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Abstract
Background ‒ Sarcoidosis is characterized by the prolif-
eration of noncaseating granulomas and presents as a com-
plex chronic inflammatory disease. Autophagy plays a crucial
role in the initiation, progression, and treatment resistance of
various cancers. Despite the recognized importance of autop-
hagy, the involvement of autophagy-related genes (ARGs) in
the pathophysiology of ocular sarcoidosis (OS) remains lar-
gely unexplored.
Methods ‒ We intersected differentially expressed genes
with a curated list of 177 ARGs to identify candidates poten-
tially involved in OS. Advanced methodologies, including
GSEA and GSVA, were employed to explore the biological
functions. Further refinement using Lasso regression and
SVM-RFE allowed for the identification of key hub genes
and the assessment of their diagnostic potential for OS.
Results ‒ Our investigation identified 11 ARGs (DRAM1,
SOGA1, ATG16L2, FYCO1, ATG7, ATG12, ATG14, KIAA0226,
KIAA1324, KIAA1324L, and KIAA0226L) closely associated
with OS. Functional analyses revealed their involvement

in processes such as extracellular stimulus, response to
nutrient levels, and positive regulation of catabolic process.
Importantly, the diagnostic capabilities of these ARGs demon-
strated significant efficacy in distinguishing OS from unaf-
fected states.
Conclusions ‒ Through rigorous bioinformatics analyses,
this study identifies 11 ARGs as novel biomarker candidates
for OS, elucidating their potential roles in the disease’s
pathogenesis.

Keywords: ocular sarcoidosis, autophagy-related genes, bio-
marker candidates, immune infiltration, cell communication

1 Introduction

Sarcoidosis is a systemic granulomatous disorder marked
by non-caseating epithelioid granulomas across multiple
organs. Its etiology remains poorly understood, arising from
complex interactions between immune dysregulation and
environmental exposures, particularly infectious agents [1].
Ocular sarcoidosis (OS) reflects the clinical heterogeneity of
the disease, ranging from isolated ocular involvement toman-
ifestations that precede or accompany systemic disease [2].
Diagnosis remains challenging due to the variable sensitivity
of current tests and the frequent reliance on tissue biopsy for
definitive histological confirmation [3]. Ocular involvement
occurs in approximately 7–60% of cases, with posterior seg-
ment disease often portending central nervous system invol-
vement [4]. The diagnostic process is further complicated by
the clinical mimicry of OS with other ocular inflammatory
conditions [5]. Histopathologically, the identification of non-
necrotizing granulomas and the exclusion of infectious or
foreign material by negative staining remain the gold stan-
dard. Given these diagnostic limitations, elucidating the
molecular underpinnings of OS is critical [6]. A mechanistic
understanding of its pathophysiology is key to developing
targeted therapies that may reduce disease recurrence and
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improve clinical outcomes, ultimately advancing the manage-
ment of sarcoidosis.

Autophagy is a conserved cellular process that degrades
cytoplasmic components via the lysosomal pathway, playing a
pivotal role in cellular self-renewal, homeostasis, and – in cer-
tain contexts – programmed cell death [7,8]. Mounting evidence
highlights its essential function in preserving intracellular integ-
rity and regulating diverse physiological processes. Dysregula-
tion of autophagy, whether through excessive activation or
suppression, has been implicated in the pathogenesis of
numerous diseases, including cancer and pulmonary disorders.
While autophagy-related genes (ARGs) are known to influence
tumor initiation and progression, their precise contributions
remain incompletely characterized [9,10]. Beyond its metabolic
and catabolic roles, autophagy is intricately involved in immune
regulation. It is essential for antigen processing and presenta-
tion via major histocompatibility complex class II molecules,
thereby facilitating T-cell activation and adaptive immune
responses [11]. In the innate immune system, autophagy mod-
ulates the activity of macrophages and dendritic cells, enhan-
cing their capacity to detect and eliminate pathogens. Notably,
autophagy intersectswith apoptotic pathways, shaping immune
cell survival and function [12]. During lymphocyte development,
it contributes to the clearance of aberrant or superfluous cells,

ensuring immune homeostasis. Conversely, impaired autop-
hagy is associated with autoimmune and infectious diseases,
where pathogens may evade immune clearance by subverting
autophagic mechanisms [13]. Deciphering the intricate crosstalk
between autophagy and immunity is crucial for advancing
novel immunotherapeutic strategies.

The advent of high-throughput transcriptomic sequen-
cing, combined with comprehensive clinical annotations
from the OS Initiative, has enabled unprecedented explora-
tion of the transcriptional dynamics and molecular net-
works underlying OS [14–16]. Bioinformatic interrogation
of these rich datasets has yielded critical insights into the
multifactorial pathophysiology of OS. However, the specific
roles of ARGs in OS remain underexplored. To address this
gap, the present study aimed to systematically analyze OS-
associated GEO datasets to elucidate the functional rele-
vance of ARGs in OS pathogenesis, as illustrated in Figure 1.

2 Materials and methods

We adopted the methodologies delineated by Wu et al. in
2023 [17].

Figure 1: Framework.
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2.1 Raw data and differentially expressed
genes (DEGs)

We utilized two foundational datasets from the GEO series,
GSE58331 and GSE105149. GSE58331 was used for training,
while GSE105149 was reserved for validation. Additionally,
the MSigDB provided a comprehensive list of 307 ARGs
(Table S1). mRNA profiles were extracted using Perl scripts
to match and sort transcriptional data from GSE58331.
Following normalization, DEGs among the ARGs were iden-
tified using stringent criteria: FDR < 0.05 and |log2FC| ≥ 1.
Pearson’s correlation coefficient was then employed, using
the corrplot package in R.

2.2 Development of a predictive model,
immune cell infiltration, and functional
enrichment analysis

To explore the biological relevance and pathway engage-
ment of DEGs, we performed GO and KEGG analyses. We
utilized the R programming environment to investigate the
influence of differentially expressed ARGs on BP, MF, and
CC. For model optimization, Lasso regression analysis was
implemented using the glmnet package, enhanced through
rigorous cross-validation procedures. Further validation
was achieved through the deployment of the SVM-RFE
algorithm, facilitated by the e1071 package, meticulously
crafting a robust machine learning model. The reliability
and accuracy of our model were stringently assessed via
cross-validation, focusing on minimizing error rates and
ensuring predictive consistency. Through the utilization
of the ggplot2 package, our analysis prioritized DEGs, pin-
pointing pivotal genes crucial for disease classification.
Moreover, the employment of the CIBERSORT algorithm
enabled detailed analysis of immune cell composition, pro-
viding profound insights into the immunological milieu
pertinent to the pathology under investigation.

2.3 Gene set enrichment and variation
analyses and drug–gene interaction
insights

To decipher functional dynamics and pathway deviations
in diverse biological samples, we applied GSEA and GSVA.
Using the R platform, we analyzed the impact of

differentially expressed ARGs on BP, MF, and CC and
related pathways. This provided a comprehensive view
of their involvement in disease pathophysiology.
Recognizing the critical role of validated biomarkers in
therapeutic design, precise drug–gene interaction predic-
tions are paramount. For this purpose, we leveraged the
DGIdb to forecast potential interactions for pivotal hub
genes, thereby informing potential therapeutic targets.

2.4 Assembly of an mRNA–miRNA–lncRNA
regulatory network

Non-coding RNA transcripts are crucial determinants in
the genetic regulatory framework. miRNAs orchestrate
gene expression by modulating mRNA stability and trans-
lation, whereas lncRNAs, which exceed 200 nucleotides in
length, influence cellular mechanisms through chromo-
somal modifications, transcriptional activation, and
molecular interference. Recent evidence underscores a
sophisticated interaction between miRNAs and lncRNAs,
manifesting in competitive binding dynamics with other reg-
ulatory molecules. This interaction model, referred to as the
ceRNA hypothesis, elucidates how lncRNAs modulate gene
expression by miRNA sequestration. To construct this regula-
tory network, we extracted validated miRNA–lncRNA–target
interactions from databases such as miRTarBase and
PrognoScan, providing a rich resource for understanding
these complex regulatory relationships.

Ethical approval: This manuscript is not a clinical trial;
hence, the ethics approval and consent to participation
are not applicable.

3 Results

3.1 Identification and enrichment analysis
of DEGs

Among the 25 ARGs analyzed, a subset showed significant
differences in expression levels between treatment and
control groups, specifically genes such as ATG2A, ATG101,
KIAA1324, ATG7, DRAM1, ATG16L2, KIAA0226, and
KIAA0226L in the treatment group, while genes like
TG4C, ATG12, ATG14, ATG5, ATG2B, SOGA1, FYCO1, and
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WIPI2 in the control group (Figure 2a). These DEGs were
further analyzed for correlation, and a correlation matrix
was visualized (Figure 2b) (Table S2). GO enrichment ana-
lysis identified 120 core targets. MFs primarily included phos-
pholipid binding (GO:0005543), phosphatidylinositol binding
(GO:0035091), and GTPase binding (GO:0051020). CCs are
mainly involved in vacuolar membrane (GO:0005774), endo-
cytic vesicle (GO:0030139), and extrinsic component of
membrane (GO:0019898). BPs mainly included response to
extracellular stimulus (GO:0009991), response to nutrient levels
(GO:0031667), and positive regulation of catabolic process
(GO:0009896). KEGG analysis revealed that overexpressed
genes were primarily involved in the regulation of autophagy

(hsa04140) and RIG-I-like receptor signaling pathway
(hsa04622) (Figure 3 and Tables S3 and S4).

3.2 Model construction

We employed a comprehensive methodology involving
Lasso regression analysis and Cox proportional hazards
regression analysis (Figure 3a and b). Subsequently, we
constructed a machine learning model using SVM-RFE to
validate the predictive accuracy and reliability of the
model. This model demonstrated impressive accuracy

Figure 2: Principal component analysis. (a) Difference analysis. (b) Correlation analysis. (c) GO. (d) KEGG.
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(0.94) with a minimal error rate of 0.06 (Figure 3c and d). A
cross-reference of five ARGs identified through both Lasso
and SVM methodologies was performed (Figure 3e). Com-
parative analysis with these five hub genes revealed
significantly high area under the curve (AUC) values, indi-
cating robust predictive power: DRAM1 (AUC = 0.912),
SOGA1 (AUC = 0.893), ATG16L2 (AUC = 0.917), FYCO1 (AUC
= 0.981), ATG7 (AUC = 0.815), ATG12 (AUC = 0.815), ATG14
(AUC = 0.893), KIAA0226 (AUC = 0.665), KIAA1324 (AUC =

0.771), KIAA1324L (AUC = 0.771), and KIAA0226L (AUC =

0.823) (Figure 3f). Notably, an AUC of 1.000 (95% confidence
interval [CI]: 1.000–1.000) was achieved in the GSE58331
dataset (Figure 3g; Table 1 and Table S4).

3.3 GSEA analysis

Through literature review and sensitivity analysis within
the model, we identified ATG16L2 and DRAM1 as poten-
tially the most relevant genes to OS. In terms of GO ana-
lysis, ATG16L2 mainly involves BP cellular response to
interferon gamma, BP leukocyte cell–cell adhesion, and
BP myeloid leukocyte activation. DRAM1 mainly involves
BP regulation of innate immune response, BP regulation of
response to biotic stimulus, and BP response to interferon
gamma (Figure 4a). In KEGG analysis, ATG16L2 is primarily
associated with leishmania infection, nod-like receptor sig-
naling pathway, and spliceosome, while DRAM1 is linked to
nod-like receptor signaling pathway, spliceosome, and toll-
like receptor signaling pathway (Figure 4b) (Table S5).

3.4 Immunological environment in OS

The immunological milieu plays a pivotal role in the initia-
tion and progression of OS. We utilized a violin plot to
depict the distribution of immune cell levels. In the treat-
ment group, there was a marked elevation in the expres-
sion of naive B cells, memory B cells, follicular helper T
cells, resting NK cells, M0 macrophages, and activated mast
cells. Conversely, the control group showed significantly
higher levels of memory cells, activated NK cells, M2
macrophages, and resting mast cells (Figure 5a). Further,
we performed a correlation analysis between these genes
and immune cells (Figure 5b). Additionally, we separately
analyzed the immune infiltration patterns of ATG16L2 and
DRAM1 (Figure 5c and d).

Figure 3: The ARG signature. (a) Regression of Lasso. (b) Cross-validation. (c and d) Accuracy and error. (e) Venn. (f) AUC of 11 hub genes. (g) AUC of
the training group.

Table 1: The characteristics of model

Label Lasso SVM-RFE

Sensitivity 1 1
Specificity 0.875 0.75
Pos pred value 0.916666667 0.846153846
Neg pred value 1 1
Precision 0.916666667 0.846153846
Recall 1 1
F1 0.956521739 0.916666667
Prevalence 0.578947368 0.578947368
Detection rate 0.578947368 0.578947368
Detection prevalence 0.631578947 0.684210526
Balanced accuracy 0.9375 0.875
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3.5 GSVA analysis

ATG16L2 mainly involves BP cellular response to heparin,
MF CCR6 chemokine receptor binding, CC troponin com-
plex, BP lacrimal gland development, BP acetate ester
transport, CC microvesicle, BP flavone metabolic process,
BP flavonoid glucuronidation, and BP xenobiotic glucuro-
nidation. DRAM1 mainly involves MF structural consti-
tuent of tooth enamel, CC microvesicle, BP regulation of
response to drug, BP flavonoid glucuronidation, BP nega-
tive regulation of feeding behavior, BP flavone metabolic
process, CC troponin complex, BP acetate ester transport,
and BP xenobiotic glucuronidation (Figure 6a). In terms of
KEGG analysis, ATG16L2 mainly involves limonene and
pinene degradation, drug metabolism – other enzymes,
butanoate metabolism, neuroactive ligand receptor inter-
action, maturity onset diabetes of the young, olfactory
transduction, basal cell carcinoma, hedgehog signaling
pathway, glycine serine and threonine metabolism, and
glycosphingolipid biosynthesis lacto and neolacto series.

DRAM1 mainly involves butanoate metabolism, drug
metabolism – other enzymes, neuroactive ligand receptor
interaction, olfactory transduction, glycine serine and
threonine metabolism, glycosphingolipid biosynthesis
lacto and neolacto series, hedgehog signaling pathway,
basal cell carcinoma, maturity onset diabetes of the young
(Figure 6b).

3.6 Drug–gene interactions and
construction of miRNA–lncRNA shared
genes network

The 11 hub genes predicted one drug (cisplatin). We con-
ducted searches in three databases to identify 289 miRNAs
and 376 lncRNAs linked with OS (Tables S10 and S11). Table
S6 demonstrates the matching of these genes against the
corresponding miRNA database. The databases used for this
search were miRanda [18], miRDB [19], and TargetScan [20].

Figure 4: GSEA analysis in ATG16L2 and DRAM1. (a) GO. (b) KEGG.
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Figure 5: Immunological environment. (a) Immune cell. (b) Correlation between ARGs and immune cells. (c) ATG16L2. (d) DRAM1.

Figure 6: GSVA analysis in ATG16L2 and DRAM1. (a) GO. (b) KEGG.
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Each match with the relevant miRNA in these databases was
assigned a score of 1. Notably, a match in all three databases
received a score of 3. The corresponding lncRNA data were
obtained by matching the miRNAs with the spongeScan data-
base. The miRNA–lncRNA–gene interaction network was
established by intersecting datasets with shared genes identi-
fied through Lasso regression and SVM-RFE. This comprehen-
sive network encompasses 271 lncRNAs, 225 miRNAs, and
several common genes, prominently featuring 7 hub genes:
FYCO1, KIAA1324L, ATG7, KIAA1324, DRAM1, ATG16L2, and
ATG12 (Figure 7).

3.7 Validation of hub genes

We used GSE105149 for validation of the hub genes.
However, among the five ARGs, only ATG16L2 and

DRAM1 showed significant differences in the GSE105149
analysis (Figure 8). Upon recalibration of the data, we
observed differences in sample sizes between the two data-
sets, as well as differences in patient sources, which may
have contributed to bias in the results.

3.8 Model verification

The boxplots illustrated the residual expression patterns of
these genes in OS (Figure 9a). There were differences in the
proportions of the four different modes (Figure 9b and c). The
diagnostic capacity of the ARGs in distinguishing OS from
control samples revealed a satisfactory diagnostic value,
with an AUC of RF: 1.000; SVM: 1.000; XGB: 1.000; and GLM:
1.000 (Figure 9d). Additionally, an AUC of 1.000 (95% CI
1.000–1.000) was achieved in GSE105149 (Figure 9e).

Figure 7: miRNAs–lncRNAs shared genes network. Note: Red circles are mRNAs, blue quadrangles are miRNAs, and green triangles are lncRNAs.
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4 Discussion

Ophthalmic disturbances are prevalent in a significant pro-
portion of sarcoidosis patients, affecting 30–60% of cases.
OS may occur independently, without systemic manifesta-
tions, or as the primary site of affliction, accompanied by
limited symptoms in other regions [21]. Although OS can
affect any part of the eye, uveitis is the most common form,
impacting 20–30% of those diagnosed with sarcoidosis [22].
The burden of these symptoms is considerable, affecting
patients’ physical and psychological well-being and imposing
substantial economic costs. Ocular complications can lead to
reduced visual function, pain, discomfort, and diminished
quality of life [23]. Addressing the challenges of OS necessi-
tates a multidisciplinary approach involving ophthalmolo-
gists, pulmonologists, rheumatologists, and other relevant
specialists to ensure comprehensive care. Accurate and
timely diagnosis of OS is critical to prevent irreversible
damage and optimize treatment outcomes [24]. Autophagy,
as a critical intracellular degradation and recycling
mechanism, maintains the health of ocular tissues by regu-
lating cellular homeostasis and removing damaged organelles
and proteins. In glaucoma, autophagy mitigates neuronal

death and optic nerve damage by clearing damaged retinal
ganglion cells and mitochondria. Studies have shown that
activation of autophagy helps protect retinal cells, reducing
cellular stress and damage caused by elevated intraocular
pressure [25]. In age-related macular degeneration (AMD),
impaired autophagy is considered a key factor in the degen-
eration and death of retinal pigment epithelial cells. Defective
autophagy may lead to the accumulation of harmful intra-
cellular substances, exacerbating retinal damage and macular
degeneration [26]. Enhancing autophagic activity is viewed as
a potential therapeutic strategy to clear accumulated patho-
genic proteins and lipids, thereby protecting retinal cells.
Moreover, in diabetic retinopathy, autophagy plays a crucial
role. Under hyperglycemic conditions, dysregulated autop-
hagy may contribute to retinal vascular abnormalities and
neurodegenerative changes. Modulating autophagy pathways
could effectively alleviate retinal damage caused by diabetes
and protect visual function [27]. In summary, autophagy is
pivotal in the pathogenesis and progression of various ocular
diseases. A deeper understanding of the relationship between
autophagy and eye diseases will aid in the development of
novel therapeutic approaches to preserve vision and ocular
health. Our investigation elucidated the significant

Figure 8: Validation of hub genes.
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interactions between these genes and specific transcription
factors within the context of angiogenesis. A thorough review
of existing literature highlighted the pivotal roles of ATG16L2
and DRAM1 genes in the interface between OS and ARGs.
Further analysis of their biological functions demonstrated
their involvement in various immune-related processes,
such as epithelial cell migration, tissue migration, and
broader epithelium dynamics. These findings suggest that
ARGsmay exert extensive regulatory influence across diverse
biological pathways, particularly in immune modulation.

ATG16L2 and DRAM1 are genes that have been increas-
ingly recognized for their roles in a variety of pathological
conditions, including ocular diseases. Their involvement in
extracellular matrix remodeling and immune responses,
respectively, underscores their importance in disease
mechanisms. The genes ATG16L2 and DRAM1 have been
identified as significant contributors to the pathogenesis
of various diseases through their roles in autophagy. The
ATG16L2 gene encodes a protein that is integral to the
autophagy process, which is essential for maintaining cel-
lular homeostasis and removing damaged organelles [28].
Dysregulation of ATG16L2, due to mutations or altered
expression, can lead to autophagic dysfunction, which is
implicated in a range of disorders, including AMD and
retinitis pigmentosa [29]. DRAM1, another key player in

autophagy, encodes a protein that is critical for the forma-
tion and maturation of autophagosomes. Functional
impairments in DRAM1 are associated with the pathogen-
esis of several degenerative diseases, notably glaucoma
and diabetic retinopathy. In these conditions, abnormal
DRAM1 expression can induce cellular stress and apop-
tosis, thereby exacerbating disease progression [30].
Thus, aberrations in ATG16L2 and DRAM1 may facilitate
the development of diseases by disrupting autophagic
pathways. These discoveries not only deepen our under-
standing of the molecular mechanisms driving these
conditions but also suggest potential therapeutic targets.
Continued research is essential to elucidate the precise
roles of these genes across various pathological states
and to assess their viability as therapeutic targets. This
body of evidence reveals a nuanced interplay between
ATG16L2 and DRAM1 in regulating retinal function and
intraocular pressure, offering fresh insights into the patho-
physiology of ocular diseases. Our study, supported by
dataset GSE105149, delves into the roles of these genes in
OS, suggesting that angiogenesis-related traits could serve
as potential prognostic indicators. This comprehension
paves the way for novel approaches in managing and
treating ocular diseases, underscoring the importance of
ATG16L2 and DRAM1 in preserving ocular health.

Figure 9: Model verification. (a) Residual expression patterns. (b and c) Model expression patterns. (d) AUC of the model. (e) AUC of the test group.
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In the intricate landscape of OS, an expanding body of
evidence is challenging the traditional view that links an
enhanced immune response solely to CD4 cell activity.
Instead, a more complex picture is emerging, one that
includes pre-existing T-regulatory cells and a blend of both
proinflammatory and regulatory elements, such as variations
in cytokine levels [31]. This complexity may underlie a disor-
dered immune reconstitution, rendering individuals more
vulnerable to opportunistic infections – whether existing,
latent, or previously managed [32]. As a result, diseases
such as tuberculosis, cytomegalovirus infections, progressive
multifocal leukoencephalopathy, kaposis sarcoma, and var-
ious autoimmune disorders may become exacerbated or
escape detection. Notably, cytomegalovirus retinitis emerges
as a leading opportunistic infection associated with immuno-
logical recovery uveitis [33,34]. Emerging therapeutic strate-
gies that aim to increase intracellular cAMP levels offer a
promising avenue for mitigating chronic inflammation.
Small-molecule phosphodiesterase 4 inhibitors, which pre-
vent cAMP degradation, have shown efficacy in a range of
inflammatory conditions, including inflammatory bowel dis-
ease, atopic dermatitis, and rheumatoid arthritis [35,36].
Expanding on our prior research, we investigated the expres-
sion patterns of ARGs in the immune environment. Strikingly,
our observations revealed significant expression in various
cell types within the treated group, including naive B cells,
memory B cells, follicular helper T cells, resting NK cells, etc.
Through bioinformatics validation, we identified abnormal
gene expression signatures linked to dysregulated immune
responses in OS patients, offering crucial insights into the
disease mechanisms.

The exploration of biomarkers in the context of OS has
been notably limited, with the intricate relationship between
metabolic processes and ocular diseases only recently begin-
ning to emerge through bioinformatics analyses [37–39]. In
the rapidly evolving field of OS research, Liu et al. recently
identified hub genes associated with the condition using
WGCNA. Similarly, Hu et al. developed a bioinformatics
model for thyroid eye disease, pinpointing 11 key genes.
Huang et al. made significant strides by identifying six crucial
genes central to diabetic retinopathy through sophisticated
bioinformatics analyses, complemented by in vivo validation.
Despite these advancements, the intersection between angio-
genesis and OS remains largely unexplored. Our study aims
to address this gap by investigating cell metabolism and
examining ARGs extracted from GEO datasets. This innova-
tive approach distinguishes our work, offering novel theore-
tical perspectives and methodological innovations. However,
our study has limitations. A deeper understanding of the
molecular dynamics linking ARGs with OS is crucial. Both
in vivo and in vitro studies hold immense potential for

unraveling these complexities, suggesting numerous avenues
for future research. Additionally, exploring the correlation
between prognostic genes and ARGs in the context of OS is
essential.

5 Conclusion

The pathogenesis and progression of OS involve complex,
multifactorial interactions among various targets, path-
ways, signaling molecules, and regulatory frameworks.
Among these, ATG16L2 and DRAM1 are pivotal, exerting
significant influence on the angiogenesis program.
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