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Abstract
Background ‒ Peripheral nerve injury can lead to sen-
sory, motor, and autonomic nerve dysfunction, signifi-
cantly impacting patients’ quality of life. Schwann cells
(SCs), as key components of the peripheral nervous system,
play a crucial role in nerve repair. However, many function-
ally specialized and flexible SC subtypes remain unidentified.
Recent advancements in single-cell transcriptomics have
enabled a deeper understanding of SC heterogeneity during
peripheral nervous system development.
Methods ‒ In this study, we utilized single-cell transcrip-
tomics to investigate SC heterogeneity in the dorsal root ganglia
of both normal and spinal nerve injury mouse models.
Results ‒ We identified a novel SC subtype associated with
pressure sensation, which we termed stress response related
SCs (SRSCs). These cells are terminally differentiated and
highly express the pressure-sensing gene Npy. Following per-
ipheral nerve injury, SRSCs function as stimulus receptors,
receiving external stimuli and transmitting signals to typical
repair SCs via the SPP1 signaling network. This interaction
promotes dedifferentiation and facilitates injury repair.
Conclusion ‒ Our findings enhance the understanding of
SC heterogeneity and reveal SRSCs as key players in nerve
repair. These insights provide potential targets for developing
novel therapeutic strategies for peripheral nerve diseases.
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1 Introduction

Peripheral nerve injury (PNI) is primarily caused by trac-
tion injuries, laceration, firearm injuries, compressive inju-
ries, ischemia, and other reasons, leading to temporary or
lifelong neurological dysfunction. Its pathological changes
include impaired axoplasmic transport, axonal degenera-
tion, Schwann cell (SC) damage, segmental demyelination,
and complete Wallerian degeneration [1]. PNI may have
several causes, such as trauma and iatrogenic interven-
tions, which can lead to structural loss and/or functional
impairment [2]. These changes may result in partial or
complete loss of motor and sensory function, physical dis-
ability, and neuropathic pain, which in turn can affect the
quality of life. According to some studies, up to 1 million
people worldwide suffer from PNI each year. The incidence
rate in developed countries is about 0.18%, and this pro-
portion is even higher in developing countries [3]. There-
fore, peripheral nerve injury is a significant clinical and
public health issue.

Unlike the central nervous system, peripheral nerves
can effectively regenerate after injury depending on the
site and extent of the damage [4]. The ability of peripheral
nerves to autonomously regenerate after injury mainly
depends on the role of intrinsic supporting cells, such as
SCs. As the main glial cells within the peripheral nervous
system and the cells that form myelin, SCs play a crucial
role in nerve regeneration. After the injury, SCs create
favorable conditions for nerve recovery through various
mechanisms [5–7].

Research shows that SCs quickly dedifferentiate after
injury, characterized by losing myelin and reverting to a
state similar to early development. They begin to prolif-
erate and migrate to the site of injury, actively partici-
pating in the clearance of cellular debris, degenerating
axons, and other harmful substances in the damaged
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area, creating a suitable environment for subsequent repair.
In addition, they secrete a large amount of neurotrophic
factors, such as nerve growth factor (NGF), brain-derived
neurotrophic factor, etc., which can promote the survival of
neurons and the regeneration of axons. At the same time,
they also secrete extracellular matrix components to help
build a scaffold that supports axonal growth. As the axons
regenerate, SCs re-envelop the axons and begin the process of
remyelination, gradually restoring the normal function and
conduction characteristics of the nerve [6–11].

Despite the important role that SCs play in the repair
of peripheral nervous system injuries, there are still many
specific, functionally flexible, and specialized SCs that are
not well understood within the entire organism. Recent
technological advances in single-cell transcriptomics have
revealed the molecular characteristics of SCs during the
development of peripheral nerves and the cellular compo-
sition of mature nerves, which will help to further unravel
the diversity of SC functions and their cellular interactions
within the PNS [12–15].

In this study, we utilized bioinformatics techniques to
investigate the cellular states of SC subtypes in the dorsal
root ganglion (DRG), identified a novel SC subtype distinct
from the typical nerve repair function SCs, which is a stress-
responsive SC subtype. We term this as SRSCs and elucidated
its mechanism of action, which may provide new therapeutic
targets and treatment strategies for nerve injury repair.

2 Methods

2.1 Quality control and integration for
single-cell RNA-seq (scRNA-seq)

The scRNA-seq data analysis was conducted in the R envir-
onment (v.4.0.2) using Seurat (v4.3.0) [16]. Quality control
measures were applied by filtering out cells with mito-
chondrial genes >15%, ribosomal genes >15%, and cells
that detected <200 or >5,000 genes. We followed standard
quality control criteria when evaluating SCs, removing
only outliers. The remaining high-quality cells were then
processed through normalization, identification of highly
variable genes (HVG), data scaling, and principal compo-
nent analysis (PCA).

PCA was employed as an initial dimensionality reduc-
tion step to identify principal components (PCs) that cap-
ture the most significant variation in the dataset. These PCs
were subsequently used for downstream clustering and
batch effect correction. To further enhance visualization
and facilitate the interpretation of cellular heterogeneity,

we applied the UniformManifold Approximation and Projection
(UMAP) technique using the RunUMAP function. Unlike PCA,
which maintains a linear structure, UMAP provides a nonlinear
projection that preserves local and global relationships in the
data more effectively.

To mitigate batch effects across the integrated scRNA-seq
datasets, we applied the Harmony package [17], following the
recommended guidelines. After harmony integration, UMAP
was used to generate a two-dimensional representation of the
data. The hyperparameters for UMAP were set as follows:
n_neighbors = [insert value] and min_dist = [insert value],
optimized to balance local and global structure preservation.
Clustering was performed using the FindNeighbors and
FindClusters functions, with a resolution parameter set to
0.4. Throughout the analysis, default settings were used for
standard procedures unless otherwise specified.

By utilizing both PCA and UMAP, we aimed to leverage
the strengths of each method – PCA for feature extraction
and dimensionality reduction in the initial processing
stages and UMAP for intuitive and high-resolution visuali-
zation of cellular heterogeneity.

2.2 Cell annotation, differentially expressed
genes (DEGs), and marker genes
identification

The cell type annotation was performed using the Single R
package, which is capable of associating gene expression of
different cell types with single-cell resolution cell gene expres-
sion. By utilizing the expression of HVGs, the Single R package
calculates the correlation between the gene expression of
single-cell samples and the gene expression of cell types in
the reference database. By iteratively eliminating the weakest
correlation of each cell type, the corresponding cell type can be
identified [18]. In this study, we annotated the samples using
the “ref_Human_all” database within the Single R package.
Subsequently, we used the “FindAllMarkers” function in the
Seurat package to identify DEGs for further analysis, applying a
threshold of |log2FoldChange| > 2 and an adjusted P-value <

0.05. Finally, we utilized the “FindMarkers” function in the
Seurat package to identify cell type-specific marker genes.

2.3 GO enrichment analysis

In the annotation analysis, the GO functional enrichment
analysis was performed using the David database and the
Metascape database. The results were visualized using the
ggplot2 package [19,20].
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2.4 Cell–cell communication analysis

Cellular communication, driven by the interactions of ligands
and receptors on the cell surface, is essential for a multitude
of biological processes. To explore the crosstalk between var-
ious cell types, we employed CellChat 1.5.0 for dissecting the
intercellular dialogue. This R package is tailored for deducing
and quantifying the communication networks from single-
cell RNA sequencing data. By mapping out the interactions
of ligands, receptors, and their associated molecules, CellChat
models the signaling pathways between cells. It leverages the
expression patterns of these molecules across different cell
types to deduce their mutual interactions and to identify the
enriched interactions between receptors and ligands in the
context of two interacting cell populations [21].

2.5 Cellular trajectory analysis (pseudotime
analysis)

Cells are in a constant state of dynamic change, transi-
tioning from one cell type to another, which leads to alterations
in gene expression and functional states [22]. Pseudotime ana-
lysis arranges each cell along the corresponding cellular trajec-
tory, representing a pseudotemporal sequence, and groups
cells into different differentiation states by employing a curve
of gene expression. We conducted pseudotime analysis on SC
subtypes using the R packages Monocle 2 and CytoTRACE [23].
To explore the differentiation trajectories and associated genes
of different states of SC subtypes, we used CytoTRACE to calcu-
late the pseudodifferentiation frequency of each cell to infer its
differentiation state and employed the “plot_cell_trajectory”
function to order cells along the pseudotime. The “BEAM” func-
tion was utilized to identify genes responsible for cellular
branching and differentiation.

2.6 Immunofluorescence staining

Mice at defined ages were anesthetized before sacrifice and
then perfused with ice-cold phosphate-buffered saline (PBS)
followed by 2% paraformaldehyde. The L4 and L5 DRGs were
dissected, fixed in 2% paraformaldehyde for 10min, dehy-
drated in 25% sucrose at 4°C overnight, embedded in OCT,
and processed for cryo-sections at 12 μm.

For immunohistochemistry, cryo-sections were permeabi-
lized and blocked in blocking buffer (0.4% Triton X-100 and 3%
normal BSA in PBS) for 1 h at room temperature (RT) and over-
laid with primary GAL antibody (Invitrogen, PA5-25649) and
primary NPY antibody (Invitrogen, ABS 028-08-02) overnight
at 4°C. After washing with PBS, sections were incubated with

secondary antibodies conjugated to Cy2, Cy3, or Cy5 (1:1,000) for
1 h at RT, stained with 4′,6-diamidino-2-phenylindole for 10min,
washed three times in PBS and then mounted in Mounting
Medium.

2.7 Ligand–receptor interaction analysis

To identify significant ligand–receptor interactions, we uti-
lized CellPhoneDB (or other relevant tools, if applicable) to
analyze cell–cell communication based on single-cell transcrip-
tomic data. The statistical significance of ligand–receptor inter-
actions was assessed using permutation tests. Specifically, we
performed 1,000 permutations by randomly shuffling cell-type
labels to generate a null distribution for each interaction.
Interactions were considered statistically significant if their
p-value was ≤0.05 after multiple testing correction using the
Benjamini–Hochberg (BH) method to control the false dis-
covery rate (FDR). Additionally, we applied a hypergeometric
test to determine whether observed ligand–receptor inter-
actions were enriched compared to random expectations. The
enrichment score and p-values were computed based on the
overlap between observed interactions and a predefined ligand–
receptor database. Only ligand–receptor pairs with an adjusted
p-value (FDR) ≤0.05 were retained for further analysis.

2.8 Statistical analysis

To identify differentially expressed genes in bulk scRNA-seq,
the expression data were analyzed using Seurat. Genes with a
Log2 fold change (FC) of 1 or greater and a p-value of 0.05
or less were classified as differentially expressed. As depicted
in the figure, the data are presented as mean ± standard devia-
tion (SD) or mean ± standard error of the mean (SEM),
depending on the context. SDwas used to reflect the variability
of individual data points, while SEM was used to show the
precision of the sample mean. A p-value less than 0.05 at the
95% confidence level is considered statistically significant.

Ethics approval and consent to participate: Ethical approval
for these procedures has been obtained from the Medical
Ethics Committee of Fuzhou Second General Hospital
(202201167, Fuzhou, China). All methods are reported in accor-
dancewithARRIVE guidelines. The full experimental procedures
were carried out under the guidance of the Institutional Animal
Care and Use Committee of Fuzhou Second General Hospital
(202201167, Fuzhou, China). All Mice were housed in the animal
facility of Fuzhou Second General Hospital and were kept
pathogen free. Animal Care and Use Committee reviewed and
approved the procedures involving the care and use of animals.

Single-cell transcriptomic analysis  3



Figure 1: Unbiased clustering identified known cell populations in mice DRG. (a) UMAP plot showing the distribution of each dataset after integrating
datasets using the harmony algorithm; (b) and (c) UMAP plot revealing the integrated cell map, with 12 cell clusters (b) of 7 annotated cell types (c).
Each dot presents one single cell colored by clusters; (d) UMAP plot showing the scaled expression of representative marker genes across cell
types. 8525.
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3 Results

3.1 Unbiased clustering identified known
cell populations in mice DRG

In this study, we analyzed two publicly accessible microarray
datasets (GSE134003 [24] and GSE155622 [25]) retrieved from
the NCBI Gene Expression Omnibus database (GEO) (https://
www.ncbi.nlm.nih.gov/geo/). It includes DRG tissues from 11
normal mice and 14 Spared nerve injury (SNI) mice. Figure 1a
displays the single-cell transcriptomic profiles of different
datasets, with cluster analysis dividing the cells into 12 clus-
ters, as shown in Figure 1b. Unbiased clustering of the cells
identified 7 clusters based on UMAP analyses. Each cluster
was annotated based on the top principals, and the marker
genes were calculated (Figure 1c and d). In particular, they
were as follows: (1) fibroblasts, (2) immune cells, (3) neurons,
(4) satellite cells, (5) SCs, (6) vascular endothelial cells, and (10)

vascular smooth muscle cell cluster. The profiles of the
expression differences of the representative marker genes
in the cell populations were demonstrated by statistical quan-
tification to match the biological annotation.

3.2 Subtypes of SCs in the DRG

SCs, as the main glial cells of the peripheral nervous system
(PNI), provide structural and nutritional support for axons
and supply energy metabolites to neurons, playing a key
role in the peripheral nervous system [26]. Subsequently,
we extracted SCs from the single-cell map we previously
constructed and performed more detailed sub-clustering
and annotation on them. Figure 2a shows the extracted
SCs highly expressing their surface markers Mpz and
Ncam [27–31], and Figure 2b demonstrates that SCs are
divided into six clusters. Following that, we conducted GO
analysis to understand the molecular functions of the related

Figure 1: (Continued)
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Figure 2: Subtypes of SCs in the DRG. (a) UMAP plot showing representative genes in SCs; (b) UMAP plot of 8525 SCs clustered by annotated cell types;
(c)–(h) GO enrichment analysis of six SC subtypes marker genes, shown in terms of biological process (BP), cellular component (CC), and molecular
function (MF), BP refers to the biological processes the genes are involved in, CC denotes the cellular components where the genes are localized, and
MF describes the molecular functions of the encoded proteins.; (i) UMAP plot showing the named SCs along with GO enrichment analysis; (j) UMAP
plot showing the expression levels of selected genes in six cell subsets. UMAP plot (k) and Bar plot (l) showing the cell percentage of each SC subtype
in Control and SNI mice.
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Figure 2: (Continued)
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Figure 2: (Continued)
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clusters and discovered functional differences among each
sub-cluster. Cluster 0 is mainly involved in biological pro-
cesses such as cellular carbohydrate metabolism and the
activity of transmembrane transport proteins; Cluster 1 is
mainly involved in biological processes such as the formation
of the actin cytoskeleton, metal ion transmembrane trans-
port, cell growth movement, and signal transduction; Cluster
2 is mainly involved in biological processes such as adaptive
immune response, maintenance of cellular homeostasis, and

transcription coactivator activity; Cluster 3 is mainly involved
in biological processes such as catalytic enzyme activity, cel-
lular respiration and energy production, and maintenance of
protrusive structures; Cluster 4 is mainly involved in biolo-
gical processes such as cell signal reception and transmission,
regulation of cell cycle phase transition, and cell division;
Cluster 5 is mainly involved in biological processes such as
gland development and maturation, and the assembly of
synapses (Figure 2c–h). Based on their distinct molecular

Figure 2: (Continued)
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biological functions, we have named these six clusters as
follows (Figure 2i): metabolic activity-related SCs (MASCs),
muscular development-related SCs (MDSCs), neurodegenera-
tive disorders-related SCs (NDSCs), neuronal health-related
SCs (NHSCs), stress response related SCs (SRSCs), and tissue
integrity related SCs (TISCs). Surprisingly, we found that the
gene Thy1, which is involved in cell-to-cell interactions in
the brain, the myelin-forming gene Plp1, the key component
of the effective nerve regeneration response Gap43, and the
gene S100a6 that regulates cell cycle progression and differen-
tiation, are highly expressed in the SRSC group (Figure 2j and
Table A1). Additionally, our analysis revealed a notable
increase in both the absolute number and relative proportion
of SRSCs in the SNI group compared to the normal group
(Figure 2k). This increase suggests that SRSCs may be actively
involved in the cellular response to nerve injury. The expan-
sion of this SC subtype indicates a potential functional shift
following injury, where SRSCs may play a role in mediating
stress response, repair processes, or neuroprotection. To
further validate these findings, statistical analysis confirmed
that the observed increase in SRSCs was significant, reinfor-
cing their potential importance in the regeneration and
recovery of injured peripheral nerves (Figure 2l). With the
support of transcriptomic pathway analysis, we further
explored whether the observed SC subtypes might represent
distinct metabolic states. The differential expression of genes
involved in metabolic pathways, such as glycolysis and oxi-
dative phosphorylation, across SC subtypes, suggests that
they could be in different metabolic states. This metabolic
heterogeneity may reflect the cells’ readiness to adapt to
the bioenergetic demands during nerve repair and regen-
eration processes. After peripheral nerve injury, a series of
reactions occur locally, such as oxidative stress, excessive
inflammation, ischemia, and insufficient energy supply,
leading to a deficiency in chemotactic NGFs and the produc-
tion of a large number of factors that inhibit nerve regen-
eration, making nerve regeneration difficult [32–34]. SCs, as
an important component of the peripheral nervous system,
have good plasticity. After nerve injury, they undergo a
series of stress responses and re-engage in the formation
of myelin, restoring the insulation and signal transmission
functions of the nerve. This may also be the reason why the
increase in SRSCs in the SNI group. A large number of stu-
dies have shown that reducing oxidative stress in a mouse
model of acute peripheral nerve injury can improve func-
tional recovery [34–36]. Therefore, SRSCs may become a
potential target for future treatment strategies for periph-
eral nerve injury. Furthermore, we have observed a reduc-
tion in the ratio of TISCs, which could be due to incomplete
repair resulting in pain and the long-term loss of function
that ultimately impairs the integrity of the tissue.

3.3 The states of SCs in the DRG

Lineage tracing and trajectory inference suggest that the
process of cell differentiation may not be synchronized;
under the same static conditions, cells at different develop-
mental stages can be observed. Therefore, by analyzing the
differentiation trajectory of SCs in the DRG to predict the
cellular fate of SCs. After mapping SCs onto the differentiation
pathway, bifurcating trajectories were observed (Figure 3a).
Pseudo-time trajectories divide SCs into a total of five cellular
states, where state 4 SCs differentiate into state 1, 2, 3, or state
5 SCs (Figure 3b and c), and state 1 SCs are at the terminal
phase of differentiation (Figure 3d). Gene set variation ana-
lysis (GSVA) performed functional analysis on the transcrip-
tomes of single cells in different states to annotate their unique
molecular characteristics and biological involvement (Figure 3e).
GSVA indicates that state 1 SCs, which are at the end of differ-
entiation, contain many significantly downregulated gene sets,
especially MYC_TARGETS_V2 (genes regulated by MYC),
FATTY_ACID_METABOLISM (genes involved in fatty acid meta-
bolism), WNT_BETA_CATENIN_SIGNALING (genes involved in
cell differentiation and development), ALLOGRAFT_REJECTION
(genes involved in immune rejection), and E2F.

3.4 Prediction of the differentiation of SC
subtypes

We thus determined the pseudo-time sequence of SC sub-
types. Throughout the cell’s entire hierarchical life process,
various factors stimulate changes in gene expression, trans-
forming them into different cell subtypes or states. Gaining a
deeper understanding of the functional changes in SCs is
crucial for our knowledge of the growth and development
of the peripheral nervous system and the disease process.
Subsequently, we inferred the differentiation process and
potential of different SC subpopulations from a single-cell
level. As shown in Figure 4a and b, MASCs and TISCs appear
to be concentrated in state 4 SCs, with state 1 primarily com-
posed of NDSCs. It can be seen that MASCs and TISCs, which
have high metabolic activity and are in a proliferative state,
have the lowest degree of differentiation and have the poten-
tial to differentiate into other cell types. They may be the
progenitor cells in the developmental trajectory of SCs and
gradually develop into MDSCs, NDSCs, NHSCs, SRSCs, and
TISCs, while NDSCs, being at the terminal stage, do not
have the potential for further development. The heatmap
illustrates the changes in gene expression along the pseudo-
time trajectory branches. These genes are clustered into three
modules with distinct expression patterns, where different
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Figure 3: The states of SCs in the DRG. (a) Trajectory plot illustrating the evolutionary trajectory of SCs; (b) trajectory plot illustrating the evolutionary
trajectory of SCs colored by cell states; (c) branched heatmap showing genes with highly significant branch-specific expression patterns in the
pseudotime trajectory; (d) ridge plot showing the Cell differentiation process of the five states of SCs; and (e) GSVA enrichment analysis of hallmark
gene sets in SC subtypes.
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Figure 3: (Continued)
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Figure 3: (Continued)
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Figure 4: Prediction of the differentiation of SC subtypes. (a) Monocle pseudotime analysis revealing the progression of six SC subtypes; (b) ridge plot
of six SC subtypes; (c) heatmap showing the scaled expression of differently expressed genes in three clusters as in (b); (d) relative gene expression
levels of Gal and Npy across different cell types.; (e)–(j) dot plot revealing the top 10 marker genes of indicated SC subtypes in control and SNI mice; (k)
immunofluorescence staining of NPY and GAL. Scale bar = 20 μm. (l) Quantification of K.
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Figure 4: (Continued)
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Figure 4: (Continued)
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Figure 4: (Continued)
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colors represent the levels of gene expression. We can
observe that cluster1 (NDSCs) exhibits low expression of
genes involved in the regulation of cell proliferation, meta-
bolism, cell cycle, cell signaling, and cell death, such as
GATAD1, GAS2L3, ADAM10, SDC4, LQSEC1, CBX3, NFIA,
CDKNLB, etc.; however, cluster3 (SRSCs) shows high expres-
sion of genes that maintain cell structure, signaling, metabolic
regulation, and cell–cell interactions, for example, NEFL,
PRPH, CALCA, FXYD2, TACL, CALCB, CADM1, MAP7D2,
FXYD7, ATP1A2, NMB, TMEM233 (Figure 4c). In particular,
the SRSCs, characterized by their unique gene expression
signature, are hypothesized to play a pivotal role in the initial
stress response to nerve injury. The upregulation of stress-
related genes in SRSCs, such as Npy and Gal, suggests their
active involvement in modulating cellular responses to stress
and facilitating subsequent repair mechanisms. This distinct
gene expression profile not only highlights the potential role
of SRSCs in the immediate stress response but also indicates
their importance in the subsequent repair and regeneration
phases following nerve injury (Figure 4d). Next, we screened
for differentially expressed genes in these six subtypes, and
Figure 4e–j display the distribution of the top 10 differentially
expressed genes. After SNI occurs, the antioxidant Mt2 that

maintains the homeostasis of intracellular metal ions and
detoxifies heavy metals is highly expressed in MASCs, MDSCs,
and TISCs, which is consistent with the results of the previous
pseudo-time sequencing. It is worth noting that the stress
response genes Npy and Gal are highly expressed in SRSCs,
indicating that after SNI, various SC subtypes perform their
respective duties. MASCs, MDSCs, and TISCs exert the typical
functions of SCs, that is, to repair damaged nerves in an
inflammatory environment, while SRSCs sense the stimuli.
Next, we explored the expression level of NPY and GAL in
the DRG of normal and SNI mice. The results of the immuno-
fluorescence showed that the expression of both was signifi-
cantly increased in the SNI group, suggesting that after
peripheral nerve injury, there is a noticeable stress response
in the DRG (Figure 4k and l). We observed an increase in NPY
expression within SCs following spinal nerve injury (SNI).
Given that NPY is typically stored in dense-core vesicles of
neurons and may also be present in non-neuronal cells, the
observed increase in NPY levels raises the question of whether
SNI merely alters the storage of NPY within vesicles or
whether it globally increases the number of dense-core vesi-
cles. Although our data suggest that SRSCs may be the source
of elevated NPY expression post-injury, we also acknowledge

Figure 4: (Continued)
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the possibility that this increase could be attributed to neu-
rons ensheathed by SCs. To address this issue, future studies
might involve detailed ultrastructural analysis to assess the
density and distribution of dense-core vesicles in SCs before
and after SNI. However, based on our current data, we
hypothesize that the increase in NPY expression is more likely
associated with a functional response of SCs to injury rather
than a simple quantitative change in vesicle numbers.

3.5 SPP1 signaling induces distinct SC
interactions in DRG

In this study, we employed the CellChat function to simu-
late the ligand–receptor interactions between different
types of SCs in SNI, yielding a cell–cell communication net-
work. More frequent cell–cell interactions between SRSCs,
MASCs, and TISCs were observed (Figure 5a). Of note, SRSCs
exhibited greater contact with MASCs via the SPP1 pathway
(Figure 5b). Studies have shown that SPP1 is highly expressed
in various models of neurological diseases, and it participates
in different inflammatory responses by regulating immune
cells [37–41]. In addition, SPPP1 signaling promotes the pro-
liferation and survival of SCs after SNI [42]. We analyzed the
intercellular signaling networks of SPP1, signaling to deter-
mine the important factors. SPP1 signaling is expressed para-
crine in SRSCs. MASCs and TISCs are the main transmitters of
the SPP1 signal (Figure 5c). The above results suggest that
after the occurrence of SNI, the inflammatory environment
SRSCs feel various stresses, followed by the interaction with
MASCs and TISCs through SPP1 signaling, which promotes the
two to perform neural repair functions. This shows that SPP1
signaling may become a promising therapeutic target for
nerve injury repair.

Our findings suggest that SPP1 signaling could play a
significant role in coordinating the response of SCs to periph-
eral nerve injury. By activating SCs, SPP1 signaling may
enhance their ability to support axonal regeneration and
remyelination, processes that are essential for effective nerve
repair. Therefore, understanding the precise mechanisms by
which SPP1 signaling influences SC behavior could provide
valuable insights for developing novel therapeutic strategies
aimed at enhancing peripheral nerve regeneration.

4 Discussion

Peripheral nerve injury, if not promptly and accurately
repaired, can lead to permanent loss of peripheral nerve

function. Current research shows that SCs participate in
the clearance of debris, axonal and myelin regeneration,
and re-innervation of target organs after peripheral nerve
injury [43]. After peripheral nerve injury, SCs are rapidly
activated and enter the repair process, undergoing a series
of dynamic cellular remodeling changes, transforming into a
repair phenotype, promoting nerve regeneration, guiding re-
innervation of target organs, and thus restoring nerve func-
tion. There are many signaling pathways and transcriptional
regulators that control these processes [7]. These repair func-
tions after injury are typical functions of SCs in the peripheral
nervous system [44,45]. However, Abdo et al. [46] have
discovered a type of SCs with different repair functions:
pain-sensitive SCs, which are distributed at the ends of
pain-sensing neurons, forming a pain-sensing receptor organ
network. It can be seen that there are still a large number of
unknown, specific, functionally flexible, and specialized SCs
in the entire organism.

Single-cell sequencing is beneficial for discovering cell
types and subtypes and provides a more systematic and com-
prehensive understanding of cell fate [47,48]. In this study, we
annotated and identified different cell subpopulations based
on single-cell sequencing data of DRG retrieved from the GEO
database. By analyzing the transcriptome of SCs in mouse
DRG, we identified six SC subtypes with different biological
functions. We mapped the pseudo-temporal states of SCs and
inferred the differentiation order and progression of SC sub-
types. Among these six types of cells, MASCs and TISCs with
highmetabolic activity in a proliferative state have the lowest
degree of differentiation, have the potential to differentiate
into other cell types, and may be the origin cells in the devel-
opmental trajectory of SCs, dedifferentiating to play a repair
function after nerve injury. SC injury-induced dedifferentia-
tion and subsequent nerve regeneration cell groups, while
NDSCs are at the end and have no further development
potential. In addition, we found a type of SCs different from
the traditional repair function – SRSCs, which highly express
Npy after injury. As a neuropeptide widely expressed in the
nervous system, NPY plays a vital role in cortical excitability,
stress response, food intake, circadian rhythm, and cardio-
vascular function [49–53]. In this study, GSEA results show
that Npy is highly expressed in SRSCs after SNI, providing a
potential theoretical basis for elucidating the regulatory role
of SRSCs in stress response in SNI. At the same time, we found
that SRSCs interact with other cells through the SPP1 signal, so
we speculate that at the time of injury, SRSCs first sense the
stimulus and send signals to other traditional repair cells
through the SPP1 signaling pathway, prompting them to dif-
ferentiate into progenitor cells to play a nerve repair func-
tion. Furthermore, we highlight the potential of SRSCs to
serve as biomarkers indicative of the severity of neural injury
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Figure 5: SPP1 signaling induces distinct SC interactions in DRG. (a) The number of interactions in a cell–cell communication network (the left panel);
the interaction weights/strength in a cell–cell communication network (the left panel); (b) dot plots showing significant ligand–receptor pairs between
different SC subtypes; and (c) overview of SPP1 signaling networks in six SC subtypes.
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and discuss the therapeutic significance of targeting SPP1
signaling. Understanding the role of SRSCs and their interac-
tion with the SPP1 pathway could pave the way for devel-
oping novel therapeutic strategies aimed at enhancing neural
repair. SPP1, through its interaction with its receptor on SCs,
modulates cellular responses to injury by promoting the pro-
liferation and migration of SCs, which are critical for the
repair process. This signaling pathway may also contribute
to the resolution of inflammation and the restoration of
tissue homeostasis following nerve injury. Therefore, under-
standing the precise mechanisms by which SPP1 signaling
influences SC behavior could provide valuable insights for
developing novel therapeutic strategies aimed at enhancing
peripheral nerve regeneration. Recent advancements in spa-
tially resolved transcriptomics and proteomics offer new
avenues for exploring cellular dynamics in response to
injury. For instance, high-plex protein and whole transcrip-
tome co-mapping at cellular resolution with spatial CITE-seq
provide a comprehensive view of cellular responses [54].
Additionally, the spatial dynamics of mammalian brain
development and neuroinflammation characterized by
multimodal tri-omics mapping [55], and the spatially
resolved in vivo CRISPR screen sequencing via perturb-
DBiT [56], provide innovative approaches to study SC beha-
vior in injury contexts. These techniques could offer future
research avenues to explore the complex interactions
between SRSCs, repair SCs, and nociceptive SCs and to
further elucidate the role of SPP1 signaling in neural repair.

This study explores the cellular heterogeneity of SCs in
peripheral nerve injury using single-cell sequencing tech-
nology, uncovering the distinct roles of SC subtypes in
nerve repair. We identify abnormal expression patterns
of key genes in specific subpopulations and emphasize
the need for further research on the stimulus-sensing
mechanisms of SRSCs to develop effective therapeutic stra-
tegies. The discovery of novel cell subtypes holds promise
for treating peripheral nerve pain; however, further stu-
dies are required to evaluate their efficacy and safety in
peripheral nerve disease treatment. While our research
enhances the understanding of peripheral nerve disease
pathogenesis and provides potential therapeutic targets,
certain limitations remain. First, our study focuses exclu-
sively on Scs, which may overlook the contributions of
other cell types involved in nerve repair. Peripheral nerve
regeneration is a complex process that involves not only
Scs but also neurons, immune cells, and vascular compo-
nents, all of which play essential roles in injury response
and recovery. The absence of these cell types in our analysis
may limit the scope of our findings. Therefore, future
research should incorporate complementary single-cell

datasets encompassing these additional cell types to provide
a more comprehensive understanding of cellular interactions
and regulatory networks in nerve regeneration. Additionally,
the limited sample size and potential technical biases may
affect the generalizability of our findings. Expanding the
dataset and employing advanced computational approaches
to correct for technical variation will be crucial for increasing
the robustness of our conclusions. Finally, due to the lack of
clinical samples, further validation is necessary to confirm
our results and fully elucidate their underlying mechanisms.
Future studies should adopt a more integrated and extensive
approach, leveraging multimodal single-cell techniques and
clinical validation, to deepen our understanding of peripheral
nerve repair and facilitate the development of effective ther-
apeutic strategies.
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Appendix

Table A1: Fold expression in different Schwann cell subtypes

p_val avg_log2FC pct.1 pct.2 p_val_adj Cluster Gene

Thy1 1.56 × 10−8 0.441326 0.531 0.514 0.000402 Stress response THY1
Plp1 2.80 × 10−76 0.422452 0.957 0.873 7.21 × 10−72 Muscular development PLP1
Gap43 2.45 × 10−52 0.537436 0.544 0.385 6.31 × 10−48 Muscular development GAP43
S100a6 6.14 × 10−30 0.317475 0.993 0.986 1.58 × 10−25 Stress response S100A6
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