DE GRUYTER

Open Medicine 2025; 20: 20251238

Research Article

Xianwei Chen”, Yugi Yang®, Donggi Li, En Ye, Bingjian He, Mingshu Yu, Jiankai Luo, Jing Zhang*
A prognostic model correlated with fatty acid

metabolism in Ewing’s sarcoma based on

bioinformatics analysis

https://doi.org/10.1515/med-2025-1238
received February 26, 2025; accepted June 16, 2025

Abstract

Background - Ewing’s sarcoma (EWS) is a highly aggres-
sive malignant tumor that originates from bone or soft
tissue. To date, there is no established prognostic model
for EWS tumor. This study aims to identify prognostic
genes and develop a predictive model associated with fatty
acid metabolism in EWS using bioinformatics analysis.
Results — We analyzed the GSE17679 dataset and identi-
fied 25 differentially expressed genes related to fatty acid
metabolism in EWS. A risk model composed of ACADM,
ADHS5, ACSL1, ELOVL4, ECI1, PPT1, and ACOT7 gene signa-
tures was constructed. The AUC values at 3 and 5 years were
both >0.7, indicating good predictive accuracy. GSVA analysis
revealed significant differences in fatty acid metabolism
pathway enrichment between high- and low-risk groups.
Differential genes were primarily enriched in pathways
such as fatty acid oxidation, lipid oxidation, lipid modifi-
cation, and fatty acid degradation. Immune infiltration
analysis showed significant differences in memory B cells,
activated NK cells, and neutrophils between the two groups.
Additionally, significant differences were observed in the
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expression of immune checkpoints such as HAVCR2 and
LDHB. Immunohistochemistry and survival analysis further
demonstrated that the expression of PPT1 and ACOT?7 proteins
was associated with the progression-free survival of EWS
patients.

Conclusions — We successfully constructed a prognostic
model for EWS related to fatty acid metabolism genes.
PPT1 and ACOT7 may serve as promising predictors for
EWS prognosis.

Keywords: Ewing’s sarcoma, fatty acid metabolism, bio-
informatics, biomarker, prognosis model, immune infiltration

1 Introduction

Ewing’s sarcoma (EWS) is the second most common pri-
mary bone tumor in children and adolescents, often origi-
nating in soft tissue. It is an extremely aggressive cancer,
with a survival rate of 70-80% for patients with localized
disease, but less than 30% for those with metastatic disease
[1]. Over the past two decades, EWS survival rates have
remained largely stagnant worldwide due to the lack of
effective therapies [2,3]. In fact, most EWS patients already
have micrometastases at the time of diagnosis. According
to the WHO classification of bone tumors (2020), EWS is
categorized as a small round cell sarcoma, primarily char-
acterized by different EWS gene (EWSR1) fusions on chro-
mosome 22q12 [4]. Although numerous biomarkers have
been identified in EWS [5], the metastatic mechanisms of
EWS remain unclear. Therefore, establishing a systematic
prognostic model to predict EWS metastases is crucial for
guiding early diagnosis and treatment.

While EWSR1-FLI1 is the driver gene of EWS oncogen-
esis, its expression often fails to predict EWS metastases
due to influences from epigenetics, metabolomics, and
other factors [6]. Cancer cells can often regulate their meta-
bolism through multiple pathways. Compared to normal
cells, cancer cells seem to be more likely to utilize energy
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through glycolysis and abnormal fatty acid metabolism
due to the imbalance of the tricarboxylic acid cycle [1].
Recently, studies have demonstrated significant alterations
in fatty acid metabolism in tumor cells [2,7]. Cancer cells
rely on fatty acids as essential materials for cell synthesis,
including cell membrane production, energy storage, and
the synthesis of signaling molecules [3,8]. Fatty acid metabo-
lism has been shown to be associated with prognosis in
patients with rhabdomyosarcoma, breast cancer, lung cancer,
and colon cancer [9-12]. A recent study also indicated that
increased lipid peroxidation could lead to changes in S-phase
progression and apoptosis in EWS cells [13]. These findings
suggest that fatty acid metabolism may play a vital role in
EWS tumor metastasis.

Therefore, leveraging public databases and bioinfor-
matics approaches, this study comprehensively analyzed
the prognostic value and potential mechanisms of fatty acid
metabolism genes in EWS. The findings were further vali-
dated using immunohistochemical assays. This study pro-
vides a novel tool for predicting the prognosis of EWS patients
and lays the groundwork for future research into the mole-
cular mechanisms of fatty acid metabolism in EWS.

2 Research methods

2.1 Data construction, evaluation, and
validation of the fatty acid metabolism-
related gene (FAMG) risk model for EWS

We use EWS GSE17679 from the GEO database as a training
set and the ICGC (BOCA-FR) as a testing set. A total of 92
FAMGs were obtained from the literature. Eighty-three
FAMGs were detected in the GSE17679 dataset. Then, dif-
ferentially expressed FAMGs (DE-FAMGs) were analyzed
by the Limma R package (version 4.2) [4]. We set |log2FC| >1
and P < 0.05. The FAMGs significantly associated with overall
survival in EWS were identified using univariate Cox regression
analysis (P < 0.05). These genes were included in the subsequent
LASSO analysis. Next, we constructed the risk model by risk
score (from multivariate Cox analysis). Patients were classified
into two groups based on the median risk score. Kaplan—Meier
survival analysis was used to compare survival outcomes
between these groups. The predictive accuracy of the risk score
model for overall survival in EWS patients was evaluated using
time-dependent ROC curves.
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2.2 Analysis of differential genes between
high- and low-risk groups, GO and KEGG
enrichment, and protein-protein
interaction (PPI) network

High and low groups differentially expressed genes (DEGSs)
by “Limma” [4]. |log,FC| > 1 and P < 0.05 were set, and
enrichment analysis was performed (clusterProfiler) [5].
The STRING V11.5 website was employed for PPI analysis
(https://cn.string-db.org).

2.3 Analysis of immune infiltration and
immune checkpoints in high- and
low-risk groups

The EWSTIMATE algorithm was applied to infer infiltrating
stromal cells and immune cells [6]. CIBERSORT [7] was
used to predict differences in the levels of infiltrating
immune cells. GSVA was used to quantify the enrichment
scores of KEGG pathways and immune risk genes in var-
ious immune-related gene sets [8]. Subsequently, we ana-
lyzed the expression of immune checkpoints.

2.4 Immunohistochemistry

A total of 27 paraffin-embedded EWS tissue specimens
were collected between May 2009 and June 2022 for immuno-
histochemical staining (Approval Number: KYLX2023-074).
All patients were histologically diagnosed at Yunnan
Cancer Hospital (Table 1). The follow-up time for patients
ranged from 3 to 165 months (median: 22 months). We
reviewed the relevant literature of seven genes (PPT1,
ACADM, ADH5, ACOT7, ACSL1, ELOVL4, and ECID) and
selected five genes (PPT1, ACADM, ACOT7, ACSL1, and ECI1)
that can obtain antibodies (Table S1) with high clinical appli-
cation values. The tissue was fixed overnight, dehydrated,
and embedded, and an immunohistochemical section was
performed on 4 um-thick sections. Using the SP immunohis-
tochemistry two-step method, the sections were dewaxed,
hydrated, subjected to antigen repair, and incubated. The
sections were blocked with endogenous peroxidase and
then washed. All antibodies were diluted according to the
instructions. Digital pathological sections were scanned, and
two experienced pathologists, blinded to the sample origins
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Table 1: General clinical data of 27 EWS patients

Clinicopathological ACOT7 P PPT1 P
characteristics -
>6 <6 26 <6
Sex
Male 8 5 7 6
Female 7 7 0.42 9 5 0.44
Age
<18 7 3 5 5
218 8 9 0.23 n 6 0.36
Enneking stage
I 10 8 12 6
11 5 4 0.66 4 5 0.24
Location
Limbs 8 7 n 4
Trunk 3 2 2 3
Pelvis 4 3 1.00 3 4 0.32

and patient outcomes, independently assessed each section.
At least five high visual fields were observed, and the final
immunoreactivity score (the intensity score * the extent score
of stained cells) was calculated according to the German semi-
quantitative scoring system [9].
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Ethics and Consent: We obtained approval from the Ethics
Committee of the Third Affiliated Hospital of Kunming
Medical University (KYLX2023-074) on 2023-04-21.We have
applied for exemption from signing the informed consent
form when approved by the ethics committee.

3 Results

3.1 Construction, evaluation, and validation
of the EWS FAMG risk model

Using univariate Cox regression, LASSO regression, and
multivariate Cox regression, a prognostic model based on
seven markers was constructed. A total of 25 DE-FAMGs were
identified, comprising 11 upregulated and 14 downregulated
genes (Figure 1a, Table S2). In total, 13 genes associated with
prognosis were screened (Figure 1b) and included in the
LASSO analysis. In the LASSO analysis, 13 genes were included
in the penalty. As the penalty coefficient lambda was varied,
an increasing number of variable coefficients were
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Figure 1:

AIC: 353.47; Concordance Index: 0.81
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Construction of an FAMG risk model of EWS. (a) Heatmap of 25 differentially expressed fatty acid metabolism genes in tumors and normal

tissues. (b) Thirteen genes were screened by univariate Cox regression analysis from FAMGs. (c) and (d) Nine genes were selected by LASSO analysis.
(e) A prognostic model for seven genes was constructed by multivariate Cox regression analysis from FAMGs.
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Figure 2: Survival analysis and ROC curves for training and testing sets. (a) Survival curves of the high- and low-risk score groups of the training sets.
(b) and (c) ROC curves at 3 and 5 years for the risk model of training sets. (d) Survival curves of the high- and low-risk score groups of the testing sets.
(e) and (f) ROC curves at 3 and 5 years for the risk model of the testing sets.

compressed to zero. The lambda.min = 0.076 obtained the best
performance, and lambda.Lse = 0.146 was selected as a sim-
pler model without significantly reducing the model perfor-
mance (Figure 1c and d). Finally, nine genes were selected and
included in the multivariate Cox analysis. As shown in Figure
le, seven genes related to prognosis (P < 0.05) were PPT1,
ACADM, ADHS5, ACOT7, ACSL1, ELOVL4, and ECI1. The results
showed that prognosis was significantly better in the low-risk
score group than in the high one in the training (P < 0.001,
Figure 2a) and testing sets (P < 0.001, Figure 2d). We evaluated
the model using the ROC curves. The results showed that both
the AUC values at 3 and 5 years were 0.7, indicating a decent
precision accuracy (Figure 2b, ¢, e and 1).

3.2 Enrichment analysis on DEGs between
the high- and low-risk groups

It has a good prognosis in the training and testing data-
bases. A total of 38 DEGs were identified between the two
groups (Figure 3a), including 18 upregulated and 20 down-
regulated genes. Gene Ontology (GO) enrichment analysis
revealed that these genes were involved in processes such

as fatty acid metabolism, small molecule catabolism, fatty
acid oxidation, lipid oxidation, lipid modification, cellular
lipid catabolism, and the mitochondrial matrix (Figure 3b).
KEGG enrichment analysis indicated that the DEGs were sig-
nificantly enriched in pathways related to fatty acid degrada-
tion and the degradation of valine, leucine, and isoleucine
(Figure 3c). To further understand the linkage of these 38
DEGs, we constructed a PPI network. In this network, 25
proteins encoded by differential genes interacted, including
95 edges (Figure 3d). Among the seven prognostic models that
we constructed, ACADM, ADH5, ACSL1, ELOVL4, and ECI1 play
a key role in the PPI network.

3.3 Different immune infiltration and
immune checkpoints in the two groups

The high- and low-risk groups exhibit differences in the
immune microenvironment. First, using the GSVA algo-
rithm (Figure 4a), we found that there were significant
differences in the enrichment of fatty acid metabolism path-
ways. The results indicated no significant difference in the
stromal score, EWSTIMATE score, and tumor purity, except
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Figure 3: DEGs between the high- and low-risk groups. (a) Heatmap of DEGs between the high- and low-risk groups. (b) GO enrichment analysis in the
high- and low-risk groups. (c) KEGG enrichment analysis in the high- and low-risk groups. (d) PPI network of the differential genes between the high-
and low-risk groups.
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Figure 5: Immunohistochemical validation and statistical analysis of PPT1 and ACOT7. (a) PPT1 expression at magnifications of x100 and x400.
(b) ACOT7 expression at magnifications of x100 and x400. (c) High expression of PPT1 was associated with a longer PFS time in patients with EWS
(P =0.0381). (d) Low expression of ACOT7 was associated with a longer PFS time in patients with EWS (P = 0.0239).

for the immune score of EWS patients (Figure 4b—e). CIBER-
SORT analysis revealed differences in the memory B cells,
plasma cells, resting memory CD4 T cells, resting NK cells,
activated NK cells, and neutrophils (Figure 4f). The functional
analysis showed that there was a difference in T-cell costimu-
lation-related functions (Figure 4g). Subsequently, the expres-
sion of immune checkpoints was analyzed, and it was found
that there were differences in CD40, CD40LG, CD8A, CTLA4,
FGL1, HAVCR2, JAK1, LDHB, and TNFRSF18, suggesting immuno-
therapy binding sites (Figure 4h).

3.4 Expression levels of PPT1 and ACOT7 are
associated with the survival of EWS
patients

Combining the experiment and clinical information, the
correlation between key markers and prognosis was ver-
ified. As shown in Figure 5a and b, the ACOT7 and PPT1 pro-
teins were widely expressed in EWS tumor cells with strong
cytoplasmic and nuclear staining; the remaining proteins
(ACADM, ACSL1, and ECI1) are shown in Figure S2. To evaluate
the relationship between ACOT7 and PPT1 expression levels
and clinicopathological features, EWS specimens were divided

into high-expression groups (n = 15 for ACOT7, n = 16 for PPT1)
and low-expression groups (n = 12 for ACOT7, n = 11 for PPT1).
The high ACOT7 expression levels were significantly associated
with shorter PFS time (P = 0.0239; Figure 5d). The patients with
low PPT1 expression levels were significantly associated with a
shorter PFS time (P = 0.0381; Figure 5c). Cox regression analysis
identified ACOT7 (P = 0.004) and PPT1 (P = 0.020) expression as
independent prognostic indicators for PFS of EWS patients
(Table 2). Subsequently, we validated the key markers in the
GEO dataset GSE17674 (Figure S1).

4 Discussion

The treatment of EWS has not progressed for a long time.
Recently, FAM has become an emerging target in cancer
treatment. The growth of tumor tissue requires a large
amount of energy consumption. By regulating FAM, tumor
tissue can change its metabolism to meet this energy
demand. Therefore, we hope to find the key target for
regulating FAM in EWS and inhibiting tumor progression.
We conducted bioinformatics analysis based on public
data of EWS and FAMGs and screened seven DE-FAMGs
in EWS with prognostic values. By collecting postoperative
pathological sections from patients in our hospital and
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Table 2: Multivariate Cox regression analysis based on the patient’s
basic information

Variable Multivariate Cox analysis

HR 95%CI P
Sex
Male 0.996 0.395-2.509 0.993
Female
Age
<18 0.703 0.236-2.096 0.527
218
Enneking stage
1IB, 1IC 4.318 1.256-14.846 0.020
I
Location
Limbs 1.103 0.294-4.139 0.885
Trunk 0.578 0.181-1.850 0.356
Pelvis
PPT1 expression
High 0.284 0.098-0.823 0.020
Low
ACOT7 expression
High 5.796 1.778-18.891 0.004
Low

following up on patients, and performing statistical ana-
lysis of relevant data, immunohistochemical verification of
the tumor tissues of patients and survival analysis, we
selected two biomarkers related to the clinical prognosis
of tumors, filling the gap in early treatment and prognosis
judgement for EWS.

We found that ACOT7 and PPT1 are closely related to
patient PFS by immunohistochemistry and correlation sta-
tistical analysis of EWS tissue. At present, many studies
have shown that the genes we mentioned above participate
in the pathogenesis of tumors by affecting lipid metabo-
lism, but there is no relevant research in EWS. The dis-
order of fatty acid metabolism is considered a part of the
malignant transformation in many different cancers
[10,11]. Acyl coenzyme A thioesters (ACOT7) are the main
subtype of the acyl coenzyme family, which can catalyse
the hydrolysis of acyl-CoA to free fatty acids and coenzyme
A without esterification. ACOT7 plays an important role in
lipid metabolism [12-14]. ACOT7 plays a role in immune
cell infiltration and is closely associated with the cancer
immune microenvironment [15]. Some studies [14] have
shown that ACOT7 can enhance the proliferation and
migration of hepatocytes by increasing the content of
C18:1 monounsaturated fatty acids. A study on lung cancer
suggested that ACOT7 metabolites may influence cancer
prognosis by mediating changes in fatty acid metabolism
through endoplasmic reticulum stress [12]. Microarray
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analysis related to malignant melanoma also reported
that tumor progression was related to the high expression
of ACOT7 [16]. Methylated ACOT7 may play a role in tumor
inhibition [17]. Overexpression of ACOT7 promotes the pro-
duction of the monounsaturated fatty acid oleic acid,
which enhances the proliferation and migration of liver
cancer cells. [14]. Reports show that ACOT7 can inhibit lipid
peroxidation by inhibiting ferroptosis [18]. Lysosomes play
a dual role in cancer metabolism by facilitating catabolic
processes such as autophagy and macropinocytosis while
also promoting mTORCI1-dependent anabolism. Palmitoyl
protein thioesterase 1 (PPT1), a lysosomal enzyme, is over-
expressed in various tumors and is associated with poor
survival. However, this finding is inconsistent with our
results (Figure 5c). This may be related to the fact that
targeting PPT1 can block mTOR signal transduction while
inhibiting autophagy and can be used as a target treatment
[19]. Currently, the mechanism of action of ACOT7 and PPT1
in EWS has not been reported. We found for the first
time that ACOT7 and PPT1 might be prognostic biomarkers
in patients with EWS, and they are closely related to sur-
vival prognosis. Further experimental research and clin-
ical validation are needed to understand how these factors
influence fatty acid metabolism during the development
and progression of EWS and their impact on patient
prognosis.

The enrichment analysis results are consistent with
the report of Buchou et al., indicating that FAMGs may
be related to the modification of EWSR1 [20]. Immune infil-
tration and immune checkpoint analysis of the two groups
were performed. Our analysis revealed significant differ-
ences in the memory B cells, activated NK cells, and neu-
trophils between the two groups. Research suggests that
obesity can drive lipid accumulation in NK cells through
the peroxisome proliferator-activated receptor (PPAR),
resulting in the metabolic and functional “paralysis” of
these cells. This impairs their ability to mount an effective
antitumor response [21]. There have also been reports of
NK cell-related fatty acid metabolism abnormalities
leading to tumor progression in lung adenocarcinoma
and lymphoma [22,23]. This may be related to the change
in the tumor microenvironment (TME), leading to immune
resistance [24]. Research has reported that when glucose
utilization is restricted, tumor-induced oxidative neutro-
phils can maintain ROS production and inhibit T cells,
leading to tumor development [25]. HAVCR2, LDHB, and
TNFRSF18 have been a research basis for immune check-
points. Studies have shown that an increase in glycolysis
leads to the accumulation of lactic acid in cells, forming an
acidic environment. This inhibits the activity of CD4 T cells
and promotes the development of tumors. Therefore,
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overexpression of LDHB may represent a promising
strategy to enhance the effectiveness of adoptive T-cell
transfer therapy [26]. The genes HAVCR2 and TIM-3 (t cell
immunoglobulin domain and mucin domain 3, CD366)
have been shown to be coexpressed with PD-1. Their high
expression may block the adaptive resistance of PD-1 to
promote tumor progression, while blocking the TIM-3
and PD-1 pathways significantly inhibits tumor growth
[27]. Some studies have shown that TNFRSF18 (glucocorti-
coid-induced tumor necrosis factor) can activate the
MAPK/ERK and NF-kB pathways through the high-level
expression of T-reg cells, thus leading to the production
of proinflammatory cytokines and enhancing the anti-
tumor effect [28]. However, the specific immune mechan-
isms underlying EWS remain unclear, highlighting the
need for further investigation.

In this study, database analyses were conducted to
identify FAMG targets that may influence the prognosis
of EWS. However, due to the low prevalence of EWS, the
database contains a small number of datasets and lacks a
comprehensive multicenter, multidata set study. Further
experimental validation is also lacking, and further
research is needed. In subsequent research, it is necessary
to increase the sample size and further study the
mechanism. In addition, an increasing number of studies
are exploring levels of tumors using Multiomics. We can
also conduct research on EWS from other aspects such as
single-cell and proteomics to understand the specific
mechanisms of fatty acid metabolism in disease occur-
rence, development, and drug resistance.

5 Conclusions

In summary, we developed a prognostic model for EWS
and identified two biological targets based on public data-
bases and patient data from our hospital. Our study iden-
tifies new biological targets for predicting the prognosis of
EWS patients, potentially aiding in clinical decision-
making.

Abbreviations
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GEO Gene Expression Omnibus
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ROS Reactive oxygen species

FAMGs Fatty acid metabolism-related genes
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KEGG  Kyoto Encyclopedia of Genes and Genomes
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PPAR Peroxisome proliferator-activated receptor
TME Tumor microenvironment
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