal functional clusters among differentially expressed 30 HGRMDEGs in CRC. The
levels of HGRMDEGs in the TCGA-COADREAD (a) and COADREAD datasets (b). (c¢) Chromosomal localizations of HGRMDEGs. (d) PPI network of
HGRMDEGs. NS: P > 0.05, *P < 0.05, **P < 0.01, and ***P < 0.001.

> 0.3, P < 0.05). Subsequently, a functional similarity analysisto  these ten genes with the corresponding mRNAsi in the cancer
assess the similarities among the 10 HGRMDEGs (Figure 8c) samples (Figure 8d—m) and showed that CCNA2 (r = 0.608, P <
revealed that VEGFA exhibited the highest functional similarity ~ 0.001, Figure 8g) and PTGIS (r = —0.347, P < 0.001, Figure 8i)
score. We further investigated the association of the levels of ~were significantly and linearly correlated with mRNAsi.
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Figure 6: A 10-gene hypoxia-glycolysis signature predicts poor prognosis in CRC and unveils a core metabolic mechanism. Significantly enriched GO
and KEGG terms of HGRMDEGs with bar graph (a) and circular network diagram (b). GO and KEGG enrichment analyses with logFC by chord diagram
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Figure 7: LASSO model stratifies CRC risk with survival prediction and accuracy. (a) Optimization parameter lambda determined by the LASSO
regression model of HGRMDEGs. LASSO coefficient profile of the 10 HGRMDEGs (b) and risk factor plot (c) of the LASSO regression model. (d)
Kaplan-Meier curves comparing the two risk groups in the TCGA-COADREAD dataset. (e) Time-dependent ROC curves illustrating the risk score for
predicting COADREAD prognosis. (f) Comparison of the 10 HGRMDEGs levels between the two risk groups in the TCGA-COADREAD dataset. (g)
Correlation between the risk score and the HGRG score of COADREAD patients. (h-k) The ROC curves of the 10 HGRMDEGs in the TCGA-COADREAD
dataset. In the LASSO regression model plot (a), the y-axis represents the likelihood deviation, and the x-axis shows the log (A), representing the
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3.9 High-risk CRC genomic profiling links to
immune evasion and ICB resistance

Given that somatic genomic alterations (including muta-
tions, CNVs, MSIs, and TMBs) are central mechanisms for
cancer development, driving key pathways and influen-
cing the immune microenvironment and therapeutic
response, we further explored the somatic mutational pro-
files of 10 key HGRMDEGs and their association with risk
models. The results showed that the TCGA-COADREAD
dataset contains four types of somatic mutations: missense
and nonsense substitutions and frame-shift deletions and
insertions, with missense substitutions being the most pre-
valent (Figure 9a). Furthermore, the mutation types of the
10 HGRMDEGs in COADREAD patients primarily included
SNPs along with some insertions and deletions (INS and
DEL). Among SNVs, C > T was dominant, followed by C >
A (Figure 8a). Among the 10 HGRMDEGs, ALDOB had the
most somatic mutations, including missense, frame-shift
deletion, and nonsense mutations (Figure 9b).

We also examined CNVs of the 10 HGRMDEGS in COA-
DREAD patients from the TCGA-COADREAD dataset using
GISTIC 2.0 (Figure 9c—e) and identified significant amplifi-
cations and deletions in the 10 HGRMDEGs among the COA-
DREAD patient samples. Among these genes, PTGIS, AQPI,
and NDRGT had the highest amplification frequency, while
ALDOC, CCNA2, and ALDOB had the highest deletion fre-
quency (Figure 9c).

Subsequently, we processed MSI and TMB data corre-
sponding to COADREAD patients from the TCGA-COADREAD
dataset, evaluated the TIDE scores using the TIDE algorithm,
and generated grouped comparison charts (Figure 9f-h) and
correlation scatter plots (Figure 9i-k) with respect to the cor-
responding risk scores. Our findings indicated statistically
significant variations in MSI, TMB, and TIDE scores between
the two risk groups (P < 0.05). Specifically, the high-risk group
displayed lower MSI and TMB levels but higher TIDE scores.
This signifies that the high-risk group is susceptible to
immune escape and benefits less from immune checkpoint
inhibitor therapy. Correlation scatter plots showed that MSI
and TMB were weakly linearly associated with risk scores in
COADREAD patients.

3.10 Gene-miRNA networks and consensus
clustering identify prognostic subtypes
in CRC

We established an interaction network of functionally
similar genes related to the 10 HGRMDEGs using the

DE GRUYTER

GeneMANIA website (Figure 10) to observe shared protein
domains, co-expression, pathways, co-localization, and
gene interactions. To identify miRNAs interacting with
these 10 HGRMDEGs, mRNA-miRNA data from the ENCORI
database were utilized. Subsequently, miRNAs were
screened against more than three databases, and the
mRNA-miRNA interaction network consisting of 6 mRNAs
and 38 miRNAs was depicted using Cytoscape software
(Figure 10) and Table S6.

To identify clinically significant molecular subtypes and
to explore the association of the 10 HGRMDEG levels with
COADREAD subtypes, we used consensus cluster analysis.
The analysis categorized COADREAD disease into two sub-
types: cluster 1 contained 308 samples and cluster 2 con-
tained 336 samples (Figure 11a—c). In the TCGA-COADREAD
dataset, 6 out of 10 HGRMDEGs showed significant expres-
sion differences between the two subtypes (P < 0.05, Figure
11d). The further constructed Kaplan—-Meier survival curves
showed that there was a significant difference in prognosis
between the two groups (log-rank P = 0.017), with cluster 2
patients having a worse prognosis than cluster 1 (Figure 11e).

3.11 HGRG score stratification guides
precision medication in CRC-high scoring
patients have significantly increased
sensitivity to 20 targeted agents

To explore the sensitivity of COADREAD patients to com-
monly used anticancer drugs in the TCGA-COADREAD dataset
and to investigate potential treatment strategies for patients
with different HGRG scores, we studied drug sensitivity using
the GDSC database as a training set. We compared the IC50 of
anticancer drugs in the two groups with different HGRG
scores and used violin plots to show the top 20 drugs with
significant differences in IC50 (Figure S2a-t). Among these 20
drugs, patients with higher HGRG scores had lower IC50
values compared to those with lower HGRG scores, suggesting
that individuals with higher HGRG scores may be more sen-
sitive to these drugs. This further emphasizes the importance
of personalized treatment for cancer patients.

3.12 HGRG score and significant association
with tumor microenvironmental
characteristics

We investigated the expression profiles of cancer samples in
the TCGA-COADREAD dataset, including stromal, immune,
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Figure 8: Correlation and functional analysis reveal VEGFA dominance and mRNAsi-linked genes in CRC. Correlation heatmap (a) and correlation
chord diagram (b) displaying the correlation of HGRMDEGs in the TCGA-COADREAD dataset. (c) Box plot showing the functional similarity of
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Figure 9: High-risk CRC genomic profiling links to immune evasion and ICB resistance. (a) Mutation type distributions of 10 HGRMDEGs in COADREAD
patients. (b) Waterfall plot of somatic mutations. (c) CNV of 10 HGRMDEGs in COADREAD patients. (d) Genes with significant copy number ampli-
fication in COADREAD patients. (e) Genes with significant copy number deletion in COADREAD patients. Comparison of MSI (f), TMB (g), and TIDE score
(h) between the two risk groups of COADREAD patients. Scatter plots showing the association of MSI (i), TMB (j), and TIDE score (k) with the risk score
in COADREAD patients. *P < 0.05, **P < 0.01, and ***P < 0.001. In the scatter plot, the absolute correlation coefficient (r) > 0.8 indicates a strong
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ESTIMATE, and tumor purity scores, as well as their distribu-
tions with respect to HGRGs scores, using the R package EST-
IMATE. Our results showed that there were substantial differ-
ences (P < 0.001) in stroma (Figure S3a), immune (Figure S3b),
ESTIMATE (Figure S3c), and tumor purity (Figure S3d) scores
between the two groups of patients.

We further analyzed the association between HGRG
scores and stromal, immune, ESTIMATE, and tumor purity
scores of COADREAD patients and found that HGRG scores
were weakly positively associated with stromal (r = 0.151,
P < 0.001, Figure S3e), immune (r = 0.192, P < 0.001, Figure
S3f), and ESTIMATE scores (r = 0.184, P < 0.001, Figure S3g)
and weakly negatively correlated with tumor purity score
(r = -0.184, P < 0.001, Figure S3h).

3.13 Characteristics of immune cell
enrichment and key gene regulatory
hubs in high HGRG-scoring groups

To examine differences in immune infiltration between the 2
HGRG score groups, we used multiple algorithms to calculate

DE GRUYTER

the abundance of 28 immune cell types in cancer patients
from the TCGA-COADREAD dataset. We first applied the CIB-
ERSORTx algorithm (Figure S4a) to visualize the distribution
of immune cell types; subsequently, group comparisons were
plotted by other algorithms (CIBERSORTxX, MCPcounter, and
SSGSEA) to demonstrate the changes in abundance between
the two HGRG score groups (Figure S4b-d). The results
showed that the high HGRG group presented significant
enrichment in 25 out of 28 immune cell types (P < 0.05),
suggesting the presence of extensive enhanced immune infil-
tration in the high HGRG group.

The findings exhibited that (1) when using the CIBERS-
ORTX algorithm, 9 out of 22 immune cells demonstrated sta-
tistically significant differences (P < 0.05), 2) when using the
MCPcounter algorithm, 8 out of 10 immune cells and stromal
cells manifested significant differences (P < 0.05), 3) when
with the ssGSEA algorithm, 25 out of 28 immune cells pre-
sented statistically significant differences (P < 0.05).

We then selected immune cells with differential infiltra-
tion abundance (P < 0.05) between the two HGRG score
groups to analyze their relationships with the 10
HGRMDEGs. The results (Figure 12a) showed that (1) under
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Figure 11: Consensus clustering identifies prognostic subtypes in CRC. (a) The COADREAD patients were divided into two clusters based on the

consensus clustering matrix (K = 2). (b) Consensus clustering model with cumulative distribution function (CDF) for k values ranging from 2 to 9. (c) The
delta area under CDF curves for k values ranging from 2 to 9. (d) The expression levels of the 10 HGRMDEGs between cluster 1 and cluster 2 in the
TCGA-COADREAD dataset. (e) Kaplan-Meier curves between cluster 1 and cluster 2 in the TCGA-COADREAD dataset. ns: P > 0.05, *P < 0.05, **P < 0.01,

and ***pP < 0.001.
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both MCPcounter and ssGSEA algorithms, immune cells
exhibited positive linear correlations with AQP1 and PTGIS
immune cells but negative linear correlations with PHGDH
and (2) immune cells exhibited a negative linear correlation
with VEGFA under all three algorithms. We also plotted a
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complex heatmap to show the infiltration abundance of all
immune cells in the two HGRG score groups under the three
algorithms (Figure 12b). Notably, the high HGRGsscore group
presented significantly increased immune cell infiltration
abundance under both MCPcounter and ssGSEA algorithms.
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Figure 12: Characteristics of immune cell enrichment and key gene regulatory hubs in high HGRG scoring groups. (a) The associations between the 10
HGRMDEGs and the immune cell infiltration abundance under the CIBERSORTx algorithm, MCPcounter algorithm, and ssGSEA algorithm. (b) The

infiltration abundance of all immune cells under the CIBERSORTx algorithm, MCPcounter algorithm, and ssGSEA algorithm in the two HGRGs score
groups. *P < 0.05 and **P < 0.01.
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3.14 HGRMDEGs identified as prognostic
biomarkers linking TNM staging to
clinical outcomes in CRC

We further comparatively analyzed the levels of the 10
HGRMDEGs in patients at different clinical substages,
including T1, T2, T3, T4, NO, N1, N2, N3, M0, M1, and patholo-
gical stages I, II, III, and IV. The outcomes displayed a poten-
tial association between N stage subtype and the genes
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ALDOB (Figure 13a), AQP1 (Figure 13d), CCNA2 (Figure 13g),
IL1A (Figure 13i), NDRGI (Figure 13j), PHGDH (Figure 13m),
and VEGFA (Figure 130). Furthermore, the expression of
genes AQP1 (Figure 13c), CCNA2 (Figure 13f), PHGDH (Figure
13m), and VEGFA (Figure 13n) showed a potential association
with M stage subtype. Lastly, the genes ALDOC (Figure 13b),
AQP1 (Figure 13e), CCNA2 (Figure 13h), NDRGI1 (Figure 13K),
and VEGFA (Figure 13p) exhibited a potential association with
clinical pathologic stage.
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Figure 13: HGRMDEGs identified as prognostic biomarkers linking TNM staging to clinical outcomes in CRC. (a-p) The correlations of HGRMDEGs with

N, M, and pathological stages. *P < 0.05, **P < 0.01, and ***P < 0.001.
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3.15 The prediction model for CRC shows
high prediction accuracy and high net
benefit

At last, we analyzed the clinical traits of COADREAD
patients in the TCGA-COADREAD dataset (Table 1) and exe-
cuted univariate Cox regression analyses to examine their
association with the 10 HGRMDEGS. Variables with P < 0.1,
including T, N, M, and pathological stages, as well as age
and BMI, were subjected to multivariate Cox regression
analysis. The optimal variables, including T, N, and M
stages, as well as age, were further identified with stepwise
regression and chosen to create the multivariate Cox
regression model (Table S7). The findings were visualized
in a forest plot (Figure 14a). Furthermore, we performed
nomogram analyses to judge the predictive value of the
genes and clinical traits included in the multivariate Cox
regression model (Figure 14b). Additionally, we generated
calibration curves for the 1-, 3-, and 5-year survival (Figure
14c—e) and demonstrated that the red lines corresponding
to the 1- and 3-year survival were near the ideal gray line,
suggesting strong predictive performance of the model.
Lastly, we evaluated the clinical application of the multi-
variate Cox regression model using DCA (Figure 14f-h). The
results revealed that the red lines representing the model

Table 1: Clinicopathological features of patients with CRC

Characteristic Levels Overall
N 644
T stage, n (%) T 20 (3.1%)
T2 111 (17.3%)
T3 436 (68%)
T4 74 (11.5%)
N stage, n (%) NO 368 (57.5%)
N1 153 (23.9%)
N2 119 (18.6%)
M stage, n (%) MO 475 (84.2%)
M1 89 (15.8%)
Pathologic stage, n (%) Stage I 1M1 (17.8%)
Stage II 238 (38.2%)
Stage III 184 (29.5%)
Stage IV 90 (14.4%)
Gender, n (%) Female 301 (46.7%)
Male 343 (53.3%)
Age, n (%) <65 276 (42.9%)
>65 368 (57.1%)
BMI, n (%) <25 107 (32.5%)
>25 222 (67.5%)
0S event, n (%) Alive 515 (80%)
Dead 129 (20%)

Age, median (IQR) 68 (58, 76)

ALDOB, AQP1, IL1A, PHGDH, and PTGIS in CRC = 21

were significantly distant from both the blue lines (all posi-
tive) and the gray line (all negative), indicating its high
accuracy.

4 Discussion

As a global, highly prevalent malignant tumour, the mole-
cular heterogeneity of CRC has led to the insufficient pre-
dictive efficacy of existing biomarkers, which restricts the
development of precision diagnosis and treatment. In this
study, we broke through the limitations of a single mole-
cular dimension and constructed a 10-gene prognostic
model and disease subtype classification system through
mRNAsi, hypoxia—glycolysis-related genes, and multi-
omics analysis (DEG/WGCNA/LASSO). The key findings
indicated that (1) patients in the high-risk group had
significantly lower survival and limited response to immu-
notherapy; (2) subtype two (Cluster2) identified by con-
sensus clustering had a worse prognosis; and (3) a
column-line graph model based on TNM stage-age-core
genes (C-index = 0.76—0.79) and DCA validation provided
a quantitative tool for clinical decision-making. This multi-
modal analysis framework provides a new paradigm for
molecular typing and individualized treatment of CRC.
The LASSO risk score model consists of ten genes:
ALDOB, ALDOC, AQP1, CCNAZ2, IL1A, JUND, NDRGI,
PHGDH, PTGIS, and VEGFA. As far as we know, both
ALDOB and ALDOC belong to the aldolase family.
Aldolase, as the fourth enzyme of the glycolysis pathway,
is vital in glycolysis and gluconeogenesis. Previous explora-
tions have revealed a correlation between high ALDOB
levels and unfavorable survival outcomes for CRC patients.
Additionally, increased ALDOB expression serves as a
pivotal trigger for metabolic reprogramming [64,65].
ALDOC overexpression acts as an independent prognostic
factor for CRC patients. Moreover, ALDOC downregulation
inhibits cell proliferation, migration, and spheroid forma-
tion [66]. AQPI belongs to the aquaporin family and is
responsible for the rapid passive transport of water across
biological membranes. It has been shown that AQP9 pro-
motes cancer cell invasion and motility through the AKT
signaling pathway [67]. Similarly, AQPI expression in CRC
cells may enhance their ability to invade surrounding tis-
sues and enter the bloodstream, thereby promoting spread
to distal organs such as the liver. AQPI level is a poor
prognostic factor for advanced colon cancer [68]. CCNA2,
a vital member of the conserved cyclin family and referred
to as cyclin A2, is critical in regulating the cell cycle. Addi-
tionally, CCNAZ2 demonstrates a strong association with the
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Figure 14: The prediction model for CRC shows high prediction accuracy and high net benefit. The forest plot (a) and the nomogram (b) of the
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survival rate of CRC patients. Silencing CCNAZ2 suppresses
CRC cell proliferation and induces apoptosis [69]. IL1A
encodes IL-1a, which belongs to the IL-1 protein cluster,
serves as a pro-inflammatory factor, and is considered a
potential prognostic biomarker related to T-cell infiltration
in CRC patients [70]. JUND, an AP-1 transcription factor,
regulates cell differentiation, proliferation, and apoptosis
[71]. NDRG1 is involved in stress response and many BPs,
such as hypoxia, cell proliferation, lipid metabolism, and
chemotherapy resistance [72]. NDRG1 downregulation and
TNM stage are important independent factors affecting the
OS of CRC patients [73]. Downregulation of NDRGI might
promote epithelial-mesenchymal transition (EMT) pro-
gression in CRC through the NF-«B signaling [74]. PHGDH
is an essential enzyme in synthesizing serine, a metabolic
substrate for producing NADPH and glycine [75]. PHGDH-
mediated serine metabolism promotes DNA hypermethyla-
tion in CRC stem cells by maintaining redox homeostasis
and providing single-carbon units [76]. Inhibitors targeting
PHGDH, such as NCT-503, have shown potential in cancer
therapy. NCT-503 effectively inhibits PHGDH activity,
thereby blocking the serine synthesis pathway, which in
turn affects cancer cell growth and survival [77]. PHGDH
overexpression is linked to the TNM stage and tumor size
and independently predicts a poor prognosis in CRC
patients [78]. PTGIS is an enzyme that converts prosta-
glandin H2 into prostaglandin I2 (PGI2). In CRC, PGE2
promotes tumor metastasis by upregulating miR-675-5p, a
process that involves the regulation of p53 expression [79].
Furthermore, PGE2 regulates cell proliferation and sig-
naling in CRC cells by inhibiting the expression of TIG1
and GRK5 and affecting the B-linker protein/TCF and
cAMP signaling pathways [80]. Its expression is related to
tumor growth and progression [81]. PTGIS overexpression
is closely linked to liver metastasis and predicts a poor
prognosis in colon cancer patients [82]. VEGFA is in med-
iating tumor angiogenesis, with its expression being con-
trolled by oncogenes, diverse growth factors, and hypoxia.
Nevertheless, the influence of JUND on the prognosis
among CRC patients remains unexplored, and its effects
on CRC patient prognosis have not been well explored.
Therefore, from the initial ensemble of 273 HGRGs, a 10-
gene prognostic model was constructed through multi-step
screening such as DEG intersection, WGCNA modular asso-
ciation, and LASSO regression. The core advantages of this
model are as follows: (1) pathway synergy can be captured,
and the selected genes (e.g., glycolysis-related ALDOB,
ALDOC, PHGDH, hypoxia-responsive VEGFA, and NDRG1)
together constitute the core network of hypoxia-glycolysis-
proliferation, avoiding single-gene misclassification. (2)
Predictive robustness is improved, with multigene
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combinations significantly improving prognostic stratifica-
tion (time-dependent ROC AUC > 0.6) and risk prediction
accuracy (C-index 0.76-0.79) over single markers. (3) Reg-
ulatory hubs are revealed, and PPI network and functional
analyses show that the 10 genes form a tight functional
module with VEGFA and other hubs, providing a basis
for multi-target combinations for co-targeted therapies.

The results obtained from GSEA indicated significant
enrichment of all DEGs between the two mRNAsi groups in
various pathways, including the cellular response to
hypoxia, glycolysis, as well as Notch, JAK-STAT, Wnt,
PI3K-AKT, MAPK, Hedgehog, and FceRI-mediated NF-kB sig-
naling pathways. GO analysis unveiled that the 30
HGRMDEGs were enriched in BPs related to response to
hypoxia, cellular response to hypoxia, and glycolysis, as
well as MFs involving lyase activity, receptor-ligand
activity, and carbon—carbon lyase activity. The KEGG ana-
lysis of the 30 HGRMDEGSs mainly revealed enrichment in
the HIF-1a signaling pathway, glycolysis/gluconeogenesis,
and type II diabetes mellitus pathway. Most of the enriched
terms were associated with cancer hallmarks, including
CSCs, hypoxia, and glycolysis. Wnt/B-catenin, Notch, and
hypoxia signaling pathways are crucial in regulating CSC
self-renewal and participating in tumorigenesis [83]. In
addition, the WNT pathway is connected to the poor prog-
nosis of CRC [84]. The PI3K-AKT pathway is vital in main-
taining CSCs in multiple cancers, including CRC, promoting
CSCs’ proliferation, migration, EMT, and invasion [85]. The
AKT/mTOR/HIF-1a signaling pathway is crucial in pro-
moting glycolysis and lactation, thus contributing to the
“metabolic reprogramming” of cancer cells [86]. Epidemio-
logical studies have established that type 2 diabetes mel-
litus (T2DM) is a risk factor for CRC [87]. Interestingly, our
KEGG enrichment results included T2DM pathways, sug-
gesting a potential shared risk factor between T2DM
and CRC.

The multi-omics analysis in this study not only
revealed the functions of key genes but also provided an
in-depth portrayal of the tumor microenvironment shaped
by them. Comprehensive analysis of the tumor microenvir-
onment (including immuno-score, stroma-score, ESTIM-
ATE-score, tumor purity, immune-cell infiltration as
assessed by multiple algorithms, and the TIDE-score)
showed that the high-risk-score group (based on the 10-
gene signature) and/or high HGRG score groups exhibited
significant alterations in tumor microenvironmental char-
acteristics. Specifically, these groups were characterized by
enhanced immunosuppression: e.g., ALDOB overexpres-
sion may inhibit CD8" T-cell function through the WNT/
PD-L1 axis [88], and IL1A promotes TAM-mediated immuno-
suppressive microenvironment formation [89]. High
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expression of the key gene VEGFA drives significant angio-
genesis, which has been shown to be a major driver of
tumor angiogenesis in the high-scoring group in animal
models [90]. Combined CIBERSORTX, MCPcounter, and
sSGSEA algorithm evaluations found that while the high-
risk/high-HGRG group showed higher overall immune cell
infiltration abundance (especially under ssGSEA and
MCPcounter evaluations), this infiltration was accompanied
by specific cellular subset disproportionality and altered
functional status. MSI and TMB levels were significantly
lower in the high-risk group compared to the low-risk group,
while the TIDE score, which reflects immune escape poten-
tial, was significantly higher. Higher HGRG scores were
associated with higher matrix scores, immune scores, and
ESTIMATE scores, accompanied by reduced tumor purity.
The synergistic effect of hypoxia-glycolysis-dryness features
(characterized by HGRG scores and 10-gene risk scores)
shapes a tumor microenvironment with immunosuppres-
sive, angiogenically active, matrix-enriched features and a
high potential for immune escape, which may be one of the
core drivers of poor prognosis in high-risk patients and
directly affects their response to immunotherapy. There-
fore, risk scores derived from the analysis of 10 HGRGs
can effectively identify high-risk patients with the aforemen-
tioned unfavorable tumor microenvironmental features
and help select the most appropriate immunotherapy
candidates.

The multivariate Cox regression model established
using stepwise regression by incorporating ALDOB, AQP1,
IL1A, PHGDH, and PTGIS, TNM stage, and age indicated
that PHGDH could be an independent prognostic factor
for CRC, in line with a previous report with a smaller
sample size. Notably, our study, for the first time, identified
a significant correlation between PHGDH and age. To
enhance its clinical applicability, we established a prog-
nostic nomogram by integrating ALDOB, AQP1, ILIA,
PHGDH, and PTGIS with various clinicopathological fea-
tures. Its accuracy was validated in the TCGA dataset,
revealing a good predictive power. Notably, this is the first
prognostic nomogram based on mRNAsi-related HGRGs,
and these five important genes have yet to be included in
other predictive models for cancers, including CRC. The
utilization of this model could aid in molecular typing
and screening of differential patient subgroups, ultimately
optimizing personalized therapy.

Despite the valuable insights, this study had certain
limitations. First, in terms of data sources, although
multi-omics data (e.g, GEO and TCGA) have been inte-
grated, the samples are mainly derived from Western
populations, especially the TCGA database, which has
more than 85% of Western populations. This data
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heterogeneity may limit the generalisability and accuracy
of the constructed model in Asian populations. Second, in
terms of computational drug sensitivity prediction, the
pRophetic algorithm integrates GDSC and TCGA data to
predict drug sensitivity in CRC and identify potential ther-
apeutic clues for people with high HGRG scores. However,
the model has three limitations: the biological level does
not incorporate tumor microenvironment components
(e.g., fibroblasts, Treg cells, tumor-associated macro-
phages) and dynamic interactions, the pharmacological
mechanism only reflects in vitro cellular effects but ignores
in vivo pharmacokinetics, and the heterogeneity is not suf-
ficiently characterized to recapitulate the intra-tumor
genetic/spatial heterogeneity. The performance of the algo-
rithm is limited by the feature matching between the
training set and the test set, and lacks prospective valida-
tion with clinical efficacy indexes. Therefore, the current
drug sensitivity analysis should be regarded as an explora-
tory hypothesis to guide subsequent studies, and in the
future, it should be deepened through the functional vali-
dation of patient-derived organoid/xenograft model, bio-
marker-based clinical drug tracking, and mechanistic stu-
dies (e.g., analysis of the association between drug targets
and metabolic pathways), in order to provide a reliable basis
for translational decision-making in the clinic. Furthermore,
in terms of mechanistic studies, the functional regulatory
networks of key genes (e.g., PHGDH and VEGFA) rely mainly
on bicinformatics inference, while functional validation by
gene editing (e.g., CRISPR) or organoid models is lacking.
This lack of experimental validation makes the under-
standing of gene function insufficiently deep and accurate.
Finally, in terms of the clinical application of the prognostic
model, although the column-line diagram model has been
validated by DCA, the supporting test kits (e.g., NGS panel)
have not yet been developed, which limits the on-the-ground
application and promotion of the model in clinical practice.
In summary, the current study faces certain limitations in
terms of data sources, computational drug sensitivity pre-
diction, mechanism study, and clinical application of the
prognostic model, which need to be further explored and
addressed in future studies. Our future research interests
include multi-centre cohort validation, organoid drug
screening, functional genome analysis, and development
of clinical translational tools. We plan to incorporate more
than 2,000 samples from multiple centers in Asia to correct
for population variation, analyze the tumour microenviron-
ment using single-cell transcriptome technology, and
develop race-adaptive algorithms. Meanwhile, the CRC orga-
noid library is established to verify drug synergy, detect
serine metabolism, and screen drug resistance genes. In
terms of the functional genome, we validate the PHGDH
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regulatory mechanism, locate HGRG gene expression, and
analyze the PHGDH transcriptional network. Finally, a por-
table gene testing kit and AI decision-making system are
developed to prospectively validate the guiding value for che-
motherapy regimen selection.

5 Conclusion

By integrating multi-omics data and systems biology ana-
lysis, this study deeply analyzed the interaction network
between stemness characteristics and hypoxia—glycolysis
pathway in CRC, and successfully established a molecular
typing and prognosis prediction system with clinical trans-
lational value. The main conclusions include: the identifi-
cation of metabolic-microenvironmental regulatory axes
centered on PHGDH and VEGFA; the classification of CRC
into two molecular subtypes with different therapeutic
sensitivities, which provides a potential strategy for tar-
geted metabolism in combination with antivascular thera-
pies; and the construction of a columnar graph model that
significantly optimizes prognosis prediction of patients
with CRC, which is particularly valuable in individualized
survival assessment of patients with advanced disease.
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